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Abstract: The life cycle of wind turbines depends on the operation and maintenance policies adopted.
With the critical components of wind turbines being equipped with condition monitoring and
Prognostics and Health Management (PHM) capabilities, it is feasible to significantly optimize
operation and maintenance (O&M) by combining the (uncertain) information provided by PHM with
the other factors influencing O&M activities, including the limited availability of maintenance crews,
the variability of energy demand and corresponding production requests, and the long-time horizons
of energy systems operation. In this work, we consider the operation and maintenance optimization
of wind turbines in wind farms woth multiple crews. A new formulation of the problem as a
sequential decision problem over a long-time horizon is proposed and solved by deep reinforcement
learning based on proximal policy optimization. The proposed method is applied to a wind farm of 50
turbines, considering the availability of multiple maintenance crews. The optimal O&M policy found
outperforms other state-of-the-art strategies, regardless of the number of available maintenance
crews.

Keywords: wind turbines; operation and maintenance; prognostics and health management; deep
reinforcement learning; imitation learning; proximal policy optimization

1. Introduction

Wind power generation is one of the most affordable ways of providing clean energy
to the market. Yet, future competitiveness of wind power generation will depend on the
possibility of further reducing wind turbines (WTs) operation and maintenance (O&M)
costs, which currently reach 20–25% of the total energy production cost [1,2]. For this reason,
efforts are being devoted to the development and implementation of cost-efficient O&M
policies for maximizing energy production while reducing maintenance costs [3,4]. Solving
the WTs O&M optimization problem in wind farms with multiple WTs requires considering
several factors, such as the limited availability of maintenance teams, the variability of
energy demand and production, the long-time horizons of operation of wind farms and
the uncertainty of all related information.

Traditional approaches for maintenance planning are based on corrective and sched-
uled maintenance, in which maintenance is performed after a failure or at scheduled
instances, respectively [5]. Nowadays, WTs are equipped with Prognostics and Health
Management (PHM) capabilities to assess the current health state of critical components
and predict their Remaining Useful Life (RUL) based on condition monitoring data col-
lected by sensors. Several algorithms for RUL prediction have been developed [6] and
many successful applications to different industrial fields, such as wind energy [1,7], manu-
facturing industry [8], aerospace industry [9,10], electrical engineering [11,12], are reported
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in literature. Predictive maintenance (PdM) aims at setting efficient, just-in-time and just-
right maintenance interventions guided by the PHM outcomes. Although RUL gives,
in principle, the information needed for PdM, the implementation of PdM in real-world
businesses is challenged by practical issues related to:

• the prediction of the equipment RUL, which must consider its relation with the O&M
decisions and the dynamic management of the equipment based on the prediction
of its future degradation evolution. For example, the RUL of the bearings of a WT is
influenced by the applied loading conditions, which, in turn, depend on the wind con-
ditions and the O&M decisions taken for optimal equipment usage while responding
to power demand. When predicting the RUL, the conditions of future equipment us-
age are generally assumed constant or behaving according to some known exogenous
stochastic process, with no consideration given to the intertwined relation of RUL and
O&M decisions. This does not reflect reality and the RUL predictions that guide the
O&M decisions are deemed to be incorrect [13] and can lead to sub-optimal decisions.

• the use of the RUL prediction for taking maintenance decisions. Maintenance is
typically performed when the predicted RUL is below a threshold defined with some
margin [14]. However, the use of a single RUL threshold for multi-unit systems, such
as wind farms of WTs, does not allow considering the possibility of anticipating main-
tenance interventions to avoid situations in which several units have RUL below the
threshold at the same time but cannot be all maintained given the limited number of
available maintenance crews, or to exploit the opportunity of performing maintenance
when low power production is expected, i.e., low wind speed, or required because of
low energy demand.

To address the above issues, a new formalization of the O&M management problem of
wind farms with multiple maintenance crews is proposed in terms of a Sequential Decision
Problem (SDP). In SDPs, the goodness of a decision does not depend exclusively on the
single decision, i.e., the goodness of the state entered as consequence of the selected action,
but rather on the whole sequence of future decisions.

