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Abstract: In modern systems, there is a tendency to model issues more accurately with low com-
putational cost and considering multiscale decision-making which increases the complexity of the
optimization. Therefore, it is necessary to develop tools to cope with these new challenges. Supply
chain management of enterprise-wide operations usually involves three decision levels: strategic,
tactical, and operational. These decision levels depend on each other involving different time scales.
Accordingly, their integration usually leads to multiscale models that are computationally intractable.
In this work, the aim is to develop novel clustering methods with multiple attributes to tackle the
integrated problem. As a result, a clustering structure is proposed in the form of a mixed integer
non-linear program (MINLP) later converted into a mixed integer linear program (MILP) for clus-
tering shape-based time series data with multiple attributes through a multi-objective optimization
approach (since different attributes have different scales or units) and minimize the computational
complexity of multiscale decision problems. The results show that normal clustering is closer to
the optimal case (full-scale model) compared with sequence clustering. Additionally, it provides
improved solution quality due to flexibility in terms of sequence restrictions. The developed clus-
tering algorithms can work with any two-dimensional datasets and simultaneous demand patterns.
The most suitable applications of the clustering algorithms are long-term planning and integrated
scheduling and planning problems. To show the performance of the proposed method, it is investi-
gated on an energy hub as a case study, the results show a significant reduction in computational
cost with accuracies ranging from 95.8% to 98.3%.

Keywords: multiscale decision making; big data analytics; planning and scheduling; clustering;
supply chain; multiple attributes; computational complexity; energy hub

1. Introduction
1.1. Background and Motivation

Due to the multiscale dynamics in the solar system [1] multiscale phenomena are a sig-
nificant part of human life. They have organized the time in terms of hours, days, months,
and years. Although the main focus of interest is a system’s macroscale performance, the
microscale is considered based on constitutive relations. On the other hand, while the
focus is on the microscale, the compelling happens at a macroscale are not considered
and the homogenous process at larger scale is assumed. However, this simple empirical
approach cannot be extended to apply to more complex systems. Generally, the empirical
approaches have a limited accomplishment for representing complicated or small scale
systems in which the discrete or finite size effects are meaningful. In this regard, the
multiscale modeling arises from the necessity to overcome the constraints of the aforemen-
tioned approaches (macro and microscale). Accordingly, multiscale simultaneously aims
for the macroscale’s efficiency while maintaining the microscale’s models accuracy. The
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assessment of a problem from different levels and scales is a more comprehensive approach
that represents a main change in modeling [1]. Integration across a supply chain’s decision
level is crucial to improve returns on investment. Although planning and scheduling are
interdependent both of them are usually carried out separately. The integration of planning
and scheduling turns into improved decision level coordination and consequent operating
costs reduction. However, the computational cost of the large scale problem is intractable
because different time scales are integrated. Some methods have been proposed in the
literature to overcome this issue. However, most of them have studied a specific problem or
the proposed method is applicable to short time horizons. Clustering has a good potential
to handle such problems by grouping similar input parameters together. This considerably
shrinks the model size and improves computational tractability without compromising
solution accuracy.

