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Abstract: In this paper, an optimal sizing and placement framework (OSPF) is performed for electric
parking lots integrated with wind turbines in a 33-bus distribution network. The total objective
function is defined as minimizing the total cost including the cost of grid power, cost of power losses,
cost of charge and discharge of parking lots, cost of wind turbines as well as voltage deviations
reduction. In the OSPF, optimization variables are selected as electric parking size and wind turbines,
which have been determined optimally using an intelligent method named arithmetic optimization
algorithm (AOA) inspired by arithmetic operators in mathematics. The load following strategy (LFS)
is used for energy management in the OSPF. The OSPF is evaluated in three cases of the objective
function such as minimizing the cost of power losses, minimizing the network voltage deviations,
and minimizing the total objective function using the AOA. The capability of the AOA is compared
with the well-known particle swarm optimization (PSO) and artificial bee colony (ABC) algorithms
for solving the OSPF in the last case. The findings show that the power loss, voltage deviations, and
power purchased from the grid are reduced considerably based on the OSPF using the AOA. The
results show the lowest total cost of energy and also minimum network voltage deviation (third case)
by the AOA in comparison with the PSO and ABC with a higher convergence rate, which confirms
the better capability of the proposed method. The results of the first and second cases show the high
cost of power purchased from the main grid as well as the high total cost. Therefore, the comparison
of different cases confirms that considering the cost index along with losses and voltage deviations
causes a compromise between different objectives, and thus the cost of purchasing power from the
main network is significantly reduced. Moreover, the voltage profile of the network improves, and
also the minimum voltage of the network is also enhanced using the OSPF via the AOA.

Keywords: distribution network; optimal sizing and placement framework; parking lots; cost;
arithmetic optimization algorithm

1. Introduction

In the last decade, the use of electric vehicles in the transportation industry has been
widely welcomed in various countries. Electric vehicles can be used as controllable loads [1].
Electric vehicles can also be used as distributed generation (DG) units during peak load
periods when electricity prices are high. Due to the limited power of electric vehicles, these
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devices can also be used as a source of DG [2]. The optimal placement of electric parking
lots as charging stations is a new type of DG resource, which is important in the operation
of distribution networks, their location, and determining their optimal capacity [3]. A
lack of proper allocation of DG resources and charging stations in the network increases
losses and the cost of the production and transmission of energy, so it is necessary to
determine the optimal installation location and size in the distribution network to obtain
the maximum reduction in losses and energy production costs [4,5].

Various studies have been conducted on the optimal use of electric parking lots
and renewable resources in distribution networks. In [6], a multi-objective parking lot
allocation was performed to improve the reliability and cost reduction, regardless of the
electric vehicle battery charging model. The results showed that the location of parking
lots in a suitable location with optimal capacity increases the economic benefits of the
network. In [7], the location of the parking lot was determined in order to reduce the
power losses of electric vehicles without the need for vehicle batteries to be charged, and a
genetic algorithm (GA) was applied to solve the problem. In [8], using the GA, the optimal
location and size of the electric parking and distributed generation sources are developed
to charge vehicle batteries. In [9], the management of electric vehicle parking charges was
presented using PSO. Assessing the quality of network power with respect to the charging
and discharging of electric vehicle parking was studied in [10]. In [11], the scheduling
of renewable energy sources for smart grids was performed by considering the parking
of electric vehicles connected to the grid. In [12], an energy management strategy was
developed for parking grid-connected electric vehicles, in which the appropriate operation
mode is determined based on optimal control. In [13], the authors provided an intelligent
method to use the scheduled energy storage capacity available in the parking lot of electric
vehicles using PSO. In [14], a method was presented for locating and determining the
optimal capacity of distributed generation sources and parking electric vehicles. In [15],
the role of vehicle-to-grid in frequency regulation was investigated. In [16], a multi-criteria
method was presented to determine the optimal capacity of parking lots to be placed in
the network to minimize losses and voltage deviation and also improve the reliability.
In [17], the sizing of parking lots considering demand response was performed to minimize
the network loss and voltage deviation using a genetic algorithm. In [18], the allocation
and sizing of the vehicle charging station in the network were determined with the aim
of voltage profile improvement, loss minimization, and minimizing the energy cost via
a balanced mayfly algorithm. In [19], the allocation of parking lots in the network was
developed by maximizing the benefit, incorporating different load conditions.

