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Abstract: The Agrophotovoltaic (APV) system is a novel concept in the field of Renewable Energy
Systems. This system enables the generation of solar energy via photo-voltaic (PV) modules above
crops, to mitigate harmful impact on food production. This study aims to develop a performance
evaluation model for an APV system in a temperate climate region, such as South Korea. To this end,
both traditional electricity generation models (solar radiation-based model and climate-based model)
of PV modules and two major machine learning (ML) techniques (i.e., polynomial regression and deep
learning) have been considered. Electricity generation data was collected via remote sensors installed
in the APV system at Jeollanam-do Agricultural Research and Extension Services in South Korea.
Moreover, economic analysis in terms of cost and benefit of the subject APV system was conducted
to provide information about the return on investment to farmers and government agencies. As a
result, farmers, agronomists, and agricultural engineers can easily estimate performance and profit
of their APV systems via the proposed performance model.

Keywords: Agrophotovoltaic; photovoltaic; renewable energy; energy system; machine learning

1. Introduction

Solar energy generated by photovoltaic (PV) modules has received worldwide atten-
tion for decades. As most countries, including the U.S., Japan, China, and U.K., have tried
to reduce greenhouse gas (GHG) emission, solar energy is becoming even more popular [1].
According to Pehl et al. [2], solar energy generates 6 kg CO2-e/MWh, which is a signifi-
cantly less amount of carbon dioxide equivalent (CO2-e) than existing energy sources, such
as coal (109 kg CO2-e/MWh) and natural gas (78 kg CO2-e/MWh). To accelerate the use
of solar energy, the Korean government provides a Renewable Energy Certificate (REC)
of $0.11 per kWh, in addition to the System Marginal Price (SMP) of $0.07 per kWh in
2020 [3–5]. Similarly, the U.S. tries to charge $0.025 per kg CO2-e as GHG emissions [6].
The monetary support has made solar energy competitive, even though its profit is lower
than from other existing energy sources.

Due to the government’s persistent efforts, the production quantity of solar energy
was 1977.1 thousand toe, which is 11.08% of the total production quantity of renewable
energy (i.e., 17,837.5 thousand toe) in 2018 in South Korea [7]. In 2020, 16% of 129,191 MW
were renewable energy related power plants, and 71% of 20,545 MW were solar energy-
based power plants with PV modules [8]. Although this is outstanding progress to reduce
the GHG emissions in the future, there was a serious side effect on the environment in
South Korea. To be more specific, due to the land shortage problem, small- and mid-size
solar power plants have been built on either farmlands or forests. Forests were ravaged and
farmlands were destroyed to achieve monetary benefits (i.e., SMP and REC) by producing
solar energy [9]. It is contradictory to destroy the environment for the production of
electricity via renewable sources.
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In fact, the countries (e.g., South Korea, Japan, and China) in Northeast Asia are
exposed to a relatively small amount of solar radiation during the day. In particular, South
Korea has a daily average global solar radiation of (11–13) MJ/m2, and a solar panel can
generate electricity for only 6.83 h per day on average [10]. This implies that considerable
land has to be used as solar farms (or PV farms). Note that solar farms only generate
electricity without cultivating crops. In fact, 425.04 km2 of land is needed to generate solar
energy of 32.2 GW, which is the goal of the Korean government. This is approximately
equivalent to 70% of land in Seoul, South Korea [11]. Due to the limited land to build
solar power plants, many farms have been transformed into solar power plants (or solar
farms) [9]. Regarding solar power efficiency, solar power plants have to be installed in the
southwestern region, where large-scale habitable area exists [12]. Since most lands in the
southwestern region have been used as farms, it is necessary to adopt the Agrophotovoltaic
(APV) system that generates solar power without causing serious harmful impact on the
food supply of South Korea. Unlike the existing PV farms, various crops can be cultivated
by having a tall pillar to support a solar module in the APV system (see Section 2 for more
detail). In 2020, Schindele et al., showed that an APV system with potato production in
Germany enables to make annual profit of €10,707/ha and its levelized cost of electricity
(LCOE) is 38% higher than that of a PV system [13]. Moreda et al., also showed that an APV
system with potato and tomato production in Spain in 2021 can be profitable to a farmer
with the minimum internal rates of return (IRRS) of 3.8% [14]. In addition, Kim et al.,
analyzed profits under six different structures of APV in terms of a shading ratio and a PV
panel type to identify an efficient structure of an APV system in South Korea in 2021 [12].
However, there is no study proposing a performance model for development of a profitable
APV system.