1.2. Literature Survey

Clustering has been widely utilized across different disciplines for more than 50 years.
All clustering algorithms can be categorized into two groups: hierarchical and partitional.
Likewise, big data analytics uses advanced analytic techniques to process very large and di-
verse datasets including: structured, semi-structured, and unstructured data; from different
sources and sizes. Big data describes datasets sizing beyond the ability of conventional rela-
tional databases to capture, manage and process the data with low latency. Big data analysis
allows taking better and quicker decisions using data that was previously considered com-
putationally impossible due to sizing and structure state. Accordingly, businesses can use
big data analytics to gain new insights from previously untapped databases. Mathematical
programming plays a key role in clustering algorithm developments. For instance, Rao
in [2] presented two integer programming formulations with different distance functions.
The first formulation aims to minimize the sum of squares within groups, and leads to a
mixed integer linear program (MILP) under certain conditions. The second formulation
aims to minimize the maximum distance within groups, but leads to a mixed integer
non-linear program (MINLP). Likewise, the authors in [3] formulated a MILP model for a
company’s digital platform customer segmentation, as well as an improved algorithm to
overcome computational complexity without compromising optimality. Furthermore, clus-
tering also has applications to the power sector. Balachandra and Chandru in [4] grouped
an entire year electricity demand into 9 clusters in sequence order using discriminant anal-
ysis. Then, the clusters were used as input for a resource constraint linear programming
model of an electricity system based on supply demand matching in [5]. A fuzzy based
clustering model in presented to model the uncertainty of electric vehicles load demand
in [6,7], where, distributed generation is planned for a long-period horizon. In addition,
several researchers have already investigated the two-scale scheduling-planning problem
of energy systems. In [8], the authors have utilized a two stage metaheuristic algorithm for
energy storage planning so that PSO algorithm is used for long-term planning and Tabu
Search algorithm is used for short-term scheduling. A three loops optimization algorithm
is proposed in [9] for optimal energy storage planning and scheduling, where new load
demand of electric vehicles is also taken into account. However, in the mentioned works the
metaheuristic algorithms have utilized for optimization that there is a significant concern
about their results. A two-stage stochastic energy management approach is presented
in [10] for a smart home scheduling, however, only short term operation is studied in
this work and the long term planning is not considered. In a more recent study [11], the
authors present two clustering algorithms formulated using integer programming with
integral absolute error as similarity measure. The algorithms were effectively applied on
electricity demand data clustering, as well as the unit commitment problem. However,
the algorithm is limited to single-attribute data applications. Similarly, the authors in [12]
developed a model to cluster electricity demand using k-means. The model was extended
to include attributes such as heat demand, electricity price, and solar radiation. The clusters
were used as input to optimize the energy systems’ operation to meet the urban district’s
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demand. The solution was compared to a reference value, but the study did not mention
solution quality nor how it was solved.

1.3. Paper Contribution

The present work aims to tackle the integrated supply chain problem using a cluster-
ing approach. The aim is reducing model size by denoting the yearly days by typical days’
representative of the operating year. Although clustering has been widely employed in
several applications, clustering of demand patterns has been poorly analyzed. Demand
patterns in advanced energy systems are very complex given their multi-dimensional na-
ture including shape (trajectory of the hourly demand curves), whereas time often displays
diverse attributes (e.g., simultaneous demand for electricity and heat in advanced energy
systems planning and scheduling in energy markets). Therefore, the flexibility of demand
and supply should be modeled properly for energy transition. This study considers an
extension of the previous work presented in [11], by incorporating the clustering of high-
dimensional attributes instead of the traditional single attribute approach in order to plan
and schedule the advanced energy systems. Accordingly, this study follows a mathematical
programming-based approach and formulates the multi-dimensional attribute clustering
algorithm using mixed integer programming techniques. Additionally, there is no indica-
tion on which algorithm type yields better results or the potential influence of sequence
over solution quality. As a result, this work aims to investigate the aforementioned issues
while providing a detailed analysis on the appropriate use of the novel clustering method
for multiscale mathematical modeling. Proposed a MILP problem help us to achieve the
global optimal solution for advanced energy systems planning and scheduling in energy
markets. Additionally, to show the performance of the proposed method the clustering
results are presented in two ways (normal and sequence clustering) and implemented on
the electricity and heat demands. In order to demonstrate the application of the proposed
method in the real world, this method is implemented for planning an energy hub as a
case study.

2. The Proposed Clustering Algorithm

The present clustering algorithm is part of the time-series data; which has been gaining
a lot of attention due to its potential applications to big data processing. The proposed
algorithm can cluster demand data by simultaneously considering shape-similarity and
trajectories-time. As a result, the clustered time-series data can assist easing the com-
putational difficulty of multi-scale modeling. The L1-norm [13–15] (least absolute value
method) was used to measure similarity and retain the model’s linearity and showcase the
proposed algorithm generality.

