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Abstract: State-of-the art physics-model based dynamic state estimation generally relies on the
assumption that the system’s transition matrix is always correct, the one that relates the states in two
different time instants, which might not hold always on real-life applications. Further, while making
such assumptions, state-of-the-art dynamic state estimation models become unable to discriminate
among different types of anomalies, as measurement gross errors and sudden load changes, and
thus automatically leads the state estimator framework to inaccuracy. Towards the solution of
this important challenge, in this work, a hybrid adaptive dynamic state estimator framework is
presented. Based on the Kalman Filter formulation, measurement innovation analytical-based tests
are presented and integrated into the state estimator framework. Gross measurement errors and
sudden load changes are automatically detected, identified, and corrected, providing continuous
updating of the state estimator. Towards such, the asymmetry index applied to the measurement
innovation is introduced, as an anomaly discrimination method, which assesses the physics-model-
based dynamic state estimation process in different piece-wise stationary levels. Comparative tests
with the state-of-the-art are presented, considering the IEEE 14, IEEE 30, and IEEE 118 test systems.
Easy-to-implement-model, without hard-to-design parameters, build-on the classical Kalman Filter
solution, highlights potential aspects towards real-life applications.

Keywords: measurement innovation; asymmetry index; Kalman Filter; anomaly detection; measure-
ment gross errors; load dynamics

1. Introduction

Electric power systems are critical infrastructures that rely on continuous and detailed
monitoring of their assets, encompassed by power system state estimation (PSSE). Since
its conception in the early 1970s, PSSE has been focused on processing the steady-state
condition of the transmissions systems, under a static analysis framework [1]. With the
penetration of renewable energy and new control equipment, the static perspective does
not provide the modern energy management systems’ requirements. Thus, it becomes
imperative to capture systems’ dynamics for advanced automated applications, in such
a way to provide fast control actions, increase the reliability of the system, diagnosis of
cyber-attacks, and optimize resources across the power grid [2–4].

Dynamic state estimation in power systems can be understood as to estimate the grid
states, as voltages magnitude and phases, considering the time relation between them.
There are many presented physics-model-based dynamic state estimation (DSE) solutions,
being the Kalman Filter formulation and it is likewise a family of formulations most
used [3,5,6]. The first formulations of DSE in power systems were proposed shortly after
the consolidation of static state estimation in transmission system operation centers [7–12].

Such works established the theoretical foundations to capture the dynamic character-
istic of the power system. They encompass a first-order state-space model to represent the
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temporal relationships among the state variables and the Kalman Filter technique applica-
tion. However, the computational burden of the algorithm, and the lack of fast updating
measurements in the Supervisory Control and Data Acquisition (SCADA) system hindered
real-life applications [3,5,12]. Only in the late 2000s, dynamic state estimators regained
significant interest, with the advent of faster computer architectures, by the allocation of
new instrumentation and communication technologies with faster updating and sampling
rates, and as well as the acute power system operational requirements, carried by a more
volatile environment with renewables [5]. In the effort of surpassing many of the practical
and theoretical challenges, different versions of the Kalman Filter were proposed, such
as the Linear Kalman Filter [13], the Extended Kalman Filter [14], the Unscented Kalman
Filter [15], the Cubature Kalman Filter [16], the Correntropy Kalman Filter [17] and the
Ensemble Kalman Filter [18]. Nonetheless, all such approaches consider a single stationary
scenario or that only known load changes occur on the system. This translates to the
assumption that the system’s transition matrix is always correct, which might not hold in
real-life applications. In a complementary perspective, robustness against measurement
gross errors for dynamic state estimators gained a significant research effort. The work
in [19] shows that incorporating the state-space model can benefit classical bad-data pro-
cessing based on the weighted residual analysis. Also, recent works seek to improve the
estimator robustness by changing its objective function, such as by the M-estimators [20],
the generalized maximum likelihood estimation [21], the weighted least absolute value [22],
the H-infinite [23] and hybrid approaches [24]. Altogether, robustness is often obtained at
the cost of improving the estimator variance, computational burden, or model complexity.
Conversely, such approaches fail to discriminate measurement gross errors from changes
in the stationary load level, often treating them in the same theoretical perspective, or by
modifying the residual-based tests. Amidst such a promising challenge, this work explores
a family of Kalman Filters formulation for the DSE problem. The state space is modeled
under a piece-wise stationary state space, and the change in the stationary load level must
be detected and discriminated from measurement errors. Towards such a goal, a statistical
asymmetry index, applied to the system innovation, is introduced. This metric is used in
analytical-based tests towards continuous discrimination of anomalies type. In this work,
it is further shown that considering the condition of changing the stationery load level, the
asymmetry index will have a non-zero small value. In this case, the innovation will not
have Normal distribution. Otherwise, in the measurement gross error condition, the inno-
vation will present a large asymmetry index, due to the modeling structural discontinuity.
Therefore, the presented analytical-based tests enable discrimination among different types
of anomalies and automatically adapt the dynamic state estimator to maintain accuracy.
The specific contributions of this work towards the state-of-the-art are