The SDP is solved by deep reinforcement learning (DRL) [15]. Reinforcement Learning
(RL) is a machine learning framework in which a learning agent optimizes its behaviour
by means of consecutive trial and error interactions with a white-box model of the system
to find the optimal policy [16], i.e., the function linking each system state to the action
that maximizes a reward. RL has been shown to be suitable to solve complex decision-
making problems in many fields [17,18], such as robotics [19], healthcare [20], finance [21]
and energy [22–25]. In principle, tabular RL algorithms allow finding the exact solution
of SDPs [15]. However, in most cases, their computational cost is not compatible with
realistic applications to complex systems, such as for O&M optimization in wind farms.
For this reason, we resort to DRL, using deep artificial neural networks (DANNs) to find an
approximate solution to the optimization problem. In particular, we adopt proximal policy
optimization (PPO) [26], which is a state-of-the-art approach for DRL implementation.
The main contributions of the developed method in comparison to those already developed
for O&M in wind farms are:

• the effective use of RUL predictions for O&M optimization in wind farms with
multiple crews;

• the possibility of accounting for the influence on the future evolution of the system of
the dynamic environment and the effects of the O&M actions performed.

The proposed approach is validated comparing the identified maintenance policy
with other literature maintenance strategies, e.g., corrective, scheduled and predictive
maintenance strategies. To guarantee the fairness of the comparison, all strategies parame-
ters, e.g., maintenance period and degradation threshold for the scheduled and predictive
strategies, respectively, have been optimized with the objective of maximizing the profit.
This work is an extension of a previous study presented in [27], where PPO is applied
to O&M optimization in wind farms. The problem statement is enlarged to consider the
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case in which more than one maintenance crew are available. This situation is common
in large wind farms composed of hundreds of WTs and requires the development of ad
hoc solutions given the complexity of the optimization problem related to the exponential
increase of dimensionality of the search space. Several new experiments are performed to
study the variability of the performance as a function of the availability of maintenance
crews, the WTs failure rate and the maintenance interventions cost and the results are
compared to state-of-the-art O&M strategies.

The structure of the paper is as follows. In Section 2, we introduce the problem
statement. In Section 3, we discuss its formulation as a SDP, we provide a brief overview
on RL and we describe the RL algorithm adopted in this work. In Section 4, the wind farm
considered in the case study is described and the results are discussed in Section 5 with an
analysis of the robustness of the proposed method to different parameters settings. Finally,
conclusions are drawn in Section 6.

2. Problem Statement

We consider a wind farm of L identical WTs, independently degrading. For each
WT l ∈ Λ = {1, . . . , L}, the probability density function (pdf) of the failure time Tl is
known. The maintenance of the WTs is managed by a fixed number, C, of maintenance
crews. The time horizon TM is discretized into NTM decision times and at each decision
time t, a maintenance crew c, c ∈ Γ = {1, . . . , C}, can: (i) reach the l-th WT and perform
Preventive Maintenance (PM), if the component is not failed, i.e., t < Tl , (ii) reach the l-th
WT and perform corrective maintenance (CM), if the component is failed, i.e., t ≥ Tl , or (iii)
reach the depot, H, and wait for the next decision time.

The downtimes of the WTs due to PM and CM actions, ΠPM and ΠCM, are ran-
dom variables obeying known probability density functions fΠPM and fΠCM , respectively.
The downtime of a PM action is expected to be on average shorter than that of a CM, as all
the maintenance logistic support issues have already been addressed [28]. The costs of
the preventive and corrective maintenance actions on each WT are UPM and UCM, respec-
tively. They include: (i) the cost of material, i.e., the cost of the equipment needed for
the maintenance activity, (ii) the variable component of the cost of labour, which directly
depends on the number of maintenance interventions and (iii) the cost of transportation
of the maintenance crew from the depot to the WT of interest, which is a function of the
distance between the depot and the WT. Since the distances between the depot and the
different WTs are typically of the same order of magnitude, in this work we assume that the
cost of transportation to be constant. Notice that the fixed components of the maintenance
costs, which do not depend on the number of maintenance interventions performed, such
as the monthly salary paid to the maintenance crews, are not considered in UPM and UCM.
The power production of each WT is strictly related to the environmental conditions, since
a too low wind speed does not allow the turbine blades to start rotating and in case of too
large wind speed the WT is disconnected to avoid catastrophic failures.