The input parameters in process systems engineering usually consist of multiple
attributes, such as the simultaneous demand of heat and electricity. Therefore, a clustering
algorithm that simultaneously considers multiple attributes is proposed. The weighting
method is chosen as multi-objective optimization approach [16] to deal with the multi-
ple attributes nature of the problem. The typical model formulation for multi-objective
optimization using the weighting method is given as follows:

min Z = ∑
a

wa ∗ fa(x) (1)

s.t. x ∈ S

where fa(x) is the objective function for attribute a, wa is the weight factor for attribute
a, wa≥0, ∑

a
wa = 1, and S is the feasible region. µ1 and µ2 are the values for objective

functions 1 and 2, respectively. The Pareto frontier is constructed by applying different
combinations of weight factors. The utopia point (µu) corresponds to the optimal values of
objective functions 1 and 2 (µ1∗ and µ2∗). However, the utopia point is usually infeasible.
Therefore, the best solution is the closest to the utopia point.
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2.1. General Algorithm Formulation

Given a set of load curves D (days) and H (hours) to be collected in C clusters, the
aim is to assign days to clusters with the least dissimilarity. The following set of equations
denotes a clustering model for minimizing the integral absolute error (IAE) or L1 norm
for multiple attributes. The L1 norm has been widely used as a performance criterion in
process control applications [17]. The formulation includes multiple attributes denoted by
index α while the application of the weighting method allows handling the multi-objective
nature of the problem.

minZ = ∑
a

wa ∗ IAEa (2)

s.t. ∑C
c=1 xd,c = 1 ∀ d (3)

where IAEa is the integral absolute error used as a similarity measure for the a attribute.
Equation (2) symbolizes the problem’s objective function as a weighted function between
the performance criteria of the different attributes a under consideration, wa represents the
weight factor for attribute a with the additional restriction that: wa ≥ 0, and ∑a wa = 1.
On the other hand, Equation (3) is the day assignment constraint requiring each day of the
year to be assigned to a cluster of curves C. The binary variable xd,c denotes the assignment
of load for the d-th day joining cluster c. The binary variable is equal to one if such an
assignment takes place, and 0 otherwise. The IAE mathematical representation can be
given as follows [18]:

IAE =
∫ b

a
|L(t)− C(t)|dt (4)

where L(t) denotes the load curve(s) and C(t) the clustered curve(s). Equation (5) is a
numerical evaluation of the norm L1 using the trapezoidal rule [19] for IAE between loads
L and cluster curves C. Likewise, Equation (6) assesses the absolute difference between the
load and cluster curves to be employed in the performance criterion.

IAEa =
∆
2
∗

D

∑
d=1

H−1

∑
h=1

ADa,d,h + ADa,d,h+1 ∀ a (5)

ADa,d,h ≥
∣∣DLa,d,h − Da,c,h

∣∣ ∗ xd,c ∀ a, h, d, c (6)

where ADa,d,h is the absolute difference between load curve L and clustered curve C for
the hth hour in day d for attribute a, DLa,d,h is the demand load of attribute a for the hth
hour in day d, Da,c,h is the demand for the hth hour in cluster c and attribute a. The model
construction is flexible in terms of performance criteria. As such, utilizing the L2 norm
instead of the L1 norm is straightforward and requires the use of the Euclidean distance in
Equation (4).

Moreover, the demand data can be sequentially clustered by including a set of con-
straints based on the string property concept [20]. Sequence clustering can be meaningful
to maintain flexible operations. For example, in many occasions continuous similar op-
erations are preferred to minimize the inconvenience and cost of change-overs and set
ups. Accordingly, the following set of constraints (see Equations (7)–(9)) can be used to
incorporate the time dimension into the clusters and require sequencing to be formed.

xd+1,1 ≤ xd,1 ∀ d < D (7)

xd+1,c ≤ xd,c + xd,c−1 ∀ d< D, c >1 (8)

xD,c ≤ xD−1,c + xD−1,c−1 ∀ c > 1 (9)

Equations (7)–(9) handle the first, intermediate, and last clusters sequence, respectively.
Moreover, the next equation is equivalent to the previous set of constraints provided that
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the non-existing terms are dropped out the mathematical expression. This feature is built-in
in many algebraic modeling systems such as GAMS.