In general, most of the research conducted in the field of electric vehicles based on opti-
mal charging planning in order to achieve the desired level of different characteristics, such
as reducing losses and voltage profiles, is also connected to the network as a storage system.
The optimal allocation of renewable energy sources as energy production sources [20–22]
in distribution networks along with electric parking lots can be a suitable option for the
operation of distribution networks based on new and renewable technologies. On the other
hand, with the participation of these units and the release of network capacity, the cost of
purchasing power from the main network is reduced, which has not been well addressed
in previous studies. In addition, using a powerful optimization method in determining
the location and capacity of these units can increase the advantage of using them and also
reduce the cost of energy production in the network.

In this paper, an optimal sizing and placement framework (OSPF) for electric parking
lots with wind turbines is performed on 33-bus distribution networks to minimize the cost
of losses, wind turbine power, battery charging and discharging, and purchasing power
from the main grid. The decision variables include the number of electric vehicles in the
parking lots and the wind turbine number in the distribution network. The arithmetic
optimization algorithm (AOA), which is inspired by arithmetic operators in mathemat-
ics [23,24], is applied to determine the optimization variables by considering the objective
function and operation constraints. The motivation of using the AOA is the high capability
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of this method to solve the optimization problem, quickly achieving the global optimal
solution [19,20]. In this study, the cost of power losses, the cost of purchasing power from
the main network, and also network voltage conditions are investigated before and after
problem solution, and the effect of the optimal application of electric parking lots has been
evaluated. This framework is very effective for distribution network operators to under-
stand the sizing and placement of parking lots as integrated renewable energy resources in
the distribution network. To verify the proposed framework based on the AOA, the results
are compared with the artificial bee colony (ABC) [25] and PSO [26] methods, which are
well-known powerful methods in solving electrical engineering problems.

The problem formulation and also strategy of energy management are presented in
Section 2. The overview of the proposed optimization method and its development to
solve the problem are presented in Section 3. The simulation results in different cases are
given in Section 4. Finally, the obtained results are concluded in Section 5.

2. Problem Formulation
2.1. Objective Function

In this paper, the optimal sizing and placement framework (OSPF) for electric parking
lots and wind turbines is presented with the objective function of cost minimization as well
as voltage deviation minimization as multi-objective optimization based on the weighted
coefficient method. The cost function includes the cost of power loss, grid power cost,
wind power cost, and also charging and discharging cost of electric parking. The objective
function of the OSPF is defined as follows:

min Objective_Function = W1 ∗
(

CostAfter(xt, sizet)

CostBefore

)
+ W1 ∗

(
VDAfter(xt, sizet)

VDBefore

)
(1)

Cost (xt, sizet) =
N

∑
t=1

[CostLoss(xt, sizet) + CostGrid(xt, sizet) + CostWind(xt, sizet) + CostEP(xt, sizet)] (2)

VD(xt, sizet) =

√√√√ 1
NBus

∗
NBus

∑
i=1

(
Vi − Vp

)2 (3)

where x indicates the installation location of parking lots and wind turbines in the network
and the size of parking lots and wind turbines, W1 and W1 are the weights of the cost
and voltage deviation function, CostAfter and CostBefore are the system cost after and before
the OSPF, and VDAfter and VDBefore are the voltage deviation after and before the OSPF,
respectively. CostLoss(xt, sizet), CostGrid(xt, sizet), CostWind(xt, sizet), and CostEP(xt, sizet)
are the cost of power losses, cost of purchasing power, cost of wind power, and cost of
electric parking, respectively. NBus refers to the number of buses, Vi is the voltage of bus
i, and Vp is the average of the bus’s voltage. The following is each part of the objective
function.

• Cost of power loss

CostLoss(t) =Closs × Ploss(t) (4)

• Cost of purchased power from main network

CostGrid(t) =Cgrid × Pgrid(t) (5)

• Cost of wind power

The cost of wind turbine power is as follows:

CostWind(t) =Cwind × Pwind(t) (6)

• Cost of parking lots
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The cost of electric parking lots, which is the cost difference between discharge and
charge power, is defined by:

CostEP(t)F.H = CEP × PEP(t) (7)

where Closs, Cgrid, CWind, and CEP, respectively, are the cost per kW of losses, the cost per
kW of power received from the main grid, the cost of per kW wind power, and the cost per
kWh battery power of electric vehicles. Additionally, Ploss, Pgrid, PWind, and PEP express
the amount of power loss, power purchased from the main network, wind turbine power,
and battery bank capacity, respectively. N also indicates the study period (24 h).

