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Abstract: Most of today’s water supply systems are based on plastic pipes. They are characterized by
the retarded strain (RS) that takes place in the walls of these pipes. The occurrence of RS increases
energy losses and leads to a different form of the basic equations describing the transient pipe flow.
In this paper, the RS is calculated with the use of convolution integral of the local derivative of
pressure and creep function that describes the viscoelastic behavior of the pipe-wall material. The
main equations of a discrete bubble cavity model (DBCM) are based on a momentum equation of
two-phase vaporous cavitating flow and continuity equations written initially separately for the gas
and liquid phase. In transient flows, another important source of pressure damping is skin friction.
Accordingly, the wall shear stress model also required necessary modifications. The final partial
derivative set of equations was solved with the use of the method of characteristics (MOC), which
transforms the original set of partial differential equations (PDE) into a set of ordinary differential
equations (ODE). The developed numerical solutions along with the appropriate boundary conditions
formed a basis to write a computer program that was used in comparison analysis. The comparisons
between computed and measured results showed that the novel modified DBCM predicts pressure
and velocity waveforms including cavitation and retarded strain effects with an acceptable accuracy.
It was noticed that the influence of unsteady friction on damping of pressure waves was much
smaller than the influence of retarded strain.

Keywords: retarded strain; cavitation; water hammer; unsteady friction; method of characteristics

1. Introduction
1.1. Gaseous and Vaporous Cavitation

Cavitation is one of the natural phenomena whose thorough understanding should be
a scientific priority. Among others, it takes place when gas is released from the liquid. It
occurs in hydraulic systems (water supply, hydropower, heating, cooling, etc.) in which
the flow (forced by the pressure gradient) takes place through pressurized pipes. There are
two types of cavitation: gaseous and vaporous [1–3].

More dangerous is vaporous cavitation, which occurs when the pressure drops to
the saturated vapor pressure. This type of cavitation is rapidly changing, as it only takes
place during the duration of the reduced pressure. In the literature, there is a group of
mathematical models based on this type of cavitation, the so-called discrete vapor cavity
models (DVCM) [1–3]. In the event of a water hammer, the reduction of pressure to the
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saturated vapor pressure takes a relatively short time, which is followed by an implosion
of the resulting vapor regions. The implosion is accompanied by large local increases in
the velocity of the liquid, because the cavitation space must rapidly be filled with liquid at
the time of pressure increase (above the vapor pressure). The impact of the liquid against
the walls of the pipe (as well as the walls of other elements of the systems: valves, turbines,
pumps, flow meters, etc.) results in cavitation erosion in the long term. Irreversible losses
appear in the material of the walls of the pipes and other elements of the system. Sections
in which such erosion takes place are systematically weakened in terms of strength, and it
is in these places that leaks or, in extreme cases, complete damage of the structure can occur.
Cavitation also leads to a reduction of the efficiency of hydraulic systems, contributing to
the deterioration of the operation of energy-saving systems in hydraulic drives [4].

The second type of cavitation, namely gaseous cavitation, is a slowly changing phe-
nomenon occurring in systems with unsteady flows (dynamic, rapid changes of velocity
and pressure) or large pressure drops along the length of the system. Each liquid dissolves
a certain amount of air (possibly a different gas). In water systems (water supply networks),
the average amount of dissolved air is about 2%. In oils, on the other hand, the amount of
dissolved air can reach up to about 10%. Hence, the influence of this type of cavitation is
much more noticeable in oil-hydraulic systems than in water supply systems. Interestingly,
during water hammer, such cavitation areas, due to the large time necessary for desorption
and absorption, are beneficial. Their presence causes a faster damping of dynamic wave-
forms, as the “air bags” emitted by their action resemble local air–liquid shock absorbers.
The influence of this type of cavitation is still poorly understood both experimentally and
theoretically. There is a group of models called discrete gas cavity models (DGCM) [1,2],
which take into account the influence of free gas in a simplified way.

The type of pipe material also significantly affects the intensity and timing of tran-
sient phenomena [5]. The flows in metal pipes with vapor–gas cavitation areas are well
recognized and described. However, if we look at plastic pipes, which are now starting
to displace metal pipes (especially in water supply systems), the researchers have mostly
used the two basic cavitation models, i.e., the DVCM and the DGCM. Apart from these
two models, alternative models have been developed, including a revised version of the
DVCM model proposed by Adamkowski [6,7] as well as a model based on two-phase flow
equations that can be called a discrete bubble cavity model (DBCM), which was developed
by Shu [8]. Shu’s model does not generate the unrealistic pressure spikes due to flow
discontinuity at each computational section [8] that have been found in DVCM simula-
tions. In DGCM, it is difficult to assign the physical amount of free air at computational
sections along the pipeline. The model that is based on two-phase pipe flow equations is in
principle more realistic than the model that is based on single-phase pipe flow equations
with cavities lumped at computational sections. However, the aforementioned discrete
Adamkowski cavity (DACM) and DBCM models have not been previously used to model
transient cavitating flow in plastic pipes. The main objective of this paper is to present a
novel DBCM that will enable the simulation of transient cavitating flows in plastic pipes.

1.2. Transient Cavitating Flow in Plastic Pipes

Among the phenomena accompanying transient flows, the most important are (1) un-
steady friction (UF, other name: skin friction), (2) cavitation (CAV), (3) viscoelastic property
of pipe deformation (flow in plastic conduits) associated with the retarded strain (RS), and
(4) mutual fluid–structure interaction (FSI) of the flowing liquid with the vibrations of the
pipe walls. In this work, we will focus in detail on the first three phenomena. They will be
implemented in the revised DBCM model. The continuity equation with the retarded strain
term was originally proposed by Rieutord and Blanchard [9]. Cavitation was modeled by
Güney [10] using the column-separation modeling assumption proposed by Swaffield [11]
and Safwat [12]. Another scientist examining the effect of cavitation occurring during
transient flow in PE and PVC pipes was Mitosek [13,14], who showed that an increased
pressure reduction is accompanied with gas desorption (reduced pressure oscillations
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with the increase time period of their existence). Hadj-Taïeb with Taïeb [15] proposed
initially a numerical model based on the conservative finite difference method to solve the
nonlinear system of hyperbolic partial differential equations describing the transient flow
in which the degasification takes place (according to Henry’s law). Their study showed
that the degasification area is strongly connected with the wall elasticity. The same two
authors [16] proposed an alternative modified mathematical model that includes retarded
strain and cavitation, which was solved with the second-order finite difference scheme.
The mixture density in this model was expressed by means of a non-linear expression
of the liquid volume fraction. Borga et al. [17,18] conducted several transient tests with
localized gas cavities in around 200 m long HDPE pipe and concluded that the presence
of the leak (or air valves) in cavitating flow induces a greater damping and dispersion
of transient pressure waves. Soares et al. [19,20] continued the research of Borga (which
was done under the supervision of H. Ramos) and compared the effect of used cavitation
models DVCM and DGCM for the prediction of transient flows with cavitation in HDPE
pipes. The results indicated that the assumption of the ideal gas law (DGCM) is more
appropriate than a simple adoption of vapor pressure when the pressure reaches vapor
pressure (DVCM) and induces more attenuation and dispersion of transient pressures.
For flows with cavitation, a new set of pipe-wall viscoelastic parameters was determined
(calibration technique). The unsteady friction losses, pipe-wall viscoelasticity, and wave
speed variation due to the formation of localized gas cavities were described only by the
creep function. Such an approach lumped all these important phenomena in the coefficients
of the creep function. Keramat et al. [21] utilized DVCM and modeled RS uses a modified
Kelvin–Voigt model to study the unsteady flow with cavitation in plastic pipes. His model
did not include at that time the unsteady friction effects. The main conclusion from the
presented simulations (compared to simulated results with Covas [22] and Soares data [19])
is that viscoelastic pipes strongly diminish the dangers of column separation: “First, cavity
opening and collapse occur only one or two times instead of tens of times (as inelastic
pipes)”. Two years later, Keramat and Tijsseling [23] were first to present a numerical
model that included all four important phenomena that take place in transient pipe flows:
UF, CAV, RS, and FSI. Unfortunately, to date, there are no experimental results that are
conducted to check this interesting model in the full extent. In 2018, Urbanowicz and
Firkowski developed the foundations of the model presented in this paper [24]. A year
later, Urbanowicz et al. [25] compared the DACM and DBCM models, which had not been
used before, for the analysis of cavitation flows in plastic pipes, indicating that they both
model the phenomena in a similar way, despite the fact that they are characterized by a
significantly different mathematical notation.