Each WT is equipped with a PHM system for predicting its RUL. At any time t, we
indicate the ground-truth RUL of WT l ∈ Λ as:

Rl(t) = Tl − t (1)

and the RUL estimate R̂l(t) by:

R̂l(t) = Tl − t + εR (2)

where εR ∼ N(0, σR) is a Gaussian noise, which represents the error affecting the RUL prediction.
The ratio between the power production of the l-th WT at time t and the absolute

maximum possible power production of the WT is here indicated by Pl(t). We assume to
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have available a model predicting at any time t, the present, P̂l(t), and future, P̂l(t + j),
j = 1, . . . , J power productions, with prediction error εP ∼ N(0, σP):

P̂l(t + j) = Pl(t + j) + εP j = 0, . . . , J (3)

At any time t, the revenue generated from the total system production, ∑L
l=1 K× Pl(t),

is indicated as Gt, being K the maximum revenue per WT, in arbitrary units.
The objective of the work is to define the optimal O&M policy, π∗, i.e., the optimal

sequence of future maintenance actions to be performed by the C maintenance crews at
every decision instant t so as to maximize the system profit, i.e., the difference between
revenues and O&M costs, over the time horizon TM.

Notice that the O&M costs considered in the computation of the profit do not include
the fixed component of the maintenance costs, U f which are proportional to the number of
hired maintenance crews, i.e., U f = C×Ucr, where Ucr is the fixed component of the cost
of labour per hired crew. Then, here, the number of hired maintenance crews C is not a
variable that can be changed at a given decision time t, but rather it is kept constant during
the whole life of the wind farm. Thus, the profit cannot be used to compare O&M policies
with different numbers of maintenance crews.

3. Methods

Figure 1 shows the schematic representation of the proposed approach for O&M
optimization. First, the method requires the acquisition of the data needed to build a
model of the environment. Then, the problem is formulated as a SDP and the state space,
the action space and the reward function are defined. The next step is the development
of, which requires the definition of the DANN architecture and its training by means of
imitation learning and RL. After the optimal O&M policy has been discovered, it can be
deployed to the real-world system.

Section 3.1 formulates the problem as a SDP and Section 3.2 describes the adopted
optimization method.

Figure 1. Schematic representation of proposed approach.

3.1. Problem Formulation

Since the goodness of an O&M action does not depend exclusively on the state
the environment enters as the result of the decision taken at the present decision instant,
but rather on the whole sequence of states entered, performed actions and obtained rewards
throughout the long-time horizon, the problem is here formulated as a SDP.



Energies 2021, 14, 6743 5 of 17

Sections 3.1.1–3.1.3 define the state space, the action space and the reward function.

3.1.1. State Space

In SDP, the state space contains the information about the system and its environment
which can influence the decision. In this work, we consider relevant for the optimization
of the wind farm O&M: (a) the predicted RULs of the L wind WTs provided by the
PHM systems, R̂t = [R̂1(t), . . . , R̂L(t)], (b) the prediction of the WTs power production
for the current and J following days, P̂t = [P̂1(t + 1), . . . , P̂L(t + 1), P̂1(t + 2), . . . , P̂L(t +
2), . . . , P̂1(t + J), . . . , P̂L(t + J)]; notice that the use of the future power production values
within the optimization allows predicting the loss of revenue in case of maintenance or
failure, which is a key driver of the overall costs, (c) the time interval needed to complete
the current maintenance action on each WT, MTt = [MT1, . . . , MTL], which are related to
the time at which the maintenance crews will be available again and (d) the current time t.
The system state at time t is, then, defined by the vector st = [R̂t, P̂t, MTt, t] ∈ R(3+J)·L+1.

3.1.2. Action Space

The available O&M decisions are organized in the vector A = [a1, . . . , aL+1], where
al , l = 1, . . . , L, indicates that the destination of the selected maintenance crew is component
l, whereas the last action corresponds to the decision of sending the maintenance crew
to the depot. At every time t, a decision is taken about the next destination of each
maintenance crew. Namely, the learning agent returns as output a vector at = [a1, . . . , aC] of
C destinations, one per crew. If one of the L units is selected as destination, the maintenance
intervention (preventive or corrective) starts as soon as the crew reaches the unit, whereas
if the depot is selected, the crew will start waiting for a new assignment as soon as it arrives
at destination. When a maintenance operation starts, the corresponding component is
stopped and its power production becomes 0.

3.1.3. Reward Function

At every decision instant t, the decision maker receives a reward rt defined by:

rt = Gt − Xt (4)

where

Xt =
L

∑
l=1

UPM × IRl(t)>0 × Ial∈at + UCM × IRl(t)=0 × Ial∈at (5)

is the maintenance costs at time t, being IRl(t)>0 and IRl(t)=0 two boolean variables rep-
resenting the type of maintenance action performed on the l-th component at time t and
being Ial∈at a boolean variable representing if one of the C maintenance crews has been
assigned to the maintenance of the l-th component at time t.