xd+1,c ≤ xd,c + xd,c−1 ∀ d, c (10)

The above formulation provides a unique platform for performing normal and se-
quence clustering since it is based on an equivalent algorithmic structure. Nonetheless, the
formulation renders a MINLP model due to the absolute value and multiplication between
the variables Da,c,h and xd,c shown in Equation (6). Accordingly, the absolute function can
be linearized employing the following mathematical expressions [21]:

ADa,d,h ≥ DLa,d,h ∗ xd,c − Da,c,h ∗ xd,c ∀ h, d, c (11)

ADa,d,h ≥ Da,c,h ∗ xd,c − DLa,d,h ∗ xd,c ∀ h, d, c (12)

Once the load curve is chosen (xd,c = 1), one of the constraints takes on a negative
value while the remaining is positive. As a result, the constraint with a negative right-hand
side becomes redundant; whereas ADa,d,h equals the positive difference [22]. Even though
the aforementioned approach eliminates the absolute value in the model, the bilinear term
(Da,c,h xd,c) persists. This term can be further linearized introducing a new continuous
variable RVa,h,d,c = Da,c,h ∗ xd,c through the following set of constraints [23]:

ADa,d,h ≥ DLa,d,h ∗ xd,c − RVa,h,d,c ∀ a, h, d, c (13)

ADa,d,h ≥ RVa,h,d,c − DLa,d,h ∗ xd,c ∀ a, h, d, c (14)

Da,c,h − BU
a,h ∗ (1− xd,c) ≤ RVa,h,d,c ∀ a, h, d, c (15)

BL
a,h ∗ xd,c ≤ RVa,h,d,c ∀ a, h, d, c (16)

Da,c,h − BL
a,h ∗ (1− xd,c) ≥ RVa,h,d,c ∀ a, h, d, c (17)

BU
a,h ∗ xd,c ≥ RVa,h,d,c ∀ a, h, d, c (18)

where RVa,h,d,c is the employed relaxation variable for the linearization method, BL
a,h and

BU
a,h are the lower and upper bound of attribute a load for the hth hour, respectively.

Applying the aforementioned linearization approach renders the model to be an MILP;
and, therefore, more computationally tractable.

xd+1,c ≤ xd,c + xd,c−1 ∀ d, c (19)

Equation (19) is only required for the sequence clustering case. The above model
is a mathematical representation of clustering trajectories of time series data of different
attributes and aims to achieve clusters through the L1 norm minimization.

2.2. Size-Reduction Heuristic Algorithm for Multiple Attributes

Since the computational complexity of the aforementioned clustering model is evident,
a heuristic algorithm is proposed to handle the issue, including its multiple attributes
nature. The algorithm is based on an iterative structure which compares lower and upper
bound solutions. This type of structure has been employed in the past and represents
an appropriate solution procedure to tackle large-scale mathematical models [3,24]. This
subsection aims to extend the applicability of the previously proposed MILP model to long
planning horizons. Nonetheless, the proposed modeling framework keeps its linearity
and programming basis. The heuristic follows the k-means algorithm; but this time the
clusters are built using the mathematical models previously proposed. The k-means is
typically applied to one-dimensional time-series data, but there are versions able to deal
with trajectories. The k-means algorithm is given as follows: (1) randomly initialize k
partitions, (2) calculate a cluster prototype matrix M, (3) allocate each item in the dataset to



Energies 2021, 14, 6682 6 of 17

the nearest cluster, (4) recalculate cluster prototype matrix M based on present partition,
and (5) repeat procedure until no change is noticed in the estimated clusters.