1. The development of a hybrid state estimator framework, based on the Kalman Filter
formulation, able to diagnosis measurement gross errors and sudden load changes
automatically;

2. The exploration of the asymmetry index as an anomaly discrimination method, as-
sessing the DSE process in different piecewise stationary levels, which can be used in
any family of Kalman Filters-like dynamic state estimators framework.

The remaining of the manuscript is structured as follows: Section 2 presents the
theoretical background for DSE and the Kalman Filter (KF). Section 3 introduces the
dynamic estimator and the innovation analysis for anomaly discrimination. Section 4
presents test results, followed by the conclusions, which are presented in Section 5.
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2. Dynamic State Estimation

DSE in power systems can be understood to estimate the grid states, as voltages
magnitude and phases, considering the time relation between them. DSE in power systems
can be modeled as

xk+1 = Fkxk + Gkwk + Γkuk

zk = Hkxk + υk,
(1)

With xk the state vector at time k, wk a known input and uk the state noise. Equivalently,
zk the observation vector and υk the observation, or measurement, noise. Fk is the state
transition matrix, Gk is the matrix relating the states to the input wk and Hk is the matrix
relating measurements to states at time k, all of them with the appropriate dimensions.
Figure 1 illustrates a block diagram for the signal model with external known input that
corresponds to the DSE problem.
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Figure 1. Signal model with external input known.

Within the power systems realm, dynamic state estimation has been conceptualized
under different perspectives, mainly related to the definition of state variables. The funda-
mental difference comprises the inclusion, or not, of internal variables from generators and
loads (also referred to as dynamic state variables), besides the complex nodal voltages of
the power network (also referred to as algebraic state variables) [3,5]. The first focuses on
fast transient events that may cause instabilities, while the second on slower rates of change
that affect the loading condition of the power networks. Nonetheless, both represent a
system subject to a stochastic phenomenon and uncertainty. The difference lies in the
time scale of events and observed response of the system. In this work, dynamic state
estimation refers to the second definition, also referred to as tracking or forecasting-aided
state estimation [4], focused on the power flow behavior over time, that is, the temporal
relations among different operational conditions of the interconnected power grid. Hence
the state variables comprise the complex nodal voltages in all nodes of the power systems
x = {(Vi, θi)|i ∈ {1, 2, . . . , nbus}}. The measurements comprise electrical quantities mon-
itored in real-time by the SCADA systems. A detailed discussion about the employed
models and physical aspects of the power system is presented in the Appendix A.

2.1. Statement of the Discrete Kalman Filtering Problem

Considering the linear, finite-dimensional, discrete system described by the previous
equations, with υk and wk being independent, Gaussian white noise processes with

E[υk υT
j ] = Rk and E[wk wT

j ] = Qk, (2)

where Rk is the measurement noise covariance matrix and Qk is the state covariance
matrix. Suppose x0, the initial value of the system state variables, being a Gaussian random
variable. Assuming they have mean x0 and covariance matrix ∑0|−1, the KF solution
consists of estimating xk|k−1 and xk|k and their associated error covariance matrices ∑k|k−1
and ∑k|k. Here xk|k−1 means estimating the state vector at time step k with data until time
step (k− 1). If the assumption of a Gaussian distribution for x0, υk, and wk is dropped,
but they remain described by their first and second-order statistical moments of their
probability distribution functions, all the conclusions about unbiasedness and algorithm
formulation are precisely the same. However, optimality, in the sense of the minimum
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variance estimator and minimum squared error, will not be the case. This is one of the
major motivations to overcome gross errors in the measurement vector, that largely distort
such assumption of Gaussian noise and negatively affects the estimation.