3.2. Reinforcement Learning

RL is a branch of machine learning in which a learning agent interacts with an envi-
ronment to optimize a reward, i.e., a feedback that the environment gives to the agent. RL
is based on the psychology principle known as “Law of Effect”, according to which actions
that provide positive effects in a particular situation will more probably be performed again
in that situation and actions that provide negative effects will less probably be performed
again in that situation [15]. The general algorithm of RL is shown in Figure 2. The agent is
the decision maker and the environment is everything the agent can interact with. At every
step, the agent observes the state of the environment and selects the action to be performed.
Every action the agent takes causes the transition of the environment to a new state and the
computation of a reward that is provided to the agent and can be used to update the policy,
i.e., the function used to select the actions. The learning process is iterated to discover the
policy which allows the maximization of the overall reward value [15].
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Figure 2. Schematic representation of reinforcement learning.

Several algorithmic implementation of RL have been proposed in literature. They can
be divided into the three groups of value function, policy search and Actor–Critic methods [29].
Value function methods learn the value of being in a particular state and, then, select the
optimal action according to estimated state values. They are usually characterized by slow
convergence rate and fail on many simple problems [26]. A well known example of a value
function method is Deep Q-Networks (DQN) [30], in which a deep neural network is used
to approximate the value function.

Policy search methods directly look for the optimal policy by learning a parameterized
policy through which optimal actions are selected. The update of the policy parameters can
be performed by means of gradient-free methods, e.g., evolutionary algorithms, or gradient-
based methods, e.g., REINFORCE algorithms [31]. Even if these methods have been shown
to be effective in high dimensional or continuous actions spaces, they typically suffer from
large variance in the estimates of the gradient and tend to converge to local optima [16].

Actor–Critic methods learn both the value function and the policy in an attempt of
combining the strong points of value function and policy search methods [29]. Actor–Critic
methods consist of two models: the actor model carries out the task of learning the policy
by selecting the action to be performed in every environment state, whereas the critic
model learns to evaluate whether the action taken by the actor leads to a better or a worse
state of the environment and gives its feedback to the actor, allowing updating the current
policy and selecting improved actions.

In this work, we have employed proximal policy optimization (PPO) [26], which is an
Actor–Critic method. In PPO, an estimator of the gradient is computed by differentiating a
surrogate objective defined as the minimum between an unclipped and a clipped version
of a function of the reward [26]. The minimum is used to define a lower, i.e., pessimistic,
bound on the unclipped objective and the clipping is used to penalize too large policy
update, avoiding second-order approximations of a constraint, as in Trust Region Policy
Optimization (TRPO) [32]. PPO has been chosen among the possible RL algorithms
since, despite its relative simplicity of implementation, it has been shown to outperform
many state-of-the-art approaches in several research fields such as computer science [26],
autonomous transportation [33] and robotics [34].

When the state space is very large, it can be hard for the agent to find the optimal
action to be performed in every state, starting from a random initialization of the neural
network weights. This problem can be tackled by exploiting domain knowledge to lead
the learning process. One popular approach to do this is reward shaping [35], which consists
in building an ad hoc reward function to provide frequent additional feedback on suitable
actions, so that promising behaviors can be discovered in the early stages of the learning
process. A drawback of reward shaping is that it requires the tuning of the reward function
parameters, which, if not properly performed, can lead to unexpected outcomes. Another
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possible approach is state-action similarity solutions [36], which is inspired by construc-
tivism and allows including the domain knowledge by engineering state-action similarity
functions to cluster state-action pairs. In this work, we resort to imitation learning [37],
which consists in providing the agent some demonstrations of a state-of-the-art policy
and initially training the agent to reproduce it by means of supervised learning. We have
selected imitation learning since it facilitates the problem of teaching complex tasks to a
learning agent by reducing it to the one of providing demonstrations, without the need
for explicitly designing reward functions [37]. Then, RL is used to conclude the learning
process, allowing the improvement and the fine-tuning of the learnt policy.