Figure 1 shows the flowchart of the proposed heuristic algorithm for multiple at-
tributes. The heuristic is executed for each weight factor combination. The procedure is
given as follows: (1) n random clusters or scenarios are generated. The scenarios can be
generated in Microsoft Excel® by randomizing between maximum and minimum of each
hour for each attribute in the entire demand curves. (2) Each weight factor is considered
starting with the first scenario. At the first try, the clusters are fixed in the MILP model, and
the resulting integer program is solved for day assignment providing an upper bound on
the solution. (3) The day assignment is fixed and the linear programming model is solved
to reach a lower bound on the solution. The solution is considered as the current best if
the variance between the upper and lower bounds is within the acceptable pre-specified
period. In this situation, the next scenario is considered. Otherwise, for a given scenario,
the process is reaped between fixing clusters and day assignment until the upper and lower
bounds difference fall within the acceptable tolerance. (4) Once all scenarios are considered
for a given weight factor, the process goes to the next weight factor and the steps repeated
until all weight factors have been considered. The proposed model can be applied for both
normal and sequence clustering. The common formulation can be employed in the both
types of clustering for problems with multiple attributes. The mathematical models were
built in the General Algebraic Modeling System (GAMS).

Figure 1. Flowchart of proposed heuristics algorithm for multiple attributes.
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3. Model Verification and Numerical Results
3.1. Proposed Model Verification and Assessment

In this section, the computational performance and outputs of the multiple attribute
clustering algorithm are presented. Random values between the maximum and minimum
of each hour are generated in Excel. Nonetheless, there is a slight difference for generating
the sequence clustering’s initial guess. For instance, the days are initially partitioned based
on days to clusters ratio (the ratio must be rounded down). Accordingly, if we have 30 days
and 3 clusters the ratio is 10; thus, resulting in 3 partitioned days’ groups. Afterward,
cluster 1’s initial guess is generated by randomizing between each hour’s maximum and
minimum in the first partitioned days. Similarly, this approach is applied to clusters 2 and
3. The aforementioned procedure yields improved objective function values; while the
ratio itself could be optimized by carefully analyzing the demand. The runs for this case
study include 4, 5, and 6 clusters for an entire year (365 days) for normal and sequence
clustering, respectively (i.e., 6 runs in total). Moreover, 25 scenarios were generated per run.
The GAMS/CPLEX solver was used to perform the runs on an Intel (R) Xeon (R) 2.4 GHz
(2 processors), 16 GB RAM workstation. It is worth mentioning that parameter tuning
was used for sequence clustering to reduce solution time. The algorithm tolerance was set
to 10–4. In this case, study, an energy hub system’s hourly heat and electricity demands
during a year is used for illustration purposes that is presented in [25], where, the heat and
electricity demands are extracted. Table 1 shows the 8 weight factor combinations used to
determine the Pareto frontier. The priority between heat and electricity varies among the
weight factor combinations. For example, weight factor 1 leans towards heat while weight
factor 8 leans toward electricity (see Table 1 for details).

Table 1. Multi-objective function weight factors.

Weight Factor Electricity Heat

1 0.2 0.8
2 0.3 0.7
3 0.4 0.6
4 0.5 0.5
5 0.6 0.4
6 0.7 0.3
7 0.8 0.2
8 0.9 0.1

Table 2 lists the solution time for the case study runs. The solution time for sequence
clustering is shorter than normal clustering even for equivalent order of magnitude. The
extra constraint sets in sequence clustering reduce the feasible region size; thus, resulting
in shorter solution times. As can be noticed, increasing the model size by rising the number
of clusters has a negative impact on solution time. The model is hard to solve even with a
small number of binary variables.

Table 2. Case study runs’ solution times.

Average Solution Time per
Scenario (min)

Normal Clustering Sequence Clustering

4 5 6 4 5 6

5.9 6.35 10.63 1.71 2.83 7.74

The Pareto frontiers for normal and sequence clustering are shown in Figures 2 and 3,
respectively. As presented in Table 1, the Pareto frontiers are captured for all runs with the
weight factor combinations. As shown in the figures an improved objective function value
is achieved when the number of clusters increases for both: normal and sequence clustering.
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Figure 2. Pareto frontiers for normal clustering.

Figure 3. Pareto frontiers for sequence clustering.