2.2. Solution of the Kalman Filtering problem

The KF model can be solved in two steps: the prediction and the estimation step.
(1) SKF Prediction Step:
The Kalman Filter prediction step is given by

x̂k+1|k = Fk x̂k|k−1 + Kk[z¯k − Hk x̂k|k−1] + Γkuk, (3)

With x̂0|−1 = x0. The Kalman gain is given by:

Kk = Fk∑k|k−1HT
k [Hk∑k|k−1HT

k + Rk]
−1, (4)

the inverse is guaranteed with Rk being a positive definite matrix, while the conditional
error covariance matrix ∑k|k−1 is computed recursively by the Riccati equation:

∑k+1|k = Fk[∑k|k−1HT
k (Hk∑k|k−1HT

k + Rk)
−1Hk∑k|k−1]F

T
k + GkQkGT

k , (5)

where, ∑k+1|k is the updated error covariance matrix.
(2) KF Estimation Step:
The KF estimating solution is given by

x̂k|k = x̂k|k−1 + ∑k|k−1HT
k (Hk∑k|k−1HT

k + Rk)
−1(z

¯k − Hk x̂k|k−1), (6)

assuming that the inverse exists, the error covariance matrix is given by

∑k|k = ∑k|k−1 −∑k|k−1HT
k (Hk∑k|k−1HT

k + Rk)
−1Hk∑k|k−1. (7)

2.3. Bad Data Analysis

Considering DSE, besides measurement errors, one can have other anomalies as large
load changes. In this case, the state transition matrix may not reflect the hull transition of
states. This highlights the difficulty in modeling the system for DSE purposes. The state
uncertainty can be quantified by white Gaussian noise with covariance Qk. This technique
may incur some difficulties: if one assumes a high covariance so that the sudden load
change is inside the modeling, the estimate may be significantly poor for the case of small
load fluctuations. Otherwise, if the noise covariance is considered small, to represent well
the small load fluctuations, the model will not simulate large load fluctuations, but, in this
case, it could be used to identify the anomaly for large load variations [10].

To tackle the previous challenge, in this work, as the state-of-the-art, the state transi-
tion matrix is modeled through an identity matrix, with a small covariance matrix. This will
represent a stationary system behavior. As a tradeoff, possible changes in the stationarity
load level will be detected. However, measurement gross errors could be misidentified
as a stationarity level change. Sudden large load changes, as well as measurement gross
errors, will be named here as an “anomaly”. That said, they are anomalies of different
characteristics and should be, in this way, automatically detected and identified. One
should note that in the bad data condition, there exist equations “inconsistencies” or “a
structural discontinuity” of the equations describing the DSE behavior [10,25]. Otherwise,
considering the large load changes, there is no structural discontinuity in system equa-
tions [10,17,25]. In this work, the distinction between these anomalies is done through the
analysis of the statistical distribution of the innovation process.

Due to the structural discontinuity in the equations, the innovation for the mea-
surement gross error condition will present a large asymmetry characteristic. Otherwise,
considering stationarity load level changes, the symmetry related to the innovation average
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value will keep its value, but dislocated from zero. In this case, the innovation will not
have a Normal distribution [10]. These characteristics are illustrated in Figure 2.

Figure 2. Distribution function of the New Information: (a) Dashed line for Normal Distribution and
Solid line for Sudden load change situation; (b) Measurement Gross Error case.

3. Dynamic State Estimation Formulation for Gross Error Analysis

The power system state can be defined by an n-dimensional x vector consisting of the
voltages magnitudes and their phase angles, except one of them, taken as reference. The
system state can be modeled as

xk+1 = xk + wk. (8)

With wk being a white Gaussian, noise vector with

E[wk wj] = Qkj and Q = α2diag(q2
i ) = α2Γ. (9)

The previous qi is the maximum ratio of the state i obtained from historical data of bus
i. To represent power flows, the measurement model in power systems dynamic state
estimation consists of the following set of nonlinear equations (h(xk)) given by

zk = h(xk) + υk. (10)

and
E[υk υT

j ] = [δkj Rkj] , E[υk] = 0. (11)

The estimate x̂ of x is obtained using the Kalman filter theory:

∑k+1|k = ∑k|k + Qk (12)

Kk = ∑k|k HT
k [Hk∑k|k−1HT

k + Rk]
−1 (13)

x̂k|k = x̂k|k−1 + Kk[zk − h(x̂k|k−1)] (14)

∑k|k = [I − Gk Hk]∑k|k−1 (15)

With Hk the Jacobian matrix of h computed at x = x̂.
The hull differentiation between the anomalies, gross error, and sudden load change,

will be based on the deformation of the innovation distribution function [10]. In the
following, the Innovation process is introduced. While using an analytical model, the
implicit hypothesis is that system behavior is considered stationary by parts.