Thus, the goal of this study is to develop a performance evaluation model for an APV
system in South Korea. Two aspects in terms of electricity generation and crop production
are considered for the performance evaluation. In particular, estimation models of elec-
tricity generation from PV modules have been intensively investigated. Both traditional
electricity generation models (i.e., solar radiation-based model and climate-based model) of
PV modules and two major machine learning (ML) techniques (i.e., polynomial regression
and deep learning) have been considered. Polynomial regression and deep learning are the
most popular techniques in the field of ML, and other ML techniques are applications of
these techniques [15–17]. Moreover, cost–benefit analysis has been conducted regarding
both electricity generation and crop production to provide information about the return on
investment to farmers and government agencies. Electricity generation and crop growth
data were collected from June to October in 2020 via remote sensors installed in the APV
system at Jeollanam-do Agricultural Research and Extension Services in South Korea. As a
result, users (i.e., farmers, agronomists, and agricultural engineers) can utilize the proposed
model to estimate performance and profit of the APV system, and make a better informed
investment decision. Regarding that this study is the first study to develop the performance
estimation model for the APV system in terms of both aspects, it will contribute to design
and implementation of the system in the world. Furthermore, the proposed model is able
to balance energy needs as well as agricultural needs (e.g., food supply) by considering
both aspects. This will eventually contribute to the sustainable development of renewable
energy systems.

This paper is organized as follows. Section 2 addresses the major components and
characteristics of the APV system. In addition, the collected data from the subject APV
system in South Korea is analyzed. Section 3 introduces multiple estimation models
of the electricity generation of PV modules. Section 4 addresses experiments involving
modeling accuracy comparison and cost–benefit analysis. Section 5 presents the findings
and concludes the study.
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2. The Agrophotovoltaic System

The APV system is devised as an alternative to generate electricity from solar modules
without causing adverse impact on existing farmlands [12]. The concept of APV was pro-
posed by Getzberger and Zastrow [18], and it has been implemented in multiple countries,
including Germany, Japan, China, Italy, the U.S., France, Chile, and South Korea [12,19].
In addition to the continuous production of crops while solar energy is generated, the
APV system enhances land productivity, because the soil underneath the solar modules
is enabled to keep its moisture, so that soil organic matter can be preserved [20,21]. This
implies that the system can also contribute to saving water used for irrigation.

In general, the APV consists of solar modules, supporting structure, a power converter
system (pcs), a watt–hour meter, a grid-connected system, and farmland [19,22]. Although
its structure is quite similar to a general photovoltaic (PV) plant (or a solar farm), PV
modules in the APV system are installed at 2 m (or higher) above the ground [18]. If the
farm uses a small tractor (e.g., John Deere 4105) with height of 2.239 m [23], the APV should
have clearance height, which results in construction cost increase. Moreover, additional
smart farming devices (e.g., solar radiation sensors, temperature and humidity sensors,
and soil moisture sensors) are needed to enhance the productivity of the farm. Moreover,
until PV farms (or solar power plants) which only maximize electricity productivity, the
APV system must consider a shading ratio for crop production. This implies that accurate
cost–benefit analysis is needed to identify the profit of the APV system involving a farm,
as well as a solar power plant.