1.3. Recent Progress in Cavitation Modeling in Metal Pipes

Liu et al. [26] analyzed cavitation that can take place in long-distance transport
pipelines. The water hammer due to the collapse of air cavities in the pipeline was
discussed when the pump unit is shut down due to an incident. The theoretical and
numerical analysis pointed out that it is very important to prevent the occurrence of
large water hammer loads due to the collapse of flow interruption in such a system.
Santoro et al. [27] tested the DVCM model, writing the continuity equation in terms of
mass balance instead of volume balance. Such an assumption allowed calculations with
appropriate computational fine grids. Additionally, the flow field was assumed to be
two-dimensional (2D axial-symmetric flow), in order to evaluate unsteady friction without
the need of parameters calibration. This research pointed out that one-dimensional (1D)
models are weakly sensitive to grid size, whereas 2D model results are practically grid-
independent, and in the opinion of the authors, the 2D model performs better than the 1D
ones. Shankar et al. [28] studied the optimal operation of centrifugal pumps to avoid the
major harmful issues as cavitation and water hammering. These authors built a system
with a cascade parallel pumping setup. The extensive experimental study reveals that
the preferable operating region enhances reliability as well as reduces the occurrence of
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faults. This paper can serve as a reference to VFD pumping systems and paves the way
for sensor-less control. Zhao et al. [29] built an experimental test stand to realize a water
hammer event with multipoint collapse. The influencing factors and laws of the cavity
length and water hammer pressure have been summarized using the experimental data.
They also reveal that the initial flow rate and valve-closing speed greatly affect the water
hammer pressure rise and cavity length. In their next work [30], the authors presented a
new water hammer velocity formula, a new cavity model, and introduced a floating grid
method. An in-house program written in C++ confirmed that the simulation results of the
new model matched the measured values.

Sun et al. [31] proposed a quasi-two-dimensional transient model coupled with DVCM
which, according to the authors’ analysis, can provide a better fit than classic 1D solutions.
Warda et al. [32] performed three-dimensional computer fluid dynamics (CFD) simulations
based on the finite volume numerical approach. The cavitation was modeled with the
use of two models: the Volume of Fluid (VOF) and Schnerr–Sauer. They concluded that
the 3D model that was adopted is “deemed physically superior to the existing 1D models
as it removes the restriction of the 1D models that vapor cavities, when formed, fill the
whole cross-section of the pipe without radial variation”. Sanín-Villa et al. [33] considered
the influence of the convective terms in the momentum and continuity equations (which
standardly are neglected). The cavitation problem has been evaluated by use of the
DVCM model. In conclusion, they stated that the influence of the convective term is small
compared with a simple model where those terms are neglected. Tang et al. [34] used Fluent
software to investigate the cavitation flow in the pipeline. A density–pressure model has
been implemented into the continuity equation by using the further development of a user-
defined function, which gives the possibility of studying the effects of the variable wave
speed on the transient cavitation flow. The weakly compressible fluid RANS model (CFD)
results agree well with the measured results. Saidani et al. [35] analyzed the temperature
effect (in a range from 4 to 95 ◦C) on unsteady flow with cavitation. These authors simulated
single-phase and two-phase transient flows in a hydraulic copper pipe system. The DVCM
and DGCM models were used. From the performed simulations, it was evident that the
water hammer is considerably sensitive to the temperature, and its proper value needs to
be considered at the design stage of hydraulic systems. Yang et al. [36] used a uniform
cavitation distribution model in which the critical flow velocity gradients are calculated
both in front and at the back of the section and are the sufficient condition to define water
column separation. Dynamic meshes were applied for tracking the change of vaporous
cavitation. However, multidimensional models are computationally expensive.

2. Mathematical Model Derivation

The original bubble cavitation flow model was introduced by Shu more than fifteen
years ago [8]. Its applicability was limited to systems made of metal pipes. Today, when
plastic pipes are replacing traditional pipes (this trend is especially visible in water supply
systems), there is a strong need to modify this interesting numerical model. In the model
discussed and presented below, a single-phase flow is treated as its special solution.

2.1. Momentum and Continuity Equations

The derivation starts from the equation of momentum of two-phase vapor–liquid flow
in a freely oriented conduit:

∂

∂t
(ρmvm A) +

∂

∂x

(
ρmv2

m A
)
+ A

∂p
∂x

+ πDτm + gρm A sin θ = 0 (1)

in which ρm being the mixture density is calculated:

ρm = αρl + (1− α)ρv. (2)



Energies 2021, 14, 6756 5 of 22

Please note that this starting momentum equation, as well as the set of the continuity
equations (Equation (4), is identical to the one discussed in the IAHR Synthetic Report [37].
After the differentiation and ordering, one gets the following form:

ρmvm

A
dA
dt

+ ρm
dvm

dt
+ ρmvm

∂vm

∂x
+ vm

dρm

dt
+

∂p
∂x

+
2
R

τm + gρm sin θ = 0. (3)

For the sake of simplicity, let us assume that the pipe is horizontal, i.e., θ = 0. Thus,
the last term on the left-hand side of the above equation (Equation (3) is zero. Now, let us
write the continuity equations written separately for the gas and liquid phase, respectively:

∂
∂t (ρv(1− α)A) + ∂

∂x (ρv(1− α)Avv) = 0
∂
∂t (ρlαA) + ∂

∂x (ρlαAvl) = 0

}
(4)

where α—volumetric fraction of liquid.
Adding the continuity equations (Equation (4) together for the respective phases gives:

∂

∂t
(ρv(1− α)A + ρlαA) +

∂

∂x
(ρv(1− α)Avv + ρlαAvl) = 0. (5)

Next, assuming that a homogeneous bubbly flow takes place, then the dispersed
vapor phase does have the same velocity as the surrounding continuous liquid phase
vv = vl = vm :

∂

∂t
Aρm +

∂

∂x
(Avmρm) = 0. (6)

By making differentiation and ordering in Equation (6), the following result is ob-
tained:

A
dρm

dt
+ ρm

dA
dt

+ Aρm
∂vm

∂x
= 0. (7)

Dividing Equation (7) by Aρm, the first useful form of this equation is derived:

1
ρm

dρm

dt
+

1
A

dA
dt

+
∂vm

∂x
= 0. (8)

However, when one multiplies Equation (7) by vm and then divides by A, we get the
second useful form of Equation (7):

vm
dρm

dt
+

ρmvm

A
dA
dt

+ vmρm
∂vm

∂x
= 0. (9)

Using the above Equation (9) and the fact that the analyzed system is horizontal, the
momentum Equation (3) can be reduced to a simpler form:

ρm
dvm

dt
+

∂p
∂x

+
2
R

τm = 0. (10)

Please note that Equation (10) reduces to the equation of a single-phase flow (contin-
uous liquid phase) when no cavitation occurs (mean values of pressure in an analyzed
cross-section are larger than the vapor pressure).

The next step is to derive the continuity equation. From the works [22,37,38], it follows
that in bubble flow and plastic pipes, the fluid elasticity (separately defined for liquid and
vapor) and the pipe deformation can be defined as follows:

1
ρl

dρl
dt

=
1
Kl

dp
dt

;
1
ρv

dρv

dt
=

1
Kv

dp
dt

and
1
A

dA
dt

=
Ξ
E

dp
dt

+ 2
dεr

dt
(11)

where Ξ = D
e ξ—enhanced pipe restraint factor. The first two equations represent liquid

and vapor elasticity, respectively, whereas the third one defines pipe deformation (the
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right-hand one). The derivation of the first two ones is straightforward. This is not the case
for the third one—its derivation is presented in Appendix A.

The total derivative of Equation (2) mixture density ρm is:

dρm

dt
= α

dρl
dt

+ (ρl − ρv)
dα

dt
+ (1− α)

dρv

dt
. (12)

When Equations (11) and (12) are used in the continuity equation, Equation (8), one gets:[
ρm

Ξ
E
+

αρl
Kl

+
(1− α)ρv

Kv

]
dp
dt

+ (ρl − ρv)
dα

dt
+ 2ρm

dεr

dt
+ ρm

∂vm

∂x
= 0. (13)

In addition, a constant pressure wave speed is assumed. In the proposed model, the
value of the speed will be assumed for the steady flow occurring before the water hammer
event. Then, there is only pure liquid phase (α = 1). The last term of the square bracket in
Equation (13) vanishes, and the formula under square bracket reduces to:

c−2 =

[
ρl

(
Ξ
E
+

1
Kl

)]
(14)

which is the pressure wave speed of the pure liquid phase. The above wave speed equation
includes elastic effects of the fluid (Kl) and of the pipe wall (E). Enhanced pipe restraint
factor Ξ is calculated in a different way in thin ((D/e) < 25) and thick-walled pipelines [2].

Equation (14) governs the final form of the continuity equation for unsteady flows in
plastic pipes:

1
c2

dp
dt

+ (ρl − ρv)
dα

dt
+ 2ρm

dεr

dt
+ ρm

∂vm

∂x
= 0. (15)

In non-slip flow conditions, the proportion of the dispersed phase is of a statistical
nature; i.e., the volumetric concentration and the mass are equal to the corresponding
dynamic shares—the transport concentration and the degree of dryness [39,40]. Then, the
following relationship applies in non-slip flows: vm = v/α, and the final set of fundamental
equations (appropriately momentum and continuity) is as follows: ρm

d
dt
( v

α

)
+ ∂p

∂x + 2
R τm = 0

1
c2

dp
dt + (ρl − ρv)

dα
dt + 2ρm

dεr
dt + ρm

∂
∂x
( v

α

)
= 0

(16)

The term v/α indicates the difference between the velocities of the liquid and vapor phase.

2.2. Wall Shear Stress and Retarded Strain

The wall shear stress in transient pipe flow can be calculated with the help of convolu-
tional theory. Zielke [41] for laminar flow and later Vardy-Brown [42] for turbulent flow
presented an initial version of this equation. For homogeneous bubble flow, the mixture
density should be taken into account:

τm =

(
f v|v|ρm

8α2 +
2µm

R

∫ t

0

∂

∂t

( v
α
(u)
)
·wUF(t− u)du

)
. (17)

The function wUF(t− u) [-] is a so-called weighting function. In our work, this function
is identical to the functions used in other cavitational and single-phase flow models. For
detailed form and more information about weighting functions, please refer to paper [43].

The numerical modified effective solution of the above convolution integral, which is
used in this work, is based on the improved solution for single-phase flows [44,45]:
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τ(t + ∆t) ≈
ρm f v(t)

∣∣∣v(t)∣∣∣
8α2

(t)
+

2µm

R ∑3
i=1

[
Aiyi(t) + ηBi

[
v(t)
α(t)
−

v(t−∆t)

α(t−∆t)

]
+ [1− η]Ci

[
v(t−∆t)

α(t−∆t)
−

v(t−2∆t)

α(t−2∆t)

]]
︸ ︷︷ ︸

yi(t+∆t)

. (18)

where ∆t [s] is a constant time step in the method of characteristics; µm is Dukler’s [46]
two-phase mixture dynamic viscosity [Pa·s], and

η =

∫ ∆t̂
0 wclass.(u)du∫ ∆t̂
0 we f f .(u)du

; Ai = e−ni∆t̂; Bi =
mi

∆t̂ni
[1− Ai]; Ci = AiBi. (19)

The mi and ni coefficients are determined from the analytical formulas presented in
a recent paper [47], and ∆t̂ = µm

ρmR2 ∆t is dimensionless time. In the case of turbulent flow,
these coefficients must be scaled in accordance with the guidelines presented in paper [48].

The next step is to evaluate the partial derivative of retarded strain using a convolution
integral. According to [49,50], the retarded strain can be written in a simpler form than the
original one [38]:

∂εr(t)
∂t

=
D
2e

ξ
∫ t

0

∂

∂t
(p(u)− p(0))·

(
k

∑
i=1

Ji
Ti

e−
t−u
Ti

)
du =

Ξ
2

∫ t

0

∂p(u)
∂t
·wJ(t− u)du (20)

where wJ(t− u) is the creep weighting function [Pa−1·s−1]; Ji is the creep compliance of
the i spring of the Kelvin–Voigt element [Pa−1]; Ti is the retardation time of the dashpot of
i-element [s].