3.1. The Innovation in the Dynamic State Estimation Process

The system innovation is modeled by

υk = zk − h(x̂k|k−1) (16)

As one knows, υk is a white Gaussian process, so that:

E[υk] = 0 , E[υk υT
j ] = Hk∑k|k−1HT

k + Rk. (17)
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Normalizing the innovation process, one obtains:

λk,i = λk,i/ρk,i (18)

ρ2
k,i = Hk∑k|k−1HT

k + r2
k,i (19)

where υk,i is the ith component of υk and Hk,i is the ith line of Hk. In this way, one can
define the random variable Λk (the set of all individual innovations υk,i) whose sample is
the normalized innovation process, presents a normal distribution with average zero and
unitary covariance. Considering the bad data condition, this would not be in fact an inno-
vation, since the innovation probability function would change. Otherwise, considering
the stationary level change, that would be the case, since the probability function would be
dislocated from zero, but still a normal distribution [10].

3.2. Anomaly Detection

In this work, two types of anomalies are considered, that is, the sudden change of
system states and measurement gross errors. Considering the measurement value zk, in a
measurement gross error condition, the predicted state value will present significant errors
in the innovation Equation (16) [10,25].

When this anomaly occurs, the innovation distribution (Λ) in the normalized form is
considerably different from the Λ distribution for the case of stationarity level change, as
illustrated in Figure 2, where f(λ) is the probability distribution function for λ [10]. If those
measurements are deleted or corrected, considering the measurement gross error condition,
the distribution for Λ is equivalent to the stationary case situation. Otherwise, for the
abrupt stationary level changes case, a significant number of elements of the innovation
process are affected, and the Gaussian behavior will stay valid, but with an average
magnitude, not zero, that is, the symmetry related to the non-zero average value will stay
valid, which does not occur for the measurement gross error condition. The detection of
sudden load changes is mainly related to the sensitivity of the state variables to the active
and reactive power injections of each bus of the system. Thus, the detection of anomalies in
a specific node may be more difficult if the system is less sensitive to it, for instance, buses
with the smallest loads. On the contrary, it will be more sensitive to variations in buses
with more loads or generation. The main factor in such detection feature is the tuning of
the state covariance matrix Qk of the Kalman Filter. The elements of the covariance matrix
should reflect the impact on the state variables caused by the expected load and generation
variations. Considering the previous, in this work anomalies will be detected by the test:

|λk,i| < α, i = 1, 2, . . . . . . n (20)

With α a chosen threshold value (in this work assumed equal 3.0). This value is chosen
considering the desired significance level and degrees of freedom. If at least one element
of the innovation process is out of the pre-specified region, an anomaly condition is
characterized.

3.3. Anomaly Discrimination and Adaption

The anomaly discrimination is in this work done by estimating the deformation of
the innovation distribution. This deformation is estimated by the asymmetry index of the
innovation distribution related to the average [11]:

γk = M3,k/σ3
k , (21)

With M3,k the third moment of the distribution, at time k, and σ3
k the standard deviation of

that distribution. The third moment is given by

M3,k = E[Λ3
k ]− 3µkE[Λ2

k ] + 2µ3
k (22)
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With
σ3

k = E[Λ2
k ]− µ2

k , µk = E[Λk] (23)

When the innovation deformation tends to zero, the distribution is symmetric and the
constant γk tends to zero, as in the normal distribution. That said, for the measurement
bad data condition, the distribution deformation is large, and then γk becomes large as
well, as symmetry is lost. Otherwise, for an abrupt change in the stationary level, the
symmetry is not lost and γk will have a low value. Thus, considering the γk calculation for
the normalized innovation, the anomaly will be discriminated by

1. γk > |γmax| →Measurement Gross error situation
2. γk < |γmax| →Suddenly state variable change

where, γmax is a threshold obtained by experience and at the same time by simulations (in
this work assumed equal 2.0). This value is well-chosen considering a level of confidence
and degrees of freedom. Toward surpassing the effects of anomalies in the state estimation,
an adaptive analytical model is presented. The end goal is to restore the accuracy of the
estimation process. The adaptive analytical model consists of two tests:

1. If a gross error is detected (if |γk,i| ≥ α and γk ≥ |γmax|), the measurement with
the largest normalized innovation is not considered, and the estimation process is
repeated without this measurement;

2. If a gross error is detected (if |γk,i| ≥ α and γk < |γmax|), the estimation considers
only the current snapshot of measurements, thus not considering the time relations
between states, and the estimation process is repeated using a static estimator:

4. Presentation of Performed Tests and Analysis of Results

This section describes the performed tests and analyses for the presented anomaly de-
tection model. The algorithm behavior for anomalies identification, through the asymmetry
index of the distribution curve of the innovation, is presented. The simulation methodology
includes random noise in the results of a reference scenario to emulate the measurement set.
A load flow calculation obtains the reference scenario, and the measured values are given
by (24) [26]. The power system’s temporal aspect is simulated by a sequence of power flow
scenarios, each instant with its corresponding loading/generation scenario. Each sample
represents a different discretized instant k and the respective measured values. Thus, the
simulation consists of a sequence of quasi-stationary conditions. Gross errors are included
in the measurements by including larger error values in a specific set of measurements.
Anomalies in the power system are simulated as sudden changes in the reference load
flow scenario, changing the load/generation values and considering slow dynamic effects
between successive instants. Measurements are considered with a sampling rate of one
sample per second, a typical period of practical operation and supervisory systems.

zk,i = zre f
k,i + µi

pri|z
re f
k,i |

3
(24)

where zre f
k,i is the reference value for the ith measurement at time k obtained by the load flow

solution, pri is the metering device precision (assumed as 2% for active and reactive power
and 1% for voltage magnitude), and µi is a random value obtained from the standard
Gaussian distribution. A similar equation also provides the diagonal elements of the
measurement noise covariance matrix Rii = pri|zi,k|/3. The process noise covariance
matrix was calculated in a similar manner, by associating a percentage of admissible
variation for each state variable in two successive instants (α), the maximum state ratio
in (9), according to a percentage of the previous state value (xi,k−1), that is

Qii = α2qi = (αxi,k−1)
2 (25)
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4.1. Conceptual Example and Asymptotic Performance of DSE

This section presents the initial simulation with a 3-bus test system, illustrated on
Figure 3, as a conceptual example. The network data and reference loading scenario are
provided in Appendix B. This simulation intends to show two main aspects of DSE in
power systems, and the importance of supporting the algebraic state variables with the
state-space model.

Figure 3. The 3-bus transmission system and respective measurement set for the simulation.

The state vector and measurement vector are defined by the following electrical
quantities of the network, with the voltage phase angle at bus #1 as reference (θ1 = 00):

x = [V1, V2, V3, θ2, θ3]
T (26)

z = [P1, P2, P3, Q1, Q2, Q3, P1−2, P1−3, P2−1, P2−3, Q1−2, Q1−3, Q2−1, Q2−3, V1, V2]
T (27)

The measurement model h(x) in (9) is built according to the respective monitored electrical
quantities. The temporal relations are included in the model as described in (8), that is,
with an Identity matrix as a transition matrix. The measurement covariance matrix is a
(16 × 16) diagonal matrix with elements obtained according to the respective measurement
precision. While the state process covariance matrix is a (5 × 5) diagonal matrix with each
element calculated according to (25), using a state rate equal to 0.01%.

In this test, the simulation consists of a stationary load condition under 10 min, with
samples acquired at each second, to illustrate the asymptotical behavior of the Kalman Filter
in comparison with traditional static state estimation, that is neglecting temporal relations
among state variables. Figure 4 illustrates the state variables at bus #2 during the simulation.
It illustrates the major conceptual enhancement of dynamic state estimation algorithms,
an asymptotical improvement of the estimated values over time. Such advantage is valid
under stationary conditions, as shown in the next simulations.

Figure 4. Example of estimated state variables (voltage magnitude and phase angle) at bus #2 during
the simulations, with the dynamic state estimator and with a static state estimator.

4.2. Performance of the Adaptive Dynamic State Estimator Algorithm

This section presents the application in the IEEE 14 test system [27] with the mea-
surement set illustrated in Figure 5. The simulation consists of an initial stationary load
condition under the first 20 s. A load increase at a constant rate of 0.2% per second follows
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from t = 20 s to t = 60 s, that is, a load ramp for all nodes, followed by more than 10 s of
stationary condition. Then a sudden load increase of 5.0% occurs from t = 70 s to t = 90 s at
four specific nodes (nodes #3, #4, #13, and #14). The state ratio in this test case was assumed
as 0.03% of the previous state variable value.

Figure 5. The IEEE 14 bus transmission system and respective measurement set for the simulation.

Figure 6 presents the estimated state variables for node #14 in comparison to the reference
load flow during this simulation. Figure 7 presents the estimation error boxplot between the
estimated state variables and the reference values from the load flow calculation.

Figure 6. Example of estimated state variables (voltage magnitude and phase angle) at bus 14 during
the simulations with the adaptive dynamic state estimator.