In this study, the APV system with an area of 4410 m2 (63 m × 70 m) at the Jeollanam-
do Agricultural Research and Extension Services in Naju-si (35.0161◦ N, 126.7108◦ E),
Jeollanam-do, South Korea, has been considered to conduct the cost–benefit analysis based
on its performance in terms of electricity generation and crop production (see Figure 1a).
The subject facility has three areas with monofacial PV modules (i.e., LG405N2W-V5):
(1) 787.5 m2 (31.5 m × 25 m) with shading ratio of 32%, 850.5 m2 (31.5 m × 27 m) with
shading ratio of 25.6%, and 567 m2 (31.5 m × 18 m) with shading ratio of 21.3%. The
height of the supporting structure and pillar cover is (5.42 and 0.81) m, respectively, so that
a small tractor (of less than 3 m height) can be used to cultivate crops [12]. To measure
the performance of the APV system, multiple sensors involving photosynthetically active
radiation (PAR), pyranometer (PYR), temperature and relative humidity (ATMOS14), wind
speed and direction (ATMOS22), tipping bucket rain gauge (ECRN-100), and soil moisture,
temperature, and electrical conductivity (TEROS 12) have been installed. A farm using the
APV system is operated and managed based on the real-time monitoring sensors. This is
known as smart farming. Table 1 presents the construction costs of the subject APV system.
The lifespan of the subject APV system is expected to be 25 years, which is widely adopted
or assumed in the solar power industry, and in the literature [24,25].

Table 1. Construction costs of the APV system (edited from Kim et al. [12]).

Data Type 21.3% 25.6% 32%

Number of solar modules (units) 35 56 70
Total construction cost ($) 17,370.72 27,793.14 34,741.43

Solar module cost ($) 4961.25 7938.00 9922.50
Structure cost ($) 8211.81 13,138.90 16,423.63

Electric distribution system cost ($) 3911.23 6257.97 7822.46
Other costs ($) 1 286.42 458.27 572.84

Unit construction cost ($/module) 496.31 496.31 496.31
Unit construction cost ($/ha) 153,180.91 163,392.97 220,580.51

1 The cost includes a building permit fee and a fee for linkage to an existing electric distribution system.

The subject farm is exposed to temperate climate, but the maximum temperature in
summer (June–August) is about 30.88 ◦C on average. Daily average electricity generation
per unit area of June, July, August, September, and October are (99.83, 74.95, 97.81, 81.73,
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and 88.37) kWh/m2/day, respectively. In fact, there is a monsoon season from late June
to mid-July, so that the electricity generation quantity of July is lower than other months.
Table 2 describes the climate information collected by sensors (e.g., PAR, ATMOS14, AT-
MOS22, and ECRN-100) installed in the APV system. In order to evaluate performance of
the APV system in terms of electricity generation and crop production, this study considers
major farming season (June to October) of the subject crops involving sesame, mung bean,
red bean, soybean, and corn. Note that PV and APV are inefficient systems to generate
electricity in Winter due to low solar radiation and heavy snow. As a result, this study only
considers the major farming season which can directly affect farmer’s economy.

Table 2. Observed climate data.

Month
Solar

Radiation
(MJ/m2)

Surface
Temperature
High (◦C) 1

Surface
Temperature
Low (◦C) 2

Precipitation
(mm)

Humidity
(%)

Windspeed
(m/s)

June 3.70 29.40 19.43 12.72 76.93 2.01

July 2.77 27.71 20.92 14.80 84.67 1.94

August 3.62 34.05 24.25 17.83 73.36 2.45

September 3.03 27.74 16.74 7.17 74.11 1.67

October 3.27 24.68 8.73 0.30 56.94 1.67
1 The highest air temperature; 2 the lowest air temperature.