2.2. Constraints

The optimization problem should be optimized under the following constraints. The
operating constraints are as follows [27–30].

• Power balance

PWind(t) + Pgrid(t) + PEP(t)− Ploss(t)− PD(t) = 0 (8)

• Power purchased from the main network

Up to 30% of the required network load can be received from the main grid per hour.
In other words, the operator is not allowed to apply the main grid to supply the entire
network load due to the high cost. Therefore, a maximum of 30% of the network load
needs can be met by the main grid.

Pgrid(t) ≤ Pgrid−max (9)

• Vehicle’s battery capacity

The state of charge (SOC) of the battery of parking lots has a lower and upper limit as
follows [27]:

SOCmin ≤ SOCi(t) ≤ SOCmax (10)

The SOC of batteries when the vehicle’s battery is in charge mode is defined as follows:

SOCi(t) = SOCi(t − 1) + Pch(t) (11)

where Pch(t) is the amount of power that is injected into the vehicles of parking lots to
charge in t hours and SOCi(t − 1) is the amount of SOC in hour t−1.

The SOC of batteries when the battery of the vehicle is in discharge mode is defined
as follows:

SOCi(t) = SOCi(t − 1)− Pdisch(t) (12)

where Pdisch(t) is the amount of power discharged from parking lots (discharge mode) at
t hour.

• Voltage

Network bus voltages have a minimum (Vmin
i ) and maximum (Vmax

i ) limit that should
not exceed these values [4,16].

Vmin
i ≤ Vi(t) ≤ Vmax

i (13)

The minimum and maximum voltages are 0.95 p.u and 1.05 p.u, respectively. In other
words, the voltage of each bus should be more than 0.95 p.u and less than 1.05 p.u [30].

• Power of wind generator

Pmin
Wind−i ≤ PWind−i(t) ≤ Pmax

Wind−i (14)
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where the power output of the ith wind turbine has a minimum range (Pmin
Wind−i) and a

maximum range (Pmax
Wind−i).

• Allowable power of network lines (thermal limit)

The power flowing in each line must be lower than its thermal limits as follows:

Fi ≤ Limiti (15)

where Limiti is the maximum allowable power passing through line i.

2.3. Energy Management Strategy

The energy management strategy (EMS) is a method to manage the energy resources
in terms of time to meet the demand. The load following strategy [31,32] is applied as an
EMS in the proposed system. In this strategy, firstly the wind resource energy and also
the energy of the electric vehicles in the parking lots operate to supply the demand. If
wind resources and parking lots are not capable of meeting the load fully, the power is
purchased from the main grid. The EMS per hour is as follows:

• If the power output of wind turbines is more than the load demand and if the amount
of parking battery charge is less than the maximum allowable value, then the parking
battery will be charged based on the allowable charging capacity.

• If the power output of wind turbines is less than the load demand and if the amount of
parking battery charge is more than the maximum allowable value, then considering
the allowable charging capacity, the parking battery will be discharged to load supply.

• If the capacity of wind resources in addition to charging electric parking lots is less
than the demand, then in proportion to the load shortage, the power can be purchased
from the main grid.

3. Proposed Optimization Method

In this paper, the OSPF based on the AOA is applied for the allocation of parking lots
and wind turbines in the 33-bus distribution network, which is described below, and its
implementation in problem solving is described.

3.1. Overview of AOA

Population-based meta-heuristic algorithms include two main phases of exploration
and exploitation. In the exploration phase, the search space is extensively evaluated based
on search operators to avoid being trapped in the local optimal, and in the exploitation
phase, the accuracy of the solutions extracted in the exploration phase is increased. In
this study, the formulation of an arithmetic optimization algorithm (AOA) is described
based on exploration and exploitation phases. This optimization method is inspired
by arithmetic operators (AOs) in mathematics such as multiplication (M), division (D),
subtraction (S), and addition (A) and can solve optimization problems without the need
for their derivatives [23,24].

Arithmetic is an essential part of number theory, and AOs are the traditional compu-
tational tools applied to investigate numbers. In the AOA, simple operators are used for
optimization. The performance of each AO expressed in the AOA formulation is described
below. Figure 1 depicts the hierarchy of AOs along with the exploration and operation
phases. In the AOA based on Figure 1, top-down dominance has a decreasing trend [23,24].
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3.1.1. Preparation Stage

Candidate solution set (X) is randomly generated at the start of optimization. The best
solution is considered the solution close to the current optimal [23].