As one can see from the figures, when anomalies occur in the system, the estimation
process deteriorates, especially for the phase angle. This is though expected, as, during
such events, the hypothesis that the state transition matrix is equal to an identity matrix
becomes false, that is, there is a change in the stationarity level of the system. Moreover,
the proposed adaptation strategy successively identifies and adapts the estimator to each
change on the stationarity level and in the presence of gross errors.
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(a)

(b)

Figure 7. Boxplot of estimation error in all state variables at each instant of the simulation: (a) con-
ventional Kalman Filter; (b) proposed Adaptive Dynamic State Estimator

The adaptation strategy is triggered during the load ramp, at time steps #26s, #35s,
#44s, and #54s. This is because the load ramp is a persistent anomaly, at that time during
40 s, which continuously changes the stationarity level of the system behavior during that
interval. That said, the sudden load change (load increase and load decrease) are sudden
changes that occur in a single instant, at time step #70s and #90s. In this case, the anomaly
needs to be suppressed only once, in the instant of the load change, and the dynamic state
estimator will return to the correct and new stationary level in a normal way. Figure 8
illustrates maximum absolute innovation value from all measurements and the calculated
asymmetry index, in each instant.

Figure 8. Maximum normalized innovation and asymmetry index for the IEEE14 in the simulations.

One can see that, after the inclusion of measurement gross error, the asymmetry index
increases. Besides, when of the sudden load increase of 5%, the asymmetry index keeps its
value below the threshold, as expected.
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4.3. Effect of Process Noise and Anomalies Size

This case study considered the reference load flow scenario of the IEEE 30 bus test
system [1]. A random load variation was included with a uniform variation of 0.5%
in all loads in this case. Still, a sudden load increase of 5.0% occurs from t = 40 s to
t = 90 s at six specific nodes (#3, #4, #15, #19, #21, and #30). The state ratio in this test case
was also assumed as 0.03% of the previous state variable value. Initially, different levels
and locations of gross errors were inserted in the simulations. Different levels of gross
errors were added in different measurements during the simulations. Figure 9 illustrates
the normalized innovation and the asymmetry index for this simulation. It shows that
anomaly discrimination, based on the asymmetry index and the innovation level, enables
an automatic suppression of different levels and locations of gross errors. An estimation
accuracy like the previous section was obtained.

Figure 9. Maximum normalized innovation and asymmetry index for the IEEE30 in the simulations.

This second test also evaluated different sizes of sudden load changes and the detection
by the asymmetry index of such change on the stationarity level. Different values of
additional loads were included to the same six nodes (#3, #4, #15, #19, #21, and #30), that
comprise 20% of the total net load. Table 1 presents the anomaly discrimination indexes,
the maximum normalized innovation, and the asymmetry index, for each level of sudden
load change, and different percentages for the state ratio. The method’s ability to detect
such changes on the stationarity level depends on the assumed state covariance values. For
instance, the state covariance matrix increase pushes the performance of the dynamic state
estimator towards the static state estimator. Thereby, it becomes insensitive to changes on
the stationarity level and neglects the additional information from the state-space model. It
is noteworthy that the asymmetry index kept inside the accepted variation during such
sudden load increases, i.e., it kept its value below the threshold value of 2.0.

Table 1. Dynamic State Estimator anomaly discrimination during different levels of sudden load change for the IEEE30
system with different state ratios for the state covariance matrix.

State Ratio Discrimination Index Sudden Load at Nodes: #3, #4, #15, #19 and #30
(α) 1.00% 2.00% 3.00% 5.00% 10.00%

α = 0.01% Max.Norm.Innovation 2.2395 2.5890 2.9669 7.0648 14.7944
Asymmetry Index −0.7564 0.4354 0.2464 0.1318 0.1314

α = 0.1% Max.Norm.Innovation 2.2472 1.6949 1.6857 3.1396 6.1013
Asymmetry Index −1.5551 0.5288 0.4443 0.6452 0.4482

α = 1.0% Max.Norm.Innovation 2.2165 1.3483 1.3367 2.0801 3.2864
Asymmetry Index −1.6005 0.5130 −0.0642 0.5933 1.0896
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Finally, different levels of random load variation were also evaluated. Table 2 shows
the mean absolute error, among all state variables, for different load variation levels and
different percentages of state ratios

Table 2. Mean absolute error of the estimation for different levels of load variation for the IEEE30
system with different state ratios for the state covariance matrix.