Figure 1b reveals the daily electricity generation per unit area (kWh/m2/day). Under
the same climate (see Table 2), the electricity generation amount can vary according to
different sharing ratios (i.e., (21.3, 25.6, and 32.0)%). This is because the sharing ratio
increases as the number of installed PV modules per unit area (m2) increases. Under the
shading ratio condition of 32%, the APV system can have 1.50 times more PV modules
than the shading ratio condition of 21.3%. In Figure 1a, the gap between PV modules is
different under three shading ratio conditions.

Figure 1. Overview of the APV system: (a) APV with three different shading ratios; (b) Electricity generation by the APV
system. APV: Agrophotovoltaic.

Unlike electricity generation, the higher shading ratio decreases crop production.
Table 3 represents the grain yields of five crops in the APV system [12]. The numbers in
parentheses indicate loss (−) or gain (+) in yield, compared to the yield without shading.
Among the five crops, only the yield of corn increases under the shading condition of
21.3%. There is minor reduction of the production yields of sesame (Sesamum indicum) and
soybean (Glycine max) at the shading condition of 21.3%. On the other hand, mung bean
and red bean are inappropriate crops to be cultivated in the APV system, considering their
production yields.
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Table 3. Harvested grain yields (Mg/ha) of all five crops grown under four different shading
levels [12].

Crop Type
Shading Levels (%)

0 21.3 25.6 32

Sesame (Sesamum indicum) 0.96 0.89 (−7%) 0.83 (−14%) 0.45 (−53%)

Mung bean (Vigna radiata) 1.95 1.54 (−21%) 1.1 (−44%) 1.09 (−44%)

Red bean (Vigna angularis) 2.35 1.75 (−26%) 1.52 (−35%) 1.47 (−37%)

Corn (Zea mays) 8.09 8.56 (+6%) 6.4 (−21%) 5.63 (−30%)

Soybean (Glycine max) 3.64 3.15 (−13%) 2.88 (−21%) 2.54 (−30%)

3. Performance Estimation Modeling of an APV System

Although the APV system is a novel concept needing further studies, there are mul-
tiple estimation models of PV panels. In this study, to develop a reliable performance
estimation model of the APV system in terms of electricity generation and crop production,
traditional performance models of electricity generation of PV panels are investigated.
Sections 3.1.1 and 3.1.2 will address two major traditional estimation models of PV electric-
ity generation. Sections 3.1.3 and 3.1.4 will enhance existing electricity generation models
via ML techniques. Section 3.2 will introduce crop yield estimation models for five crops
such as sesame, soybean, red bean, mung bean, and corn.

3.1. Electricity Generation Models of a PV Module
3.1.1. Solar Radiation-Based Model

Equation (1) represents the most popular model to estimate solar energy (E, kWh)
based on three factors, namely daily solar radiation per unit area (S, kWh/m2/day),
capacity of a PV module per unit area (Pout, kW/m2), and efficiency of electricity generation
(k) [26,27].

E = S × Pout × k (1)

In addition, there is another estimation model (i.e., size-based model) based on the
size of PV module (A, m2) and operation hours (h) (see Equation (2)).

E = A × Pout × h (2)

Although these two models are simple enough to estimate the electricity generation of
PV panels, they tend to have low prediction accuracy. Nevertheless, due to their simplicity,
they are widely used to estimate the electricity generation of large-scale solar power plants.

3.1.2. Climate-Based Model

To overcome the limitation of the solar radiation-based model, the climate-based
model involving air temperature and windspeed was devised [27].

E = S × h(x, y)× Pout × k (3)

where, h(x, y) is a function of air temperature (x, ◦C) and windspeed (y, m/s).

h(x, y) = 742.9 + 176.5x + 3.562y − 13.14x2 − 0.7466xy − 0.151y2 (4)

In this study, the polynomial regression algorithm (see Section 3.1.3) is applied to
enhance the prediction accuracy of Equation (3). Under the given variables (i.e., x and y),
all coefficients have been calibrated with the training data set. Equation (5) represents the
revised function of Equation (4):

h(x, y) = 0.966 − 2.78 × 10−17x + 9.44 × 10−16y + 1.51 × 10−18x2 − 3.21 × 10−17xy − 3.82 × 10−18y2 (5)