Worth noting is the analogy of the above convolution integral with the convolutional

integral representing the wall shear stress ∑k
i=1

Ji
Ti

e−
t−u
Ti = wJ(t− u). This analogy made it

possible to solve numerically the above convolution integral in an effective manner using
Schohl’s effective scheme [51]:

∂εr

∂t
(t + ∆t) ≈ Ξ

2 ∑k
i=1

(
zi(t)·e

− ∆t
Ti +

Ji
∆t

[
1− e−

∆t
Ti

](
p(t+∆t) − p(t)

))
︸ ︷︷ ︸

zi(t+∆t)

. (21)

The above equation (Equation (21) may be written in a simpler form:

∂εr

∂t
(t + ∆t) =

(
p(t+∆t)F− G(t)

)Ξ
2

(22)

where:

F = ∑k
i=1 Mi ; G(t) = ∑k

i=1

(
Mi p(t) − zi(t)·Ni

)
; Mi =

Ji
∆t

[
1− e−

∆t
Ti

]
; Ni = e−

∆t
Ti . (23)

The use of convolution integrals (Equations (17) and (20)) in the basic system of
Equation (16) results in:

ρm
d
dt
( v

α

)
+ ∂p

∂x + 2
R

(
f v|v|ρm

8α2 + 2µm
R
∫ t

0
∂
∂t
( v

α (u)
)
·wUF(t− u)du

)
= 0

1
ρmc2

dp
dt +

(ρl−ρv)
ρm

dα
dt +

∂
∂x
( v

α

)
+ Ξ

∫ t
0

∂p(u)
∂t ·wJ(t− u)du = 0

. (24)
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2.3. Numerical Solution for Inner Nodes

The convective terms are less important and are omitted from the main analyzed
set of equations. This procedure will ensure that the use of interpolation, which greatly
affects the numerical solution [2], is excluded. The simplified equations of continuity and
momentum are identified as L1 and L2, respectively:

L1 =
∂p
∂t

+ c2(ρl − ρv)
∂α

∂t
+ 2ρmc2 ∂εr

∂t
+ ρmc2 ∂

∂x

( v
α

)
= 0 (25)

L2 =
∂

∂t

( v
α

)
+

1
ρm

∂p
∂x

+
2

ρmR
τm = 0. (26)

Combining linearly L = ψL1 + L2, these equations by the unknown multiplier ψ gives:

ψ

[
∂p
∂t

+
1

ρmψ

∂p
∂x

]
+

[
∂

∂t

( v
α

)
+ ψρmc2 ∂

∂x

( v
α

)]
+ ψc2(ρl − ρv)

∂α

∂t
+ 2ψρmc2 ∂εr

∂t
+

2
ρmR

τm = 0. (27)

By examination of the above Equation (27) with the definition of total derivatives, it
can be noted that with:

dx
dt

=
1

ρmψ
= ψρmc2 (28)

it becomes the ordinary differential equation:

ψ
dp
dt

+
d
dt

( v
α

)
+ ψc2(ρl − ρv)

∂α

∂t
+ 2ψρmc2 ∂εr

∂t
+

2
ρmR

τm = 0. (29)

The solution of Equation (28) yields two particular values of ψ,

ψ = ± 1
cρm

. (30)

By inserting the above values into Equation (28) the particular relation between x and
t is given as follows:

dx
dt

= ±c. (31)

This leads to a set of two equations on positive C+ and negative C− characteristic
lines:

C+ :
1

cρm

dp
dt

+
d
dt

( v
α

)
+

c
ρm

(ρl − ρv)
∂α

∂t
+ 2c

∂εr

∂t
+

2
ρmR

τm = 0 (32)

C− : − 1
cρm

dp
dt

+
d
dt

( v
α

)
− c

ρm
(ρl − ρv)

∂α

∂t
− 2c

∂εr

∂t
+

2
ρmR

τm = 0. (33)

From Equation (2), it follows that:

α =
ρm − ρv

ρl − ρv
. (34)

Considering the above Equation (34), the third term on the left-hand side in Equations
(32) and (33) can take the form:

c
ρm

(ρl − ρv)
∂α

∂t
=

c
ρm

∂

∂t

(
ρm − ρv

ρl − ρv
(ρl − ρv)

)
=

c
ρm

∂

∂t
(ρm − ρv) =

c
ρm

∂

∂t
ρm. (35)

Shu [8] writes the partial derivative of the density of the mixture in a logarithmic form:

c
ρm

∂

∂t
ρm = c

∂

∂t
ln
(

ρm

ρl

)
. (36)
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Note that under the logarithm, we have the division of ρm by ρl , but the ρl could be
exchanged to any other constant, and the above equation would be satisfied anyway.

1
cρl

∆(p−κpv)A−D
∆t + ∆

∆t
( v

α

)
A−D + c ∆

∆t ln
(

ρm
ρl

)
E− D
F− A

+ 2c
(

∂εr
∂t

)
E−D

+ 2
ρmR (τm)F−A = 0

f or dx
dt = c

(37)


− 1

cρl

∆(p−κpv)B−D
∆t + ∆

∆t
( v

α

)
B−D − c ∆

∆t

(
ρm
ρl

)
E− D
G− B

− 2c
(

∂εr
∂t

)
E−D

+ 2
ρmR (τm)G−B = 0

f or dx
dt = −c

(38)

where κ = 1 + c2ρlΞF∆t.
From both characteristics at the inner node, the following explicit system of equations

is obtained:
1

cρl

((pD−κpv)−(pA−κpv))
∆t +

(
vD
αD
− vA

αA

)
∆t + c

2∆t

(
ln ρmD

ρl
− ln ρmEρmF

ρl ρmA

)
+ 2c

(
∂εr
∂t

)
E−D

+ 2
ρmR (τm)F−A = 0

− 1
cρl

((pD−κpv)−(pB−κpv))
∆t +

(
vD
αD
− vB

αB

)
∆t − c

2∆t

(
ln ρmD

ρl
− ln ρmEρmG

ρl ρmB

)
− 2c

(
∂εr
∂t

)
E−D

+ 2
ρmR (τm)G−B = 0

. (39)

The system can be further rewritten after introducing:

2c
(

∂εr

∂t

)
E−D

= pDΞcF− ΞcGE(t) (40)

2
ρmR

(τm)F−A =
fAvA|vA|

4Rα2
A

+
4νmA

R2

3

∑
i=1

[
AiyiF + ηBi

[
vA
αA
− vF

αF

]
+ [1− η]Ci

[
vF
αF
− vF′

αF′

]]
︸ ︷︷ ︸ =

λF−AvA|vA|
4Rα2

A
yiA

(41)

2
ρmR

(τm)G−B =
fBvB|vB|

4Rα2
B

+
4νmB

R2

3

∑
i=1

[
AiyiG + ηBi

[
vB
αB
− vG

αG

]
+ [1− η]Ci

[
vG
αG
− vG′

αG′

]]
︸ ︷︷ ︸

yiB

=
λG−BvB|vB|

4Rα2
B

(42)

where:

λF−A = fA +
16νmAα2

A
RvA |vA | ∑3

i=1

[
AiyiF + ηBi

[
vA
αA
− vF

αF

]
+ [1− η]Ci

[
vF
αF
− vF′

αF′

]]
︸ ︷︷ ︸

yiA

λG−B = fB +
16νmBα2

B
RvB |vB | ∑3

i=1

[
AiyiG + ηBi

[
vB
αB
− vG

αG

]
+ [1− η]Ci

[
vG
αG
− vG′

αG′

]]
︸ ︷︷ ︸

yiB

. (43)

By transforming the system of Equation (39) in a way that the parameters searched
for a given inner node D of the characteristics grid (Figure 1) remain on the left-hand side,
one obtains: 

pD
cρl
− κpv

cρl
+ vD

αD
+ c

2 ln ρmD
ρl

+ pDcΞF∆t = CA

− pD
cρl

+ κpv
cρl

+ vD
αD
− c

2 ln ρmD
ρl
− pDcΞF∆t = CB

(44)
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where CA as well CB are time-dependent functions that are iteratively calculated using the
values known from the previous numerical time step:

CA = vA
αA

+ pA−κpv
cρl

− fA∆tvA |vA |
4Rα2

A
+ c

2 ln ρmEρmF
ρlρmA

+ GE(t)Ξc∆t

CB = vB
αB
− pB−κpv

cρl
− fB∆tvB |vB |

4Rα2
B
− c

2 ln ρmEρmG
ρl ρmB

− GE(t)Ξc∆t
. (45)

Energies 2021, 14, x FOR PEER REVIEW 10 of 22 
 

 

𝑝஽ = (஼ಲି஼ಳ)௖ఘ೗ଶ఑ + 𝑝௩ − ௖మఘ೗ଶ఑ 𝑙𝑛 ఘ೘ವఘ೗ . (47)

 
Figure 1. Rectangular grid in the method of characteristics. 

The analysis of the above formulas shows that in order for 𝑝஽ > 𝑝௩ (note that then 𝜌௠஽ = 𝜌௟), the condition that 𝐶஺ ≥ 𝐶஻ must be met. When 𝐶஺ ≥ 𝐶஻, there is no cavitation 
and 𝛼஽ = 1; 𝑝஽ = (஼ಲି஼ಳ)௖ఘ೗ଶ఑ + 𝑝௩. Otherwise, when 𝐶஺ < 𝐶஻ cavitation occurs, then 𝑝஽ =𝑝௩ and 𝜌௠஽ = 𝜌௟𝑒ቀ಴ಲష಴ಳ೎ ቁ. 

Having the instantaneous value of the mixture density 𝜌௠஽, the vapor density 𝜌௩, 
and the liquid density 𝜌௟, the instantaneous value of the liquid phase concentration 𝛼஽ 
should be determined from the formula (Equation (2)): 

𝛼஽ = ఘ೗௘൬಴ಲష಴ಳ೎ ൰ିఘೡఘ೗ିఘೡ . (48)

2.4. Boundary conditions 
The next step is to solve the boundary conditions. According to Figure 1, the instan-

taneous closing valve of an RVP system is at the left-hand side of the system (x = 0). The 
valve boundary condition is derived from the negative 𝐶ି characteristic: 

ቐ − ௣ೋ௖ఘ೗ + ఑௣ೡ௖ఘ೗ + ௩ೋఈೋ − ௖ଶ 𝑙𝑛 ఘ೘ೋఘ೗ − 𝑝௓𝑐𝛯𝐹𝛥𝑡 = 𝐶௑𝐶௑ = ௩೉ఈ೉ − ௣೉ି఑௣ೡ௖ఘ೗ − ௙೉௱௧௩೉|௩೉|ସோఈ೉మ − ௖ଶ 𝑙𝑛 ఘ೘ೊఘ೘ೈఘ೗ఘ೘೉ − 𝐺௒(𝑡)𝛯𝑐𝛥𝑡. (49)

Please note that the value of 𝐶௑ is based only on known values from the previous 
time steps. The velocity at the valve section for time 𝑡 > 0 has zero value, i.e., 𝑣௓ =0 (closed valve). The above Equation (49) takes the form: 𝑝௓ ൭1 + 𝑐ଶ𝜌௟ΞFΔtᇣᇧᇧᇧᇤᇧᇧᇧᇥ఑ ൱ = −𝑐𝜌௟𝐶௑ + 𝜅𝑝௩ − 𝑐ଶ𝜌௟2 𝑙𝑛 𝜌௠௓𝜌௟  (50)

which finally reduces to: 

𝑝௓ = 𝑝௩ − ൬஼೉ା೎మ௟௡ഐ೘ೋഐ೗ ൰௖ఘ೗఑ . (51)

When the pressure 𝑝௓ at this boundary is higher than the vapor pressure 𝑝௩, then 
the natural logarithm is equal to 0 as 𝜌௠௓ = 𝜌௟; this means that there is no cavitation when 

x0

jΔx (j+1)Δx(j-1)ΔxΔx L−2Δx
t

ΔxΔx ΔxΔx

Δt

Δt

Δt

3Δt

4Δt

2Δt

ΔtV
A

LV
E

R
ES

ER
V

O
IR

Δt

2Δx

C-C+
D

A B
EF G

L−Δx L

X
WY K

L
N
M

ΔxΔx

Z

Figure 1. Rectangular grid in the method of characteristics.

From the above equations, the final solutions for the inner node D (Figure 1) of the
grid of characteristics are obtained. The solution for the mean velocity at cross-section is:

vD =
αD(CA + CB)

2
(46)

and the solution for the pressure is:

pD =
(CA − CB)cρl

2κ
+ pv −

c2ρl
2κ

ln
ρmD
ρl

. (47)

The analysis of the above formulas shows that in order for pD > pv (note that then
ρmD = ρl), the condition that CA ≥ CB must be met. When CA ≥ CB, there is no cavitation
and αD = 1; pD = (CA−CB)cρl

2κ + pv. Otherwise, when CA < CB cavitation occurs, then

pD = pv and ρmD = ρle(
CA−CB

c ).
Having the instantaneous value of the mixture density ρmD, the vapor density ρv, and

the liquid density ρl , the instantaneous value of the liquid phase concentration αD should
be determined from the formula (Equation (2):

αD =
ρle(

CA−CB
c ) − ρv

ρl − ρv
. (48)

2.4. Boundary Conditions

The next step is to solve the boundary conditions. According to Figure 1, the instan-
taneous closing valve of an RVP system is at the left-hand side of the system (x = 0). The
valve boundary condition is derived from the negative C− characteristic:

− pZ
cρl

+ κpv
cρl

+ vZ
αZ
− c

2 ln ρmZ
ρl
− pZcΞF∆t = CX

CX = vX
αX
− pX−κpv

cρl
− fX∆tvX |vX |

4Rα2
X
− c

2 ln ρmYρmW
ρl ρmX

− GY(t)Ξc∆t
. (49)
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Please note that the value of CX is based only on known values from the previous time
steps. The velocity at the valve section for time t > 0 has zero value, i.e., vZ = 0 (closed
valve). The above Equation (49) takes the form:

pZ

1 + c2ρlΞF∆t︸ ︷︷ ︸
κ

 = −cρlCX + κpv −
c2ρl

2
ln

ρmZ
ρl

(50)

which finally reduces to:

pZ = pv −

(
CX + c

2 ln ρmZ
ρl

)
cρl

κ
. (51)