Load Variation Maximum State Ratio in the State Covariance Matrix
α = 0.00% α = 0.01% α = 0.1% α = 1.0% α = 10.0%

0.00% 8.9252×10−6 2.6840×10−5 7.9222×10−5 1.8912×10−4 2.3610×10−4

0.50% 4.4572×10−4 2.9600×10−4 2.1010×10−4 1.9453×10−4 2.3684×10−4

1.00% 12.1285×10−4 5.8336×10−4 3.7315×10−4 2.0537×10−4 2.3761×10−4

2.00% 61.1972×10−4 11.6417×10−4 7.1472×10−4 2.3882×10−4 2.3922×10−4

As can be seen, the DSE increases its performance under stationary conditions. Such
performance is directly related to proper covariance matrix tuning. Besides, by increasing
such covariance, the estimation reaches an error plateau given by a static state estimator’s
performance. It is noteworthy that load variations of 2.0% are very large for the time span
of the SCADA sampling rate, a few seconds. Such size of load change is more prone to be
associated with sudden changes type of anomaly.

4.4. Effect of Different System Anomalies

To further explore and illustrate the asymmetry index, this simulation considers the
IEEE 118 test system, a medium-size transmission system [27]. The simulation comprises
one hundred sequential seconds, with the inclusion of 0.1% of random load variation in
all nodes. This test scenario also considers a loss of generation at node #100, reducing
252 MW (6.1% of net load) at t = 40 s. The state ratio in this test case was assumed as 1.0%
of the previous state variable value. Figure 10 illustrates the normalized innovation and
the asymmetry index, demonstrating the automatic suppression of both gross errors and
sudden changes while keeping accuracy throughout the estimation.

Figure 11 illustrates the cumulative probability plot of the normalized innovation
for this test during different anomalies. It clearly shows the asymmetry present in the
normalized innovation sample in the presence of gross errors, captured by the proposed
anomaly discrimination strategy. Despite the results during the initial stationary event,
as well as during the loss of generation, show a heavy-tailed distribution, it has more
symmetry when compared to the presence of gross errors.

To demonstrate the effect of tuning and the influence of the sensitivity of the state
variables, different levels of sudden load changes in individual buses were included across
the power system. Two different approaches for tuning the state covariance matrix were
evaluated, the first with a constant percentage of possible state variation, as in the previous
simulations, and the second by choosing individual values of the state ratio parameter
for each state variable. This later choice seeks to capture a more sensitive detection for
anomalies that may occur in different parts of the system according to the respective
state sensitivity.
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Figure 10. Maximum normalized innovation and asymmetry index for the IEEE118 in the simulation.

Figure 11. Probability plots for the normalized innovation in different instants: (left) in a stationary condition; (middle) with
multiple gross errors; (right) during a loss of generation event

Figure 12 illustrates a map with the detection level of sudden load change required
to trigger the anomaly detection method in these two tuning approaches. The results are
also present in Figure 13 with the obtained load change detection levels in each bus of the
system. As it can be seen, the sensitivity of buses with less load requires larger levels of
sudden changes, sometimes much more than 40%, to be captured by the anomaly detection
method. However, as shown in the second simulation, by changing the tuning strategy for
the state covariance was possible to increase such sensitivity accurately detect individual
load changes less than 10% in most of the buses. Thus, showing the covariance matrix
tuning as an important aspect of dynamic state estimators and their response against
different anomalies.

A l
Figure 12. Locational aspect of sudden load change detection with two different state covariances
tuning: the first with a fixed state ratio for all buses and the second with an individual level of state
ratio for each bus.
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Figure 13. Amount of load change, in the percentage of the nominal value, in each individual node,
detected as an anomaly for two different state covariances tuning.

4.5. Computational Aspects

Finally, the computational aspects of the previous simulations are presented in Table 3.
The tests were performed using a microcomputer with a Core i7 3.60 GHz, 16GB RAM
with C programming language. The computational times only indicate the algorithm feasi-
bility, and there is a large space for improvements, such as exploring sparsity treatments,
improving data structures, and employing parallel computing techniques.

Table 3. Mean processing time for different stages of the proposed DSE.