X =



x1,1 X1,2 · · · · · · x1,j x1,n−1 x1,n
x2,1 X2,2 · · · · · · x2,j . . . x2,n

...
...

...
...

...
...

...
...

...
...

...
...

...
...

xN,1 XN,1 · · · · · · xN,j xN,n−1 xN,n

 (16)

The AOA must first select the exploration or exploitation phase. Thus, the Math
Optimization Function (MOA) is calculated as follows and used in the search process [23].

MOA(C_Iter) = Min + C_Iter
(

Max − Min
M_Iter

)
(17)

where MOA (C_Iter) refers to the value of the function in the t-iteration, C_Iter refers to the
current iteration, M_Iter indicates the maximum iterations of AOA, and Min and Max also
refer to the lower and upper values of the MOA.

3.1.2. Exploration Stage

Based on the AOs expressed, computations using the division operator (D) or even the
multiplication operator (M) determine which is related to the exploration search phase. The
M and D operators cannot easily reach the objective due to the high scatter in comparison
with the S and A operators. The exploratory search phase can determine the near-optimal
response after several iterations. In the optimization process, M and D operators are
applied to support the operational phase through communication between them.

The exploration operators in the AOA evaluate the search space to determine a
better solution according to the two strategies of operators M and D. Figure 2 shows
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how to update the operators used towards the optimal region [23]. In this phase, the D
operator is conditional on r2 < 0.5, and the M operator is ignored until the end of the D
operator operation. When the function of operator D ends, operator M is activated (r2 is a
random number). The position update equations are defined as follows for the exploration
phase [23,24]:

Xi,j(C_Iter + 1) =


best (xj)

(MOP+ε)×((UBj−LBj)×µ+LBj)
r2 < 0.5

best
(
xj
)
× MOP ×

((
UBj − LBj

)
× µ + LBj

)
, otherwise

(18)

where xi (C_Iter + 1) represents the ith next iteration solution, xi,j (C_Iter) is the jth position
of the ith solution in the present iteration, best (xj) is the jth position in the best solution, ε
represents a very small number, UBj and LBj specify the upper and lower limits of the j
position, and µ is the control parameter (equal to 0.5) [23].

MOP(C_Iter) = 1 − C_Iter1/α

M_Iter1/α
(19)

where MOP represents the mathematical optimizer probability, and as a coefficient, MOP
(C_Iter) represents the value of the function in iteration t and C_Iter refers to the current
iteration. M_Iter indicates the maximum number of AOA iterations, and α is an important
parameter with high sensitivity to express the accuracy of the operation phase (α = 5) [23].
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3.1.3. Exploitation Phase

In the exploitation phase of the AOA, subtraction (S) or addition (A) operators achieve
higher density results. Operators S and A, unlike operators M and D, have low scatter
and therefore can achieve the target. Therefore, the operating phase can determine the
near-optimal response after several iterations (r1 is not greater than the value of MOA
(C_Iter)). In the AOA, the S and A operators explore the search space on areas with different
densities for better response, the mathematical expression of which is given by [19]:

Xi,j(C_Iter + 1) =

{
best

(
xj
)
− (MOP + ε )×

((
UBj − LBj

)
× µ + LBj

)
r3 < 0.5

best
(

xj
)
+ (MOP + ε)×

((
UBj − LBj

)
× µ + LBj

)
, otherwise

(20)

In this phase, the operator S is conditional on r3 < 0.5, and the operator A is ignored
until the end of the operation of the operator D. When the S operator terminates, the A
operator is activated (r3 is a random number). Operators S and A prevent trapping in
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the local optimum. Therefore, this process improves the performance of the algorithm in
achieving the optimal solution. Figure 2 shows the updating of variables (positions) based
on the D, M, S, and A operators in a 2D search space. It is observed that the current position
can be within a certain range that corresponds to the corresponding positions of D, M, S,
and A in the search space. In other words, operators D, M, S, and A randomly update their
position around the response position by estimating it to be close to the optimal response.

The AOA starts the optimization process by considering a set of random solutions.
The position vector is defined based on the initialization of the random variables in the
minimum and maximum ranges. The position and step of each population member in
each iteration are updated. The position update operation continues until the convergence
conditions are satisfied, and finally, the optimal variables are determined according to the
best objective function.