Energies 2021, 14, 6724 6 of 13

3.1.3. Polynomial Regression Model

Polynomial regression (PR) is one of the most popular techniques in the field of ma-
chine learning (ML). Unlike the traditional linear regression, it uses any kind of polynomial
functions, such as quadratic, cubic, and quartic, so that a non-linear relationship can be
accurately captured [28]. Due to its flexibility, PR has also been applied to estimate the
electricity generation of PV modules used in the green roof system [29]. In addition, Mel-
lit et al. [30] also applied PR to estimate the electricity generation of PV modules, and
proved its modeling capability. The major advantage of PR is that it indicates the signifi-
cance of a predictor via its coefficient value [31]. Equation (6) represents the general PR
model [12]:

Y = g(X1, . . . , Xn) = β0 + f1(X1) + · · ·+ fn(Xn) + ε , ε ∼ N

(
0,

n

∑
j=1

σ2
j

)
(6)

f j
(
Xj
)
= β j1

(
Xj
)
+ β j2

(
X2

j

)
+ · · ·+ β jL

(
XL

j

)
, j = 1, 2, . . . , n (7)

where, f j
(
Xj
)

is a polynomial function on Xj, β0 = ∑n
j=1 β j0

(
X0

j

)
, X0

j = 1, and

∑n
j=1 β j0

(
X0

j

)
= ∑8

j=1 β j0. β j is a coefficient of Xj, and β0 is a constant. β j represents
the influence weight of Xj on response variable Y. In this study, seven variables are consid-
ered: (1) X1: daily solar radiation (MJ/m2); (2) X2: maximum daily temperature (◦C); (3) X3:
minimum daily temperature (◦C); (4) X4: daily precipitation (mm); (5) X5: daily humidity
(%); (6) X6: daily windspeed (m/s); and (7) X7: Shading ratio (%). These variables are
identified from existing models (see Sections 3.1.1 and 3.1.2) and literatures [12,19,22].

E = −147.38 + 27.16X1 − 9.61 × 10−2X2 + 1.03 × 10−2X2
2 − 1.67 × 10−4X3

2

+2.79 × 10−3X3 + 7.39 × 10−3X2
3 − 2.93 × 10−4X3

3 + 1.59 × 10−3X4

−3.02 × 10−4X2
4 + 1.11 × 10−6X3

4 + 5.15 × 10−1X5 − 8.23 × 10−3X2
5

+4.04 × 10−5X3
5 − 4.23 × 10−2X6 + 507.82X7

(8)

In Equation (8), most of the variables (except X1, X6, and X7) have non-linear relation-
ship with the electricity generation of PV modules. This implies that the traditional linear
regression model is inappropriate to estimate the electricity generation.

3.1.4. Deep Learning Model

Recently, Deep learning (DL), also known as a multi-layered neural network, has
attracted worldwide attention, due to its powerful capability, particularly in image process-
ing. It consists of multiple artificial neurons to process unstructured data, such as images,
sounds, and languages [32]. In fact, Barrera et al. [33] utilized the artificial neural network
(ANN) to model the solar power generated by a PV module, so that it is also possible to
use the DL for electricity generation modeling. Equation (9) represents the nth output at
layer L (aL

n) given by multiple hidden layers:

aL
n =

[
σ
(
∑m θL

nm

[
· · ·
[
σ
(
∑j θ2

kj

[
σ
(
∑i θ1

jixi + b1
j

)]
+ b2

k

)]
· · ·
]

m
+ bL

n

)]
n

(9)

In Equation (9), bl
n is bias with n nodes at l layer; θl

nm is a weight between l and l − 1
layers; and xi is an input node i. In this study, the variables identified in Section 3.1.3 are
considered for performance comparison between PR and DL models. The deep learning
algorithm given by DeepLearning4J library [34] has been used under the computing
environment of Intel Core™ i5-8250U CPU @1.60 GHz. The model is developed according
to four stages: (1) data preprocessing (or labeling), (2) parameter setting, (3) deep learning
modeling, and (4) model evaluation. Figure 2 shows a pseudo code for DL modeling with
the DeepLearning4J library.
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Figure 2. Pseudo code of DL with DeepLearning 4J library.