Test System Prediction Step Estimation Step Anomaly Discrimination

IEEE14 <1.0 ms <1.0 ms 1.9 ms

IEEE30 <1.0 ms 16.0 ms 9.7 ms

IEEE118 15.2 ms 360.0 ms 18.4 ms

5. Conclusions

This paper presented a family of Kalman filter modeling for the power system dynamic
state estimation problem. The presented formulation encompasses different piecewise
stationary levels by discriminating different anomalies in the power system, such as gross
errors or sudden load changes. The presented method automatically adapts itself to surpass
the harmful effects of such anomalies while maintaining accuracy. Simulation results
in IEEE transmission systems demonstrate the performance under dynamic anomalies,
like different scenarios of gross errors, load ramps, sudden load changes, and generator
contingency. Incorporating a dynamic perspective into the state estimation enables a
sensible improvement on estimation accuracy when the system keeps a stationary level.
Besides, by incorporating the asymmetry index into the innovation analysis, it is possible
to track significant changes in the system’s dynamics accurately and adapt the estimator
response. The state covariance tuning significantly impacts the Kalman filter performance,
pushing its results between the static estimator and a smooth function. Future works
comprise new Kalman filter tuning strategies based on power flow sensitivity, exploring
the effects of bias into the state-space, and enhancing computational performance.
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Appendix A. Power Systems Nonlinear Measurement Model

The measurement model for power system dynamic state estimation, with m mea-
surements and n state variables, comprises nonlinear equations that relate the measured
electrical quantities to the state variables. The state vector (n × 1) consists of the complex
nodal voltages, on polar coordinates, in all buses of the network also referred to as the
algebraic state of the electric power network. The measurement vector (m × 1) comprises
electrical quantities monitored across the power system, typically by SCADA systems,
which provide voltage magnitudes, active and reactive power flows, and injections, at
different locations.

x = [V, θ]T (A1)

z = [Pi, Qi, Pij, Qij, Vi]
T (A2)

where V and θ are the voltage magnitude and voltage phase vectors in all nodes of the
power system, Pi and Qi are the active and reactive power injections measured at the
respective node i, and Pij and Qij are the active and reactive power flows measured at the
branch between nodes i and j. Taking a power system with nbus the number of nodes,
the total state variables is n = 2nbus − 1, since one of the phase angles is taken as a
reference. The branch-bus model represents the components of the power grids and relates
the monitored electrical quantities to the state variables, as illustrated in Figure A1. Hence,
power flow equations represent most of the measured values according to the following:

Pij = V2
i gij − aijViVj(gij cos(θij − φij) + bij sin(θij − φij)) (A3)

Qij = −V2
i (bij + bsh

ij )− aijViVj(gijsin(θij − φij)− bijcos(θij − φij)). (A4)

where gij and bij are the series conductance and susceptance of the branch component
(obtained by the series resistance and reactance rij and xij), bsh

ij is the shunt susceptance of
the branch component (obtained by its nominal reactive loading), aij is the off-nominal
transformer relation and φij its phase-shifting.

Figure A1. Branch-bus model for power system components connected between two nodes i-j. The
model can represent transmission lines and transformers.

For power injections, the summation of adjacent power flows provides the mathemati-
cal model, as described below.

Pi = ∑
j∈Ωi

Pij (A5)

Qi = −V2
i bsh

i + ∑
j∈Ωi

Qij (A6)

where bsh
i is the shunt susceptance for elements connected directly in bus i, and Ωi is the

set of adjacent nodes to bus i. Finally, voltage magnitude measurements are directly related
to the corresponding state variable of the bus being monitored.
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The Jacobian matrix elements are obtained by the derivatives of the above equations
and respective structure of the measurement vectors, as described in (). The equations for
the derivatives are directly obtained by differentiating the above equations, and further
details can be refereed in [1].

H(x) =
∂h(x)

∂x
=



∂Pi(x)
∂V

∂Pi(x)
∂θ

∂Qi(x)
∂V

∂Qi(x)
∂θ

∂Pij(x)
∂V

∂Pij(x)
∂θ

∂Qij(x)
∂V

∂Qij(x)
∂θ

∂Vi(x)
∂V 0


, (A7)

Appendix B. Three-Bus Test System Data

The data for the 3-bus test system is provided below. A power flow calculation with
the described loading scenario provides the reference case for the simulations.

Table A1. Network data for nodes on the reference case on the 3-bus test system.

Voltage Active Reactive Active Reactive
Bus ID Type Setpoint Generation Generation Load Load

(p.u) (MW) (MVAr) (MW) (MVAr)

Bus 1 Vθ 1.020 40.6 15.6 - -

Bus 2 PV 1.000 57.0 14.4 - -

Bus 3 PQ - - - 95.0 19.0

Table A2. Network data for branches on the reference case on the 3-bus test system (base power
100 MVA and base voltage 69 kV).

Bus From Bus To
Voltage
Ratio αij

Resistance
(%)

Reactance
(%)

Nominal Reactive
Loading (MVAr)

Bus 1 Bus 2 1 1.95 5.90 5.30

Bus 1 Bus 2 1 5.40 22.30 4.90

Bus 2 Bus 3 1 4.70 19.80 4.40
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