3.2. Implementation of the AOA

The OSPF based on the AOA for parking lots and wind turbines in 33-bus distribution
networks is illustrated in Figure 3. The steps for AOA implementation are as follows:

Step 1. The problem variables are randomly determined for the AOA population. The
population of the algorithm is selected as 50 and the maximum iteration of the AOA is
considered to be 300.

The variable vectors are considered as those that should be determined optimally.
Step 2. For each of the AOA population members, the energy contribution of the

parking lots and also wind energy resources are considered and the operating conditions
are checked. In this study, backward–forward load flow is used. The voltage constraints
and also thermal limits should be satisfied.

Step 3. The value of the objective function for the variables selected in step 1 is
calculated for each of the AOA population members and the best solution is determined.
The variable set with a lower objective function value is considered as the best set of the
variables in this step.

Step 4. Using the AOA, the population is updated in this step and then the variables
are randomly determined again. Then, the objective function is evaluated for the new
variable set.

Then, the best solution with the lowest value of the objective function is determined.
If the value of the objective function obtained in step 3 is better than the one obtained in
step 4, it is replaced and the corresponding variable set is considered as the best set.

Step 5. If the convergence conditions such as achieving the best value of the objective
function and maximum iteration are met, we go to step 6; otherwise, we go to step 2.

Step 6. In this step, after the determination of the optimal variable set, we stop the
AOA to save the optimal variable.
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4. Simulation Results
4.1. Test Network

The Institute of Electrical and Electronics Engineers (IEEE) standard 33-bus net-
work [33] has been selected to implement the proposed method. This network has 3.72 MW
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of active load and 2.3 MVAr of reactive load. The amount of active network losses in the
base state is 202.67 kW [33]. The single-line schematic of the 33-bus network is shown
in Figure 4. The wind speed profile for 24 h is shown in Figure 5 [34]. The wind speed
variation curve related to the real data of Gorgan city in Iran is related to the third day of
September 2020, during which the network load is at its highest mean value. These data
are derived from the Meteorological Organization by measuring devices. In proportion to
the given wind speed, the wind turbine power generation curve in terms of wind speed is
presented in Figure 6. Additionally, the loading coefficients are demonstrated in Figure 7.
Changes in load coefficients have been measured based on the smart equipment of the
electricity distribution company. Smart metering refers to all infrastructures including
smart meters, communication networks/infrastructure between smart meters, and other
relevant institutions such as energy consumers, meter operators, power supply or electric-
ity meters, and data management systems. The OSPF based on the AOA is implemented
with MATLAB software (R2016b) with a personal computer with Core i7, 3.1 GHz central
processing point (CPU), 8 GB memory, 1 T Hard Disk Drive (HDD), and Windows 8 system.
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Figure 7. Loading coefficients of the distribution network for 24 h [34].

Therefore, according to the wind turbine power generation curve in terms of wind
speed, the amount of turbine power generation is calculated as a ratio of the turbine peak
power per hour of study. In this study, the cost per kW of wind power is equal to United
States dollar (USD) 0.068 [35], the cost per kW of parking power is equal to USD 1, the cost
per kW of losses is equal to USD 0.06 [36], and the cost per kW received from the main
network is estimated at USD 2. It is assumed that the minimum and maximum state of
charge of the batteries are equal to 25 and 90%, respectively. In this study, a maximum of
three wind turbines of 500 kW have been considered for installation. The parking lots also
include a maximum of eight parking lots considering that each parking lot is equivalent to
200 vehicles and each of them has a 16-kWh battery energy in full charge.

In this study, the design is implemented for 24 h of network peak load. The network
voltage profile curve under peak load conditions and the most severe voltage deviation
and the minimum network voltage curve are plotted in Figure 8. The lowest network
voltage is 0.9134 p.u, which is out of the allowable voltage range. The base results of
the distribution network obtained from backward–forward power flow are presented in
Table 1. The cost of power loss, cost of the grid, and also minimum voltage are achieved at
USD 57.02, USD 75,011, and 0.9134 p.u for the 24 h study period. The total cost in the case
study is USD 75,068.

Table 1. Numerical results of base 33-bus distribution network for 24 h.