When the pressure pZ at this boundary is higher than the vapor pressure pv, then the
natural logarithm is equal to 0 as ρmZ = ρl ; this means that there is no cavitation when
CX < 0, and the pressure at the valve section can be calculated from the following equation:

pZ = pv −
CXcρl

κ
. (52)

Otherwise, when CX ≥ 0 and pZ = pv, then the bubble mixture density and volumet-
ric fraction of the liquid, respectively, should be calculated as follows:

ρmZ = ρle−
2CX

c and αZ =
ρmZ − ρv

ρl − ρv
. (53)

Next, the dynamic viscosity of the homogeneous bubble mixture using Dukler’s
formula [46] should be calculated:

µmZ = αZµl + (1− αZ)µv. (54)

At the opposite end (x = L) of the RPV system, Figure 1 is the reservoir. At the cross-
section connecting the pipe with the reservoir, the pressure is assumed to be of constant
value, i.e., pN = pR during the complete transient event associated with the analyzed
water hammer phenomenon. As the pressure does not pulsate at this cross-section, the
retarded strain is neglected here. The final equation for the velocity pulsation at this section
in which the pressure is always higher than the vapor pressure pN > pv is:

vN =
vL
αL

+
pL − pN

cρl
+

c
2

ln
ρmMρmK

ρlρmL
− 2∆t

Rρl
τL. (55)

3. Experimental Verification of New Model

In order to demonstrate the effectiveness of the newly presented model, in this section,
the results of simulation tests will be compared with the experimental results presented by
Güney [10]. The Güney experimental test stand located at the INSA research center in Lyon
(France) was a simple system consisting of three main components: reservoir–pipe–valve
(Figure 2).

In the analyzed RPV system, in steady flow, water flowed directly into the atmosphere.
The pipe had a total length of L = 43.1 m and an internal diameter D = 0.0416 m (the
wall thickness of the pipe was e = 0.0042 m). The test pipe was made of low-density
polyethylene (LDPE). The experimental tests of the water hammer forced by the sudden
(momentary) closure of the valve (shutting off the flow) have been carried out for five
different temperatures of the flowing liquid (water). In Table 1, the parameters required
to simulate the analyzed unsteady flows with cavitation are tabulated. It can be seen that
although the initial flow velocity was similar, due to the change in viscosity, the value of
the Reynolds number increased with the temperature increase (almost twice as high for
Case 05 : Re05 ≈ 82, 000 than for Case 01 : Re01 ≈ 45, 500). After the temperature change,
not only do the parameters related to the flowing liquid change (Table 1) but also the values
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of the parameters representing the mechanical properties of the pipe; thus, it is necessary
to compare their values (J creep compliances and τ retardation time coefficients values are
presented in Table 2).
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Figure 2. Schematic diagram of Güney’s experimental test stand: 1—booster pump, 2—temperature stabilization system, 3—test
stand supply pump, 4—thermometer, 5—reservoir, 6—LDPE pipe, 7, 8, and 9—pressure transducers, 10—quick-closing valve.

Güney used the time–temperature superposition principle (also known as time–
temperature reducibility) to derive his creep compliance functions for different tempera-
tures. During initial simulations, complete Güney creep compliance functions were used
(three exponential terms) that can be found in the works [10,52]. As the initially obtained
simulation results indicated that this creep function is a source of simulation error, we had
a detailed look at the original coefficients. We noticed that the corresponding creep compli-
ance values of small retardation times (τ < 1.5∆10−4 [s]–original J1 and τ1 coefficients) are
out of the frequency range of the used dynamic viscoelastometer RHEOVIBRON. Filtering
out this coefficient for small retardation times (rejecting from the analysis original J1 and τ1
coefficients without changing all other experimentally defined creep coefficients) helped to
receive corrected comparisons results.

The creep functions for LDPE have different characteristics (Figure 3) than those for the
typical currently used plastic material, namely HDPE. The LDPE material has higher values
of creep compliance than the HDPE material. Additionally, we may see (Figure 3) that an
increase in temperature increases the creep compliance values. The HDPE traces which are
presented for comparison in Figure 3 were obtained experimentally by Covas et al. [22].
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Table 1. Güney cases details.

Case T [◦C] v0 [m/s] Re0 [−] c [m/s] pR [Pa] pv [Pa] Kl [Pa] ρl [kg/m3] µl [Pa·s] ρv [kg/m3] µv [Pa·s]

01 13.8 1.28 45,511 305 1.2955 × 105 1570 2.14 × 109 999.3 0.0012 0.012 9.6 × 10−6

02 25 1.37 63,892 265 1.3056 × 105 3160 2.24 × 109 997.1 8.9 × 10−4 0.023 9.9 × 10−6

03 31 1.34 71,102 247 1.3041 × 105 4480 2.27 × 109 995.3 7.8 × 10−4 0.032 1 × 10−5

04 35 1.37 78,827 235 1.3038 × 105 5610 2.285 × 109 994.1 7.2 × 10−4 0.040 1.02 × 10−5

05 38.5 1.33 81,967 215 1.2985 × 105 6790 2.295 × 109 992.6 6.7 × 10−4 0.047 1.03 × 10−5

Table 2. Creep compliance function coefficients.

Case T [◦C] J0 [Pa−1] J1 [Pa−1] J2 [Pa−1] τ1 [s] τ2 [s]

01 13.8 1.071 × 10−9 0.637 × 10−9 0.871 × 10−9 0.0166 1.747

02 25 1.438 × 10−9 1.046 × 10−9 1.237 × 10−9 0.0222 1.864

03 31 1.665 × 10−9 1.397 × 10−9 1.628 × 10−9 0.0221 1.822

04 35 1.847 × 10−9 1.797 × 10−9 2.349 × 10−9 0.0265 2.392

05 38.5 2.219 × 10−9 2.097 × 10−9 3.570 × 10−9 0.0347 3.077

Ji—creep-compliance coefficients; τi—retardation times.
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The pressure wave speeds were estimated based on the empirically observed dura-
tion of the first pressure amplitudes. Their values summarized in Table 1 enabled the
determination of J0 (see Table 2) from the transformed formula of the pressure wave speed:

J0 =
1

ρΞc2 −
1

KlΞ
(56)

where ξ = 0.97; Ξ = D
e ξ = 9.61.