4. Case Study

We consider a wind farm composed of L = 50 identical WTs equipped with PHM
capabilities and operating over a time horizon TM = 1000 days. The failure time, T, of each
WT is sampled from an exponential distribution with failure rate λ f = 6.58 10−3 days−1,
obtained by modeling the WT as a series equivalent of sub-systems, whose failure rates are
set equal to the values reported in [38]. The predicted RUL, R, is estimated at each time
according to Equation (2), assuming σR = 5 days.

Searching for the optimal O&M policy by performing real interactions of the learning
agent directly with the wind farm is practically unfeasible for economic, safety and time
issues [15]. In fact, due to the trial-and-error nature of the learning process, the agent
would need to perform several times the actions suggested by the algorithm in order
to explore their outcomes, and this leading to economically inconvenient and unsafe
system management in the early stages of the learning process, when they are still not
optimal. For this reason, the learning agent is trained on simulated power production data,
without (negatively) affecting the real production process during the optimality search.
The main characteristics of the real power productions, i.e., the periodicity of the wind
speed and its stochasticity, are represented by:

Pl(t) = clip(0.65 sin
(

2πt
τ

)
+ 0.5 + εw, 0, 1) (6)

where εw ∼ N(0, σw), σw = 0.35, τ = 24 days and clip(. . . , 0, 1) identifies the clipping
operation to values between 0 and 1. The sin function allows representing the of the
wind speed and the noise εw its stochasticity, whereas the clipping operation has been
introduced to keep the value in the range [0, 1]. Since the time step, t, used in this work
is 1 day, Equation (6) describes the monthly periodicity of the wind speed, whereas it
neglects the daily and yearly periodicity. This is justified by the fact that the daily and
yearly periods are respectively too small and too big to influence the decisions which are
taken each day. Also, although the time evolution of the wind speed is more complex
than a sinusoidal function with an added Gaussian noise, the approximation taken allows
showing the capability of the method to deal with variable environmental conditions.
Notice that the same learning agent can be applied to more complex models of the wind
speed or to real wind speed data of a specific existing plant. Since the learning agent does
not receive in input information on the wind speed periodicity, but only the prediction of
the power production obtained by applying Equation (3), the overall performance of the
method is not expected to be significantly affected by approximating the wind speed using
Equation (6). For this reason, future work will be developed to consider more advanced
models of the power production, such as a Markovian model [39] whose parameters can be
identified using real production data. At every decision time t, the value of the predicted
power production for the present and next j days, with j ∈ {1, . . . , J}, is set according to
Equation (3), where σP = 0.03 and J = 2 days. Figure 3 shows a simulated trajectory of the
power production obtained using Equation (6) and the corresponding values predicted
one step ahead using Equation (3). Considering the two trajectories at a generic time
τ + 1, the former represents the ground-truth production at time τ + 1, which is unknown
at the present time τ, whereas the latter represents the prediction of the production at
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time τ + 1, which is the only information that can be used by the learning agent for the
decision of the action to be performed. Notice that the mismatch between the two curves
is due to the predicting error, which, in this work, has been modeled with a Gaussian
noise. A limitation of this modeling choice is that the prediction error is not expected to be
time-independent, since the model prediction error has been shown to vary substantially
with different environmental conditions, e.g., between winter and summer [40,41].

In this work, we perform three experiments changing the number of available mainte-
nance crews C ∈ Ω = {1, 2, 3}.

Figure 3. Comparison between true and predicted power production.

The maintenance times are sampled from exponential distributions with repair rate
λPM = 2.94 days−1 and λCM = 1.83 days−1, for preventive and corrective maintenance,
respectively.

Finally, the income K is set equal to 96, whereas the cost of PM and CM actions are
UPM = 180 and UCM = 2247 [42], all in arbitrary units.

We resort to a feedforward neural network characterized by 2 hidden layers of 64 neu-
rons each, as learning agent. The imitation learning step is performed by simulating
500 predictive maintenance trajectories and training the learning agent for 40 epochs.
The PPO clipping hyperparameters is set equal to 0.2 and training lasts for a total of
106 time steps using 8 actors in parallel. The computations have been performed on two
Intel® Xeon® CPUs at 2.30 GHz with 13 GB of RAM using Python.

5. Results

The proposed RL-based policy is validated by means of the comparison with the
following three state-of-the-art maintenance strategies:

• corrective—maintenance interventions are performed exclusively after a turbine failure;
• scheduled—maintenance interventions are scheduled at regular intervals;
• predictive—maintenance interventions are performed when the turbine RUL prediction

is smaller than a user-defined threshold.