Item Cost of Power Loss
(USD)

Cost of Grid Power
(USD) Total Cost (USD) Min Voltage (p.u)

Value 57.02 75,011 75,068 0.9134
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4.2. Simulation Cases

The OSPF for the allocation of parking lots integrated with wind turbines is imple-
mented in three cases in the 33-bus distribution network as follows [37]: Case 1# OSPF with
minimizing the cost of power losses, Case 2# OSPF with minimizing the voltage deviations,
and Case 3# OSPF with minimizing the total objective (Equation (1)). The results of the
OSPF based on the AOA for the allocation of parking lots integrated with wind turbines
are implemented in three cases. The convergence curve of the AOA in the problem solution
is depicted in Figure 9. The convergence process of the AOA in the optimization of the
problem and achieving the optimal variables is plotted in this figure for the three cases.
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The optimal size and location of wind turbines and also the PHEVs are given in
Tables 2 and 3, respectively. The AOA determines two turbines for cases 1 and 2 and also
three turbines for case 3. Moreover, the AOA considers seven parking lots for case 1 and
also four parking lots for cases 2 and 3.
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Table 2. Size and installation location of WTs in the 33-bus distribution network.

Size/@Bus WT 1 WT 2 WT 3

Case#1 429/@6 –/– 500/@30
Case#2 500/@8 –/– 500/18
Case#3 500/@6 500/@18 500/@30

@ denotes at bus

Table 3. Size and installation location of PHEVs in the 33-bus distribution network.

Size/@Bus PHEV 1 PHEV 2 PHEV 3 PHEV 4 PHEV 5 PHEV 6 PHEV 7 PHEV 8

Case#1 2000/@12 2000/@15 2000/@17 2000/@28 2000/@32 2000/@21 –/– 2000/@24
Case#2 –/– 1601/@17 –/– 1974/@21 –/– 1697/@24 –/– 1204/@32
Case#3 –/– 1059/@8 –/– 1789/@16 –/- 1195/@28 1059/@32 –/–

The numerical results of PV and PHEV sizing and placement in the 33-bus distribution
network include the cost of power loss, cost of the grid, cost of PHEVs, cost of WTs, total
cost, voltage deviation, and also the voltage minimum, which are presented in Table 4.
The results show that the cost of losses in case 1 as a single-objective OSPF with the aim
of minimizing the power losses is lower than the other cases. Additionally, the voltage
deviation in case 2 with the objective of voltage deviation minimization is less than cases
1 and 3 as a single-objective OSPF. The results show that by considering the cost in the
objective function as the third case (total objective function), the system’s total cost is
less than the other cases, and also the cost of power purchased from the main grid is
significantly reduced compared to cases 1 and 2. The cost of grid power in cases 1, 2, and 3
is USD 47,012, USD 45,876, and USD 29,271. The total cost of the multi-objective OSPF in
case 3 is found at USD 31,123, while this cost is USD 48,584 and USD 47,291 in cases 1 and
2, respectively. So, the multi-objective OSPF is the optimal case to improve the network
performance.

Table 4. Numerical results of PV and PHEV sizing and placement in the 33-bus distribution network.

Item/Case Case#1 Case#2 Case#3

Cost of power loss (USD) 29.68 31.25 44.60
Cost of grid (USD) 47012 45,876 29,271

Cost of PHEV (USD) 547.16 312.84 201.28
Cost of WTs (USD) 995.17 1071.22 1606.84

Total cost (USD) 48,584 47,291 31,123
Voltage deviation (p.u) 0.1779 0.0504 0.0631

4.3. Comparison of the Results
4.3.1. Power Loss

In the base network without wind resources and parking, the amount of network
losses in the 24-h peak period is equal to 950.39 kW, and after the sizing and placement
of electric parking lots and wind resources in case 3, the value of losses is reduced to
743.33 kW (21.78% reduction). The variation in the active power loss per hour is also
plotted in Figure 10. It can be seen that with the optimal use of electric parking lots and
wind resources, the amount of losses in peak load hour has been reduced from 202.67 kW
to 101.30 kW.
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4.3.2. Minimum Voltage

The minimum voltage curve of the 33-bus network is shown in Figure 11, which
shows that the minimum voltage of the buses is out of range at 16:00 and this voltage is
equal to 0.9134 p.u. According to Figure 11, using the OSPF, the voltage is placed in the
allowable range at all hours and the voltage is never less than 0.95 p.u. The minimum
voltage is increased from 0.9134 p.u to 0.9561 p.u at 16:00 using the multi-objective OSPF
via the AOA.
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4.3.3. Grid Power

Figure 12 illustrates the power purchased from the main grid. Without the OSPF in
the base network, in 71% of the hours, the allowable level of power received from the main
feeder is not observed and all network loads and system losses are supplied from the main
grid. After using the multi-objective OSPF, the purchased power is reduced from 3905 kW
to 2191 kW in peak load hour (43.89% reduction).