The method of characteristics was used with a constant number of reaches N = 64.
The selected number of reaches meets the computational compliance criteria discussed
in paper [53], i.e., N > 10. Extra simulation studies performed during the preparation
of this paper whose purpose was to investigate the impact of the number of reaches
showed that there are no significant differences between the results of N = 16, 32, and the
selected 64. A finer grid is favorable in the case of instantaneous valve closure. The time
steps are calculated on the basis of the Courant–Friedrichs–Lewy (CFL) stability condition
Cn = (c·∆t)

∆x ≤ 1. In order to keep the value of the CFL number equal to one, appropriate
values of the time steps should be determined from ∆t = ∆x/c (wave speeds c are given
in Table 1). In the MOC ∆x = L/N i.e., ∆x ≈ 0.67 m. Then, the following time steps
are obtained for the five cases: ∆tG01 = 0.0022 s; ∆tG02 = 0.0025 s; ∆tG03 = 0.0027 s;
∆tG04 = 0.0029 s; and ∆tG05 = 0.0031 s, respectively. The results of the simulation tests
compared with the experimental data are presented in Figure 4.
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The qualitative analysis of the obtained results (Figure 4) indicates the following:

- In systems based on plastic pipes, as the temperature of the flowing medium increases,
the maximum value of the pressure at the first amplitudes decreases (assuming a similar
value of the initial velocity in the steady flow just before the quick valve closure). The
above is due to the decrease in pressure wave speed with increasing temperature;

- The decrease of pressure wave speed caused by the increase in temperature is also respon-
sible for the change in the frequency of the water hammer itself. Based on the research
carried out, one may notice that for a higher value of the pressure wave speed, the number
of pressure amplitudes appearing in the same time interval increases (Figure 4a—five
amplitudes), while for a small value, this amount is smaller (Figure 4d,e—four amplitudes);

- The omission of unsteady hydraulic resistances negatively affects the modeled wave-
forms, which are overestimated starting from the second amplitudes (Figure 4a–e).
Large discrepancies are visible in the modeled pressures at the peaks and at the valleys
of these pressure amplitudes;

- The modified proposed numerical solution modeled the first peak of pressure visible at the
beginning of all tops of first amplitudes (Figure 5a) as well the small peak at the beginning
of second amplitudes (Figure 5b). This proves the physics of the analyzed phenomena;

- In Cases 03, 04, and 05, where only single column separation takes place (after the
first amplitude), it can be seen that the phase shift of the simulated pressure increased
over time. This behavior can be explained by the fact that in a real situation, the
pressure wave speed does not remain constant during the entire transient event but
rather slightly changes. The change of the pressure wave speed is not included in the
current version of the mathematical model, as it would force the use of interpolation,
which would introduce additional numerical damping [2];

- Although qualitative studies indicate the advantage of the model taking into account
unsteady friction, it is necessary to carry out quantitative studies to confirm the above
hypothesis. Such research will be carried out in the next Chapter 4;

- The largest model discrepancies occurred in the runs carried out for Cases 02, 03, 04,
and 05 at the top of the first amplitude. In the experimental studies in the final phase
of the pressure increase (first amplitudes), no increase in pressure was observed as
in Case 01 (Figure 4a), while from what we can see in Figure 4b–e, such an increase
was modeled by the numerical model. This increase was not influenced by the way
of taking into account skin friction (quasi-steady or unsteady resistances); hence, the
applied creep functions were responsible for them.
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4. Quantitative Analysis of Results

In this section, quantitative research is performed whose role is to define and deter-
mine important criteria parameters of the analyzed flow. It is difficult to find any favorable
quantitative method in the literature on the subject of transient pipe flows. Here, we present
a new methodology that results in two criteria parameters. The role of the final qualitative
parameters is to determine the compliance of the simulated histories with respect to the
experimental ones in a simplified mathematical way.

A MATLAB subprogram was written to search for maxima (peaks) and minimum
values of pressure histories and their occurrence times (calculated from the beginning of
the analyzed transient state). In a demonstrative way, Figure 6 illustrates the working
idea of this proposed “collecting” subprogram. As can be seen, the pressure drops to the
saturated vapor pressure were not taken into account, as the final results would be false.
Additionally, when determining the time compliance, the time of the first pressure peak t1
at the first amplitude was omitted, as it would also cause the final result to be distorted.
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The pressure compliance parameter determining the compliance of the maximum and
minimum simulated pressures is calculated by the following formula:

Ep =
∑k

i=1

∣∣∣ ps,i−pe,i
pe,i

∣∣∣
k

·100% (57)

where ps,i—simulated maximal and minimal pressures and pe,i—experimentally predicted
maximal and minimal pressures

The time compliance parameter that determines the time fit of subsequent simulated
amplitudes was calculated using the following formula:

Et =
∑k

i=2

∣∣∣ ts,i−te,i
te,i

∣∣∣
k− 1

·100% (58)

where ts,i—times of occurrence of maximal and minimal simulated pressures and te,i—
experimentally observed times of maximal and minimal pressures (note that times ts,1 and
te,1 representing the maximum at first amplitude are not taken into account, because in
some cases, their fit could distort the whole analysis).

The degree of simulation compatibility increases with decreasing values of the above
coefficients. In Table 3, the complete quantitative results of the Ep and Et parameters
calculated for all comparative studies carried out in this work are summarized.
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Table 3. Quantitative results.

Case T [°C] v0 [m/s] Re0 [−]
Unsteady Friction (UF) Quasi−Steady Friction (QSF)

∆CavEXP [s] ∆CavUF [s] ∆CavQSF [s]
Ep [%] Et [%] Ep [%] Et [%]

01 13.8 1.28 45,511 8.39 0.70 23.51 0.39 0.74 0.77 0.83

02 25 1.37 63,892 5.32 0.49 15.15 0.31 0.59 0.61 0.72

03 31 1.34 71,102 6.76 1.02 23.17 0.88 0.45 0.46 0.53

04 35 1.37 78,827 8.57 0.90 18.04 0.62 0.43 0.44 0.47

05 38.5 1.33 81,967 4.38 1.62 10.46 1.36 0.38 0.38 0.42

The results of quantitative research indicate the following:

- Unsteady friction losses contribute to a significant reduction of pressure compliance
errors (parameter Ep—values of simulated pressures). When only quasi-steady re-
sistances were taken into account, the average error Ep from all the tests carried out
was about 18%, while when the model of UF losses was taken into account, then the
average error Ep was about 6.5%; i.e., almost three times smaller;

- The unsteady friction also influences the second analyzed parameter, i.e., the phase
compatibility Et. However, in this case, there was a slight increase in the value of
the time fit error of the modeled waveforms. When the quasi-steady nature of the
resistance was taken into account, the average error Et was 0.71%, while when the
unsteady nature of the resistance was taken into account, the average error Et was
0.95%. The difference is very small and can be neglected; however, it is recommended
to use models of unsteady friction when the experimentally obtained creep functions
are used during modeling;

- The deterioration of the quantitative parameter Et, which was noted in the previous
paragraph, after taking into account the unsteady hydraulic resistances, prompted
us to analyze another quantitative parameter, which is the duration of the cavitation
phenomenon at the analyzed cross-section (cross-section at the valve). From the data
presented in Table 3 (∆CavEXP), it can be seen that the duration of the cavitation
phenomenon at the cross-section at the valve decreased with increasing temperature
(decreasing the speed of pressure wave propagation). It can also be seen that the
numerical model which takes into account unsteady friction predicts the duration
of cavitation areas slightly longer than it was in the experiments. The quasi-steady
resistance model overestimated the duration of cavitation quite significantly.