The scheduled and predictive maintenance strategies require the setting of the time
interval between two consecutive maintenance interventions and the RUL threshold,
respectively, This is done by optimizing the wind farm profit over 250 episodes using the
Tree-structured Parzen Estimator (TPE) algorithm [43].

The performance of the considered strategies are evaluated by performing 100 test
episodes characterized by different random initializations of the WT health states. The av-
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erage value and standard deviation of the profit over 100 episodes are reported in Table 1,
in arbitrary units. First of all, notice that the predictive and RL policies provide better
performances than the corrective and scheduled maintenance policies, which are the main-
tenance strategies most commonly applied to wind farms [44–48], with a 40% increment of
the profit when the RUL predictions provided by the PHM systems are used. The sched-
uled maintenance is characterized by performance similar to corrective maintenance, due
to the exponential behavior of the WTs failure times. The proposed RL policy outper-
forms the predictive maintenance strategy of about 3% when a single maintenance crew
is available, whereas the gain becomes lower when the number of available maintenance
crews increases. This result confirms that the proposed method is able to optimize the
O&M policy in the most challenging situation of limited crew-availability. Also, the pro-
posed method allows obtaining with one crew the same profit obtained by the predictive
maintenance strategy with three crews, which indicates that the RL policy allows a more
effective management of the single maintenance crew than the other maintenance strategies.
Also, since in this work the costs related to the crews employment and management have
been neglected, the reduction of the maintenance crews allows remarkably reducing the
overall costs.

Table 1. Performance of the tested policies in terms of average profit over 100 test episodes.

Maintenance Policy Average Profit, C = 1 Average Profit, C = 2 Average Profit, C = 3 Computation Time [s]

Corrective (1.60 ± 0.04) × 106 (1.60 ± 0.05) × 106 (1.60 ± 0.04) × 106 0.00
Scheduled (1.60 ± 0.04) × 106 (1.59 ± 0.04) × 106 (1.59 ± 0.04) × 106 2.05 × 103

Predictive (2.22 ± 0.02) × 106 (2.26 ± 0.01) × 106 (2.28 ± 0.01) × 106 2.07 × 103

Proposed approach (2.28 ± 0.01) × 106 (2.28 ± 0.01) × 106 (2.28 ± 0.01) × 106 1.22 × 104

The last column of Table 1 reports the computation times needed for the optimization
of the selected maintenance strategies. The computation time of the proposed method,
which requires the training of a deep neural network, is an order of magnitude larger than
the time needed for the optimization of the other policies, which only require the execution
of the TPE algorithm. Notice, however, that, once the PPO has identified the optimal policy,
i.e., the learning agent has been trained, the proposed method can be applied in almost real
time to obtain the action to be performed given the environment data.

Notice that the proposed approach can be used to estimate the optimal number of
maintenance crews, C∗, to be employed by a wind farm. This requires to:

• Repeat the training and test of the learning agent with different number of mainte-
nance crews, C, and estimate the corresponding Pro f it(C);

• Find the optimal number of maintenance crews, C∗, as:

C∗ = argmaxC(Pro f it(C)− C×Ucr) (7)

Figure 4 shows the number of maintenance interventions performed by predictive
and RL-based maintenance policies as a function of the RUL. Even if the RL agent has been
pre-trained in the imitation learning phase using the predictive policy, the RL agent tends
to postpone preventive maintenance interventions with respect to predictive maintenance,
which has to anticipate the maintenance interventions to avoid failures caused by the
unavailability of the maintenance crews (Figure 4). Notice the truncated distribution of
the intervention times of the predictive maintenance strategy, which is due to the fact
that the method optimizes the threshold on the RUL prediction, i.e., the time at which
the intervention is required. The distribution shows that in many cases the maintenance
interventions are postponed due to the unavailability of maintenance crews and, therefore,
performed when the RUL is smaller than the threshold. The distribution is also influenced
by the RUL prediction error, which causes a small mismatch between the real RUL and
the predicted one. The distribution of the intervention times of the proposed method is
instead more symmetric due to the fact that the RL policy is not based on the definition of
a threshold on the RUL but on a combination of different factors. In particular, the right-
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hand tail is caused by maintenance opportunities generated by the prediction of low
power production for the next days, which can be exploited by anticipating maintenance,
whereas the left-hand tail is caused by the maintenance crew unavailability, as for the
predictive maintenance.