3.2. Crop Yield Estimation Model

This section uses the crop production data under the APV system addressed in
Section 2. Table 4 represents the results of analysis of variance (ANOVA). There exist
statistical differences between shading ratios, as well as crop types, because the p-values of
both comparisons in crop types and shading ratios are less than α = 0.05. This means that
the crop growth is influenced by the shading ratios, and their impact on crop growth can
vary according to crop type. Thus, we need to develop five crop growth models based on
the shading ratios.

Table 4. Comparison of crop growth with the four shading ratios of (0, 21.3, 25.6, and 32)%.

Source of Variation Sum of Squares Degrees of Freedom Mean Squares F 1 p-Value F Crit 2

Between shading ratios 104.73 4.00 26.18 99.51 4.29 × 10−9 3.26
Between crop types 4.38 3.00 1.46 5.55 1.26 × 10−2 3.49
Error 3.16 12.00 0.26
Total 112.28 19.00

1 The statistic is given by an F-distribution under the null hypothesis; 2 The critical Type-1 error at α = 0.05.

In this study, PR addressed in Section 3.1.3 is used, because the experiment only
considered four levels of shading ratios, i.e., (0, 21.3, 25.6, and 32)%. Given that the DL
requires a big data to achieve statistically reliable results [35], PR is more appropriate for
the modeling [31]. Equations (10)–(14) show the developed PR models.

Gsesame = 0.9579 + 2.6268XSR − 13.006X2
SR (10)

Gmungbean = 1.9569 − 1.8523XSR − 3.2175X2
SR (11)

Gredbean = 2.3529 − 3.5503XSR + 2.2487X2
SR (12)

Gcorn = 8.1208 + 15.488XSR − 75.119X2
SR (13)

Gsoybean = 3.6413 − 0.3176XSR − 9.8677X2
SR (14)

In Equations (10)–(14), Gsesame, Gmungbean, Gredbean, Gcorn, and Gsoybean denote yields of
sesame, mung bean, red bean, corn, and soybean, respectively. XSR is the shading ratio (%)
given by the APV system. Note that the yields should be greater than or equal to zero. The
R2 values of the sesame, mung bean, red bean, corn, and soybean models are (97.19, 90.54,
98.31, 83.57, and 99.72)%, respectively. Thus, we can conclude that the five PR models can
accurately capture the relationship between crop yields and shading ratios.

4. Experiments
4.1. Model Comparison

Figure 3 reveals the prediction results of electricity generation of the PV modules.
The prediction results shown in Figure 3a,b were estimated by Equations (1) and (2),
respectively. Because Equation (2) mainly considers the size and operating hours of the
PV module regardless of the strength of solar radiation, it can only capture the variability
associated with the capacity of the PV module per unit area (Pout, kW/m2) in Figure 3b.
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Samples from (1 to 130) were observed from PV modules with a shading ratio of 21.3%;
samples from (131 to 260) were observed from PV modules with a shading ratio of 25.6%;
and samples from (261 to 390) were observed from PV modules with a shading ratio of 32%.
Note that the larger sharing ratio has the larger electricity generation capacity per unit area
(m2). R2 of the size-based model is 22.53%. On the other hand, the solar radiation-based
model can consider the intensity of solar radiation during the day, which enables most of
the variability to be captured. Its R2 is 89.39%. To maximize the prediction performance
of the estimation model, parameter k in Equation (1) has been calibrated with a training
data set (i.e., 10% of the observed data), and its value is 0.9. Since the electricity generation
data was only observed during the summer season, the variability caused by other factors
was relatively insignificant in the data set. This results in the high prediction accuracy of
Equation (1).