5. Conclusions

The paper presents a modified unsteady discrete bubble cavity model DBCM. The
new model is developed in a very simple form, which makes it easy for implementation in
commercial programs for unsteady pipe flow analysis. The new model takes into account
three very important phenomena: unsteady wall shear stress, vaporous cavitation, and
pipe-wall retarded strain. The latter mentioned phenomenon occurs in plastic pipes.

The conducted comparative studies have shown that with the help of the presented
model, it is possible to simulate pressure and velocity waveforms in which vapor areas
appear as a result of the cavitation phenomenon in plastic pipes. It was noticed that the
influence of unsteady friction was much smaller than the influence of retarded strain. An
innovative method of calculating the convolutional integral describing the retarded strain
was applied by using the analogy to the convolutional integral defining the wall shear
stress (Schohl’s method). Taking into account the commonly known boundary conditions
related to the method of characteristics enables the use of the novel model in complex
networks: water supply, oil hydraulics, heating, etc.

The modified solution is an alternative to the two commonly used transient cavitating
pipe flow models, namely the DGCM (discrete gas cavity model) and the DVCM (discrete
vapor cavity model). In our future work, we are planning to execute broad comparisons of
the presented new model with the existing ones.
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The use of the experimentally determined creep functions (obtained by Güney)
showed that such functions can be an alternative to the calibration methods commonly
developed today. This indicates that the creation of the so-called “maps” of creep function
curves for various polymeric materials currently used in the world for pressure pipes
will significantly help designers at the design stage and will enable the study of the most
dangerous unsteady cases “a priori”. Presentation of such “maps” obtained for different
temperatures should be a priority of the current scientific research.
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Nomenclature

A pipe cross-sectional area (m2)
Ai, Bi and Ci unsteady friction coefficients (-)
D pipe internal diameter (m)
E pipe modulus of elasticity (Pa)
Ep and Et pressure and time compliance parameters (%)
J0 = 1/E instantaneous creep compliance (Pa−1)
Ji creep compliance of the i-th Kelvin-Voigt element (Pa−1)
Kl bulk modulus of liquid phase (Pa)
Kv bulk modulus of vapor phase (Pa)
L pipe length (m)
N number of computational reaches (-)
R pipe internal radius (m)
T temperature in Celsius degrees (◦C)
Ti the retardation time of i-th Kelvin-Voigt element (s)
c pressure wave speed (m/s)
e pipe-wall thickness (m)
f Darcy–Weisbach friction factor (-)
g acceleration due to gravity (m/s2)
mi and ni frictional weighting function coefficients (-)
p pressure (Pa)
pv saturated vapor pressure (Pa)
pR reservoir pressure (Pa)
Re0 initial Reynolds number (-)
t time (s)
u dummy variable (s)
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wUF weighting function of unsteady friction (-)
wJ weighting function of creep (Pa−1·s−1)
v average flow velocity (m/s)
vm mixture velocity (m/s)
v0 initial liquid velocity (m/s)
x space coordinate (m)
yi time-dependent velocity history effect (m/s)
zi time-dependent strain history effect (s−1)
α volumetric fraction of liquid phase (-)
∆t numerical time step (s)
∆t̂ dimensionless time step (-)
∆x numerical spatial step (m)
εr retarded strain (-)
η correction factor of unsteady friction (-)
θ pipe slope angle (o)
λ transient friction factor (-)
µl liquid dynamic viscosity (Pa·s)
µm mixture dynamic viscosity (Pa·s)
µv vapor dynamic viscosity (Pa·s)
νl kinematic viscosity of liquid (m2/s)
νm kinematic viscosity of liquid-vapor mixture (m2/s)
νv kinematic viscosity of vapor (m2/s)
ξ pipe restraint factor (-)
Ξ enhanced pipe restraint factor (-)
ρl density of liquid phase (kg/m3)
ρm mixture density (kg/m3)
ρv density of vapor phase (kg/m3)
σe elastic component of the hoop stress (Pa)
τm mixture wall shear stress (Pa)
ψ MOC multiplier (m·Pa−1·s−1)

Abbreviations

CAV cavitation
CFL Courant–Friedrichs–Lewy condition
DACM discrete Adamkowski cavity model
DBCM discrete bubble cavity model
DGCM discrete gas cavity model
DVCM discrete vapor cavity model
EXP experimental
FSI fluid structure interaction
HDPE high-density polyethylene
LDPE low-density polyethylene
MOC method of characteristics
ODE ordinary differential equation
PDE partial differential equation
QSF quasi-steady friction
RS retarded strain
SIM simulation
UF unsteady friction
VOF volume of fluid method
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Appendix A

The total derivative of strain represents a derivative of pipe inner diameter changes [38]:

dε

dt
=

d
dt

(
D− D0

D0

)
=

1
D

dD
dt

. (A1)

These changes in plastic pipes differ from those reported in elastic pipes. The relation
between the cross-section derivative and strain derivative is:

dA
dt

=
d
dt

(
πD2

4

)
=

πD
2

dD
dt

=
πD2

2
1
D

dD
dt

=
πD2

2
dε

dt
= 2A

dε

dt
. (A2)

The circumferential strain can be decomposed into an instantaneous elastic strain εe
and a retarded strain εr:

ε = εe + εr. (A3)

Using the above decomposition (Equation (A3)) in Equation (A2) gives:

dA
dt

= 2A
(

dεe

dt
+

dεr

dt

)
. (A4)

Typically, the instantaneous strain εe, which is assumed to be linear–elastic, can be
related to the hoop stress as follows:

εe =
ξσe

E
(A5)

where σe—elastic component of the hoop stress.
The hoop stress is also related to the fluid pressure and the ratio between the pipe

inner diameter and wall thickness:
σe =

pD
2e

. (A6)

Let us take the derivative of the above Equation (A6):

dσe

dt
=

p
2e

dD
dt

+
D
2e

dp
dt

. (A7)

The derivative of the elastic strain component (Equation (A5)) can be written with the
help of Equation (A7):

dεe

dt
=

d
dt

(
ξσe

E

)
=

ξ

2eE

(
p

dD
dt

+ D
dp
dt

)
=

ξ

2eE

(
pD

1
D

dD
dt

+ D
dp
dt

)
. (A8)

Finally, with help of Equation (A1), one gets:

dεe

dt
=

Ξ
2E

(
p

dεe

dt
+

dp
dt

)
. (A9)

After rearrangement:

dεe

dt
=

Ξ
2E

dp
dt

1− Ξ
2E p

. (A10)

Introducing Equation (A10) into Equation (A4) results in:

dA
dt

=
A dp

dt
E
Ξ −

p
2
+ 2A

dεr

dt
. (A11)
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Since in most practical applications p/2� E/Ξ, then:

1
A

dA
dt

=
Ξ
E

dp
dt

+ 2
dεr

dt
. (A12)

This equation has been used in the manuscript during the derivation of the continuity
equation—see Equation (11).
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