Figure 5 shows the number of maintenance interventions performed as a function of
the current power production, normalized by the number of times each power production
value is verified, in the case of C = 1 maintenance crew. Differently from the predictive
policy, the RL-based policy shows a dependence between the number of interventions
and the power production (Figure 5). As expected, the largest number of interventions is
performed when the power production will be low. Figures 6 and 7 show the number of
maintenance interventions as a function of RUL and power production, considering the
availability of C = 3 maintenance crews. In this case, the two policies are very similar with
respect to the dependence on the RUL.

Finally, we propose a comparison with the ideal, non-realistic, case in which the PHM
system predicts the exact RUL, without any error, i.e., σR = 0 days. Independently from the
number of available maintenance crews, the achieved profit is around 2.34× 106, which is
just 2% higher than the one achieved by RL in presence of error in the RUL prediction. This
shows the capability of O&M policy of managing the prediction errors of the PHM systems.

Figure 4. Number of maintenance interventions at different RUL values, with C = 1.

Figure 5. Number of maintenance interventions at different power production values, with C = 1.
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Figure 6. Number of maintenance interventions at different RUL values, with C = 3.

Figure 7. Number of maintenance interventions at different power production values, with C = 3.

5.1. Analysis of the Robustness of the O&M Policy with Respect to Variation of the WTs Failure
Rate and Maintenance Costs

We investigate the effect of modifications of the WTs failure rate (Section 5.1.1) and of
the preventive maintenance cost (Section 5.1.2) on the selection of the optimal O&M policy.
In both cases, two different studies are performed, as follows:

1. the first study is performed without re-training the learning agent, so as to assess the
robustness of the O&M policy with respect to the unavoidable mismatch between the
estimation of the environment characteristics, which are used for the policy definition,
and the real environment to which the policy is applied;

2. the second study is performed with re-training of the learning agent, so as to assess
the capability of the proposed method of identifying the optimal O&M policy in
different environments.

5.1.1. Dependence on WTs Failure Rate

Figure 8 shows the average profit obtained in the study (1) by the considered policies
as function of the WTs failure rate over the test episodes. Similarly to what has been
done for the proposed method, also the threshold of the predictive maintenance policy
has not been re-optimized. As expected, the larger the WTs failure rate, the smaller is the
profit for all the maintenance policies. Most importantly, the performance of the proposed
method remains the most satisfactory and more robust with respect to variations of the
WTs failure rate. This is due to the fact that the system state vector, which contains the WTs
RULs, implicitly informs the learning agent about the true WTs failure rates. Furthermore,
as shown in the previous Section, the policy discovered by the proposed method does not
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exclusively rely on the WTs RULs, but rather on the combinations of different aspects, such
as the exploitation of opportunities of low power production, that make the policy more
robust to variations of the real WTs failure rate.

Figure 8. Performance of the considered policies in terms of average profit as a function of the WTs
failure rate in the test episodes with C = 1 (a), C = 2 (b), and C = 3 (c), without re-training.

With respect to the study (2), the cases in which the failure rate is half and double of
the value considered in Section 4 (λ f = 3.29× 10−3 days−1 and λ f = 1.31× 10−2 days−1,
respectively) have been considered. Since the results of Section 5 have highlighted that the
most interesting case is the one characterized by limited maintenance crew availability, we
limit the analysis to the case with one maintenance crew available (C = 1). Similarly to what
has been done in this case for the proposed method, the threshold of the predictive mainte-
nance policy has been re-optimized. The obtained performances are shown in Figure 9. It
can be noticed that the proposed method outperforms the predictive maintenance policy
when the failure rate is doubled, whereas it obtains a performance very similar to the
predictive maintenance policy when the failure rate is halved. This is due to the fact that
when the failure rate is small, the maintenance costs are remarkably reduced, and, therefore,
the profit is less influenced by the maintenance cost.