Energies 2021, 14, 6755 17 of 21

Energies 2021, 14, x FOR PEER REVIEW 18 of 22 
 

 

 
Figure 12. Purchased power from the main grid with and without OSPF via the AOA for 24 h. 

4.3.4. Contribution of the Wind Resources and Grid 
In this section, changes in the generated power of wind resources along with changes 

in the power purchased from the grid to supply the load demand are demonstrated in 
Figure 13. The grid power is intended as a backup to supply the load. 

 
Figure 13. Contribution of wind power, grid power, and load demand for 24 h. 

4.3.5. Charge and Discharge of the Batteries 
Figure 14 shows the power batteries of the electric parking lots in the 33-bus network. 

In different network loading conditions, vehicles are charged and discharged at different 
hours, and especially at peak consumption hours (16:00), parking lots inject power as a 
DG source (discharge to the network). At 17:00, with the reduction in the network loading 
coefficients, the batteries of the electric parking lots are charged and the charging process 
continues until 22:00. Therefore, in the network load peaks, the charge level is decreased 
and the discharge level of the batteries is increased. 

0 5 10 15 20 25
Time (hour)

0

500

1000

1500

2000

2500

3000

3500

4000
With WTs and PHEVs
Without WTs and PHEVs

Decrease from
3905 MW to 2191 MW in peak load

Figure 12. Purchased power from the main grid with and without OSPF via the AOA for 24 h.

4.3.4. Contribution of the Wind Resources and Grid

In this section, changes in the generated power of wind resources along with changes
in the power purchased from the grid to supply the load demand are demonstrated in
Figure 13. The grid power is intended as a backup to supply the load.
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4.3.5. Charge and Discharge of the Batteries

Figure 14 shows the power batteries of the electric parking lots in the 33-bus network.
In different network loading conditions, vehicles are charged and discharged at different
hours, and especially at peak consumption hours (16:00), parking lots inject power as a
DG source (discharge to the network). At 17:00, with the reduction in the network loading
coefficients, the batteries of the electric parking lots are charged and the charging process
continues until 22:00. Therefore, in the network load peaks, the charge level is decreased
and the discharge level of the batteries is increased.
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4.4. Comparison of the AOA Results with PSO and ABC

In this section, the performance of the OSPF via the AOA in case 3 is compared with
the well-known PSO and ABC algorithms. The convergence curve of different methods
is presented in Figure 15. As shown in Figure 15, the proposed AOA achieved a better
objective function (lower value) with a higher convergence speed and lower convergence
tolerance. The optimal size and installation location of the wind turbines and also parking
lots are given in Tables 5 and 6, respectively. Additionally, the comparison results of the
different algorithms, including the cost values and voltage deviations, are given in Table 7.
The total cost using the AOA, PSO, and ABC is USD 31,123, USD 31,264, and USD 32,480,
respectively. According to Table 7, the total cost of the system is lower than the other
algorithms. Additionally, the cost of grid power obtained by the AOA is the lowest value
compared with the PSO and ABC methods. Therefore, the results prove the superiority of
the OSPF via the AOA.

Energies 2021, 14, x FOR PEER REVIEW 19 of 22 
 

 

 
Figure 14. Charging and discharging of electric parking lot batteries with and without OSPF via the AOA for 24 h. 

4.4. Comparison of the AOA Results with PSO and ABC 
In this section, the performance of the OSPF via the AOA in case 3 is compared with 

the well-known PSO and ABC algorithms. The convergence curve of different methods is 
presented in Figure 15. As shown in Figure 15, the proposed AOA achieved a better ob-
jective function (lower value) with a higher convergence speed and lower convergence 
tolerance. The optimal size and installation location of the wind turbines and also parking 
lots are given in Tables 5 and 6, respectively. Additionally, the comparison results of the 
different algorithms, including the cost values and voltage deviations, are given in Table 
7. The total cost using the AOA, PSO, and ABC is USD 31,123, USD 31,264, and USD 
32,480, respectively. According to Table 7, the total cost of the system is lower than the 
other algorithms. Additionally, the cost of grid power obtained by the AOA is the lowest 
value compared with the PSO and ABC methods. Therefore, the results prove the superi-
ority of the OSPF via the AOA. 