Figure 3. Prediction results: (a) solar radiation-based model; (b) size-based model.

Figure 4 shows the prediction results of both climate-based model and polynomial
regression model. The climate-based model in Figure 4a uses the updated function of air
temperature (◦C) and windspeed (m/s) shown in Equation (5). R2 of the model is 94.23%.
Regarding the high prediction accuracy of the model, it is better to consider air temperature
and windspeed, in addition to the solar radiation used in Equation (1). Similar to the
climate-based model, the PR model addressed in Section 3.1.3 has high prediction accuracy
(see Figure 4b). The R2 value of the model is 92.99%. Although the PR model considers
more variables, it does not consider the interaction effect between air temperature and
windspeed (i.e., xy). That is why its R2 value is slightly lower than that of the climate-
based model. However, because the PR model can consider any multiple variables, it
has flexibility.

Figure 4. Prediction results: (a) climate-based model; (b) polynomial regression model.
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Figure 5 shows the prediction result of the DL model. The DL model is developed
based on the following parameters: (1) batch size: 100; (2) learning rate: 0.01; (3) loss
function: mean square error (MSE); and (4) weight initialization model: Xavier initialization.
Figure 5b reveals the prediction accuracy change over various conditions in terms of the
number of hidden nodes (m). As mentioned in Section 3.1.4, the structure of the DL model
can vary under the given parameters. In this study, we change the number of hidden nodes
in a neural network layer to identify the best prediction model of the electricity generation.
Under the given dataset, the DL model with eight nodes has been identified as the best
model; however, other models also provide high prediction accuracy in terms of R2. The
value range is between (93.60 and 96.42)%. Figure 5a shows the prediction result of the DL
model with R2 of 96.42%. Regarding the results shown in Figures 3 and 4, the DL model
can generate the best prediction model in terms of R2. Similar to the PR model, it has
modeling flexibility, because in the DL model, any variables can be considered.

Figure 5. Prediction results: (a) deep learning model with eight hidden nodes; (b) prediction accuracy.

4.2. Cost–Benefit Analysis

Figure 6 reveals the estimated profits given by electricity generation from PV modules
in the APV system. The electricity generation on daily average is estimated by the DL model
addressed in Section 3.1.4. The System Marginal Price (SMP) and the Renewable Energy
Certificate (REC) for solar energy considered in the estimation are $(0.07 and 0.11)/kWh,
respectively [3–5]. Also, we consider the electricity production cost of $0.15/kWh at the
100 kW solar power plant in South Korea [36]. Based on the cost and sales price information,
we assume that the most profitable case is $0.03/kWh from the electricity generation. In
Figure 6, five different unit profits from $(0.005 to 0.03)/kWh are considered to understand
the sensitivity of the unit profit to profit change. In the condition that the unit profit is
$0.005/kWh, the daily profit tends to increase linearly. On the other hand, when the unit
profit is $0.03/kWh, the daily profit increases exponentially as the shading ratio increases.

Figure 7 shows the estimation for the production of the five crops under the APV
system. As mentioned in Section 2, corn and sesame have received minor impact of shading
ratio on their growth. In particular, the shading ratio of less than 20% can increase crop
production of both crops according to the estimated result (see Figure 7a). Unlike corn and
sesame, production yields of the other three crops (i.e., mung bean, red bean, and soybean)
are almost linearly decreased as the shading ration increases.

Figure 7b shows the profits estimated by PR models in Section 3.2 (see Equations (10)–(14)).
The unit profits of sesame, mung bean, red bean, corn, and soybean are $(5.39, 5.06, 3.67,
1.42, and 2.68)/kg, respectively [12]. Although the unit profit of corn (i.e., $1.42/kg) is
lower than that of the other four crop types, corn has the highest yield among the five crop
types, so that its profit ($/m2) is higher than that of any of the other crops. Mung bean
and red bean are still profitable, due to their high unit profits (i.e., $(5.06 and 3.67)/kg).
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Soybean has the second highest productivity, so that it is recognized as the second most
profitable crop. On the other hand, sesame is the least profitable, due to its cheap unit price
of $2.68/kg, as well as low production yield.