Figure 9. Performance of the considered policies in terms of average profit over 100 test episodes,
considering C = 1 maintenance crew and different values of preventive maintenance cost UPM,
with re-training.
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5.1.2. Dependence on Preventive Maintenance Cost

We repeat the analysis of Section 5.1.1 considering the preventive maintenance cost
parameter. Figure 10 shows the average profit obtained in the study (1) as function of the
preventive maintenance cost. As expected, the larger is the cost, the smaller is the profit for
all the maintenance policies. Most importantly, the performance of the proposed method
remains the most satisfactory and more robust with respect to reductions of the preventive
maintenance cost, whereas the profit rapidly decreases as the cost increases, independently
of the number of maintenance crews available. This is because the preventive maintenance
cost is only contained in the reward function (Equation (5)) and, therefore, the learning
agent is unaware of its variation during the test episodes. Then, the outcome of this study
highlights the importance of correctly estimating the cost of the maintenance interventions
before training the learning agent, since incorrect values can lead to sub-optimal O&M
policies. In the study (2), we consider the cases in which the preventive maintenance cost
is one tenth and ten times the value considered in Section 4 (UPM = 18 and UPM = 1800,
respectively). The obtained performances are shown in Figure 11. Since the learning
agent is now aware of the correct value of the preventive maintenance cost, the proposed
approach slightly outperforms the predictive maintenance policy for all the considered
cost values. These results show the capability of the proposed approach to converge to an
optimal policy, particularly if the correct value of preventive maintenance cost is provided
during training.

Figure 10. Performance of the considered policies in terms of average profit as a function of preventive
maintenance cost in the test episodes with C = 1 (a), C = 2 (b), and C = 3 (c), without re-training.
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Figure 11. Performance of the considered policies in terms of average profit over 100 test episodes,
considering C = 1 maintenance crew and different values of WTs failure rate λ f , with re-training.

6. Conclusions

In this paper we have developed a PPO-based approach for the optimization of
the O&M policy of WTs equipped with PHM capabilities, in wind farms with multiple
maintenance crews available. A deep neural network is trained to learn the best action to
be performed at each decision instance, considering all the available information about the
system and its environment.

The proposed approach has been tested on a wind farm and has been shown to pro-
vide an O&M policy which outperforms state-of-the-art policies. The effectiveness of the
identified policy is confirmed by the fact that in case of a limited number of available main-
tenance crews it provides similar total plant power production of scheduled and predictive
maintenance strategies relying on more maintenance crews. Then, the application of the
proposed approach to wind farms is expected to allow improving the total profit over the
plants lifetime, reducing the use of resources needed for maintenance.

The effect of the variations of two critical parameters for the definition of the main-
tenance policy, i.e., the WTs failure rate and the preventive maintenance cost, has been
investigated. The obtained results have shown that the proposed approach is robust
with respect to variations of WTs failure rate and it less affected then other maintenance
methods by error in the WTs failure rate estimations, especially when few maintenance
crews are available. On the other side, a correct estimation of preventive maintenance
cost is needed to properly set the O&M policy since small variations of the preventive
maintenance cost have been shown to induce a remarkable decrease of the performance.
Also, the applicability of the proposed method to a large set of possible environments has
been confirmed.

Future work will consider the application of the proposed approach to systems charac-
terized by more complex environments. In particular, the WTs will be modeled as complex
engineering systems composed of several interacting components, each one characterized
by different degradation behaviour, failure severity and impact on the power production.
Also, real wind speed data will be used to estimate the power produced by the wind farm
and new environment parameters, such as the power demand, will be added to the state
space. Finally, a study to identify the optimal number of maintenance crews for the wind
farm O&M management will be conducted.

On the other hand, logistics decisions need to be intertwined with Operation and
Maintenance (O&M) decisions.

Intuitively, the PHM estimations can be used to optimize the decisions on the unit
Operation and Maintenance (O&M), which, in turn, influence the equipment degradation
evolution itself [13]. This brings big opportunities, because the optimization of the O&M
strategy allows optimizing the of the system. Improvement of logistics is among the main
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expected benefit from prognostics and health management (PHM): the knowledge of the
remaining useful life (RUL) allows organizing logistics for providing the right part to
the right place at the right time. This is fundamental for setting efficient, just-in-time
and just-right maintenance strategies, with consequent reduction of system downtimes.
The logistic issue is emphasized in case of facilities spread across large areas, with whether
conditions constraining the maintenance items reachability, such as off-shore Wind turbine
plants (OSWTP). Although the benefit of PHM to reduce logistics-related downtime is
intuitive,

An O&M strategy is optimal only if it yields the largest benefit in terms of safety and
economics. Since the decision taken at the present time will influence the system state at
the next time, RL considers the O&M decision taken at the present time to be optimal only
if an optimal decision will be taken also at the next decision time. By iteratively applying
this reasoning, the sequence of decisions generating the expected maximum profit can
be defined.
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