 
Figure 15. Convergence curve of different optimization methods in solving the OSPF. 

  

Figure 15. Convergence curve of different optimization methods in solving the OSPF.



Energies 2021, 14, 6755 19 of 21

Table 5. Size and installation location of WTs in 33-bus distribution network using different methods.

Method/Size/@Bus WT 1 WT 2 WT 3

AOA 500/@6 500/@18 500/@30
PSO 500/@8 500/@16 500/@29
ABC 495/@6 467/@18 495/@28

Table 6. Size and installation location of PHEVs in 33-bus distribution network using different methods.

Method/Size/@Bus PHEV 1 PHEV 2 PHEV 3 PHEV 4 PHEV 5 PHEV 6 PHEV 7 PHEV 8

AOA –/@– 1059/@8 –/@– 1789/@16 –/@- 1195/@28 1059/@32 –/@–
PSO –/@– 2000/@12 –/@– 2000/@17 –/@– –/@– 2000/@28 2000/@32
ABC –/@– 1536/@15 –/@– 1962/@21 –/@- 1006/@30 –/@– –/@–

Table 7. Numerical results of PV and PHEV sizing and placement in the 33-bus distribution network.

Item/Case AOA PSO ABC

Cost of power loss (USD) 44.60 44.81 45.07
Cost of grid (USD) 29,271 29,364 30,690

Cost of PHEV (USD) 201.28 238.50 184.33
Cost of WTs (USD) 1606.84 1617.35 1560.77

Total cost (USD) 31,123 31,264 32,480
Voltage deviation (p.u) 0.0631 0.0648 0.0726

4.5. Comparison Results of the AOA with Previous Studies

The results of the OSPF solved via AOA are compared with previous studies as
presented in Table 8. In [30], the sizing and placement of renewable energy resources with
the size of 3 MW are evaluated to minimize the losses and voltage deviation reduction
with an ant lion optimizer (ALO). Additionally, in [36], the multi-objective optimization
of renewable energy resources with the size of 3 MW is studied to minimize the losses
and reliability improvement in the 33-bus distribution network using the multi-objective
hybrid teaching–learning optimizer-grey wolf optimization method (MOHTLBOGWO).
The results confirmed the better performance of the OSPF via AOA in the operation of the
distribution network compared with the ALO [36] and MOHTLBOGWO [30] in achieving
lower power loss and more minimum voltage.

Table 8. Comparison of the results with previous studies.

Item/Method AOA ALO [36] MOHTLBOGWO [30]

Power loss (kW) 101.30 103.053 111.56
Minimum voltage (p.u) 0.9561 0.9503 0.9478

5. Conclusions

In this paper, the OSPF was presented for the allocation of electric parking lots and
wind turbines in a distribution network with the load following strategy. In the OSPF,
the multi-criteria objective function was formulated as the minimization of the energy
generation cost as well as voltage deviation reduction. The optimization variables were
selected as the location and size of the number of vehicles in the parking lots and wind
resource size in the 33-bus distribution network. The AOA was applied to find the optimal
variables in the OSPF. The simulations were implemented in different cases of objective
functions. The simulation results of the 33-bus distribution network showed that the
proposed OSPF based on the AOA in the third case obtained the lowest energy cost, the
minimum cost of grid power, and also the lowest voltage deviation compared to the cases
without device costs. The results showed that with the optimal sizing and placement of the



Energies 2021, 14, 6755 20 of 21

electric parking lots and optimal contribution of wind resources, the losses and voltage
deviations of the electrical network are considerably reduced. Additionally, based on
the OSPF, purchased power from the main grid was decreased by injecting power using
parking lots and wind units into the network. The losses were reduced from 950.39 kW to
743.33 kW with a 21.78% reduction, the minimum voltage improved from 0.9134 p.u to
0.9561 p.u, and the cost of grid power reduced from 3905 kW to 2191 kW in peak load hour
with a 43.89% reduction using the multi-objective OSPF via the AOA. The optimal sizing
and placement of parking lots and renewable energy resources with the objective of power
quality enhancement considering uncertainty are suggested for future work.
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