Figure 6. Profit estimation with different shading ratios.

Figure 7. Estimation of crop production with different shading ratios: (a) yields of five crops; (b) profits of five crops.

Figure 8 reveals the total profits of the subject APV system involving electricity
generation and crop production. In Figure 8a, the unit electricity profit of $0.005/kWh is
considered to compute the total profit of the APV system. In this case, due to the low rate of
the unit electricity profit, the total profit is significantly influenced by crop sales. However,
unlike Figure 7a, the shading ratio of 21% is identified as the most profitable shading ratio
for corn production. Sesame also shows a similar pattern, and 28% is the most profitable
shading ratio. The total profits of the other three crops (i.e., mung bean, red bean, and
soybean), which are significantly influenced by shading ratios, have the minimum point
around the shading ratio of 10%. Thus, for farms producing these crops, it is better to focus
only on either crop production or solar energy production. In fact, the total profit is mainly
dependent on electricity generation as the unit electricity profit increases (see Figure 8b).
The major advantage of the APV system is that it allows a farmer to increase his or her
profit by selling electricity to the government [12]. Also, as shown in Figure 8, a famer can
hedge against REC risk. If REC decreases, the farmer can focus on crop production. If REC
increases, s/he can produce more electricity from PV modules.
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Figure 8. Estimation of the total profit of APV: (a) total profit with $0.005/kWh; (b) total profit with $0.01/kWh.
APV: Agrophotovoltaic.

5. Conclusions

This study has proposed a performance estimation model of the APV system involving
solar energy generation and crop production. For accurate performance estimation, both
traditional electricity generation models (i.e., the solar radiation-based model and climate-
based model) of PV modules and two major machine learning (ML) techniques of PR and
DL have been considered. In particular, Deeplearning4j library is used to estimate the
electricity generation of the APV system, and the prediction accuracy of the DL model
has been compared with that of the other three models. Electricity generation and crop
production data was collected via remote sensors installed in the APV system at Jeollanam-
do Agricultural Research and Extension Services in South Korea. In the experiments, model
performance has been evaluated with the collected data, and economic analysis in terms of
cost and profit of the subject APV system has been conducted to provide the investment
information to farmers and government agencies. R2 values of the solar radiation-based
model, the climate-based model, the PR model, and the DL model are 89.39%, 94.23%,
92.99%, and 96.42%, respectively. The DL model has the best prediction results, but other
models also provide quite accurate prediction results in electricity generation. From these
four models, we can conclude that solar radiation and other climate components are
significant factors for the electricity generation of the APV system. In addition, PR is used
to estimate the production yields of five crops of sesame, mung bean, red bean, corn, and
soybean. The R2 values of the sesame, mung bean, red bean, corn, and soybean models are
97.19%, 90.54%, 98.31%, 83.57%, and 99.72%, respectively. As mentioned in Section 3.1.3,
the PR is a flexible technique providing high prediction accuracy. Since the production
yields are significantly influenced by the solar radiation, the shading ratio of less than 25%
can provide positive impact on production of five crops. Particularly, under the condition
of the unit electricity profit of $0.005/kWh, corn is the most profitable crop with $1.44/m2.
As a result, farmers, agronomists, and agricultural engineers are able to accurately estimate
the total profit of an APV system via the proposed performance model.

Although the proposed approach successfully estimated the performance of the APV
system in terms of crop production and electricity generation, further studies are needed.
First, the models should be updated based on field data collected from multiple APV
systems in different places to develop a generic performance model. Second, the impact of
the APV systems on various crop types in addition to the five crops should be investigated,
to maximize farmer’s profit.
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