Tables 3 and 4 show the results of 5 clusters for normal and sequence clustering,
respectively. With the intention to gain results’ insight, a relative error function is employed
as validation measure between the cluster and curve loads as follows:

ERRORh,d,c =
Dh,c − DLd,h

DLd,h
(20)

where ERRORh,d,c is the relative error between the cluster and curve loads. Fundamentally,
this metric is the L1 criterion scaled by the load curve to enable comparisons when the
demand curves greatly differ in magnitude. As a result, the error measurement can
be effectively employed to assess performance given its independence from the system
capacity and measurement unit. This error measurement criteria is the most widely used
method in utility forecasting; although high error values can be anomalies instead of
simple incorrect predictions [26]. Accordingly, the error standard deviation of curves in the
same cluster is adopted to check that curves within the same clusters have high similarity;
while curves in different clusters have low similarity. Additionally, graphical and visual
comparisons are used to assess similarity.
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Table 3. Computational statistical errors for normal clustering 365 days-5 clusters (365-5).

Weight
Electricity Heat

Avg (%) Std (%) IAE (kWh) Avg (%) Std (%) IAE (kWh)

1 1.07 18.30 62.4 549 17.766 95
2 1.12 15.67 49.4 426 12.935 100
3 1.11 15.57 49.0 426 13.099 100
4 1.07 15.44 48.4 429 13.100 101
5 0.62 13.36 41.2 533 16.688 109
6 0.45 12.73 39.6 537 15.893 112
7 0.26 11.51 36.8 726 20.728 120
8 −0.08 9.40 29.2 1.013 25.552 160

Table 4. Computational statistical errors for sequence clustering 365 days-5 clusters (365-5).

Weight
Electricity Heat

Avg (%) Std (%) IAE (kWh) Avg (%) Std (%) IAE (kWh)

1 −0.55 20.65 83.2 759 24.238 145
2 −0.55 20.65 83.2 759 24.238 145
3 0.63 17.73 60.1 982 28.268 155
4 0.64 17.52 59.5 963 27.832 156
5 0.32 16.45 56.0 1.055 34.650 160
6 0.36 15.87 54.7 929 28.813 162
7 0.27 15.49 53.5 928 28.768 166
8 0.28 15.45 53.4 1.040 32.355 166

With comparison of the objective function value, error average, and standard deviation,
it can be found the normal clustering had better results than sequence clustering. This is
due to extra sequence requirement in sequence clustering executes that might be needed in
certain process operations to minimize set-ups. As it can be noticed from Tables 3 and 4,
there is a results changeover as weight factors vary. Moreover, it was found that heat
demand contains zero value elements in certain periods. For these particular instances,
the relative error calculation is not performed to avoid division by zero. Accordingly,
relative error calculations were troublesome for demands close to zero. However, the heat
demand’s error average and standard deviation are amplified. This latter results from the
significant fluctuation in heat demand. Although the demand ranges from 0 to 250 kW, the
relative error calculation is still difficult. For example, if the demand is 0.1 kW and cluster
value 1 kW; the relative error turns into 900%. Furthermore, the electricity demand’s error
average and standard deviation are relatively small compared to the heat. The weight
factor has an important impact on clusters. For example, with increasing the clusters
number, its quality will be enhanced. In comparison with the sequence cluster, the normal
cluster has more flexibility. In the procedure of electricity demand clustering, especially
in sequence, many clusters overlap each other. However, these clusters cannot be merged
as they correspond for different days and the heat demand for these days are different.
Therefore, for any application that do not require sequencing it is suggested to use normal
clustering to minimize the computational cost especially in large scale case studies.

3.2. Case Study: Application of Multiple Attribute Clustering to Energy Hubs

This case study shows an application of the proposed clustering algorithms to utility
demand data involving multiple attributes; as well as investigating its impact on solution
accuracy. It has already been established in the previous section that clustering significantly
reduces the computational burden. More specifically, this case study assesses the outputs
of the proposed normal and sequence clustering algorithms against a full energy hub
model with multiple demand attributes that does not employ clustering. In the energy hub
problem, the operation cost should be minimized as a medium term decision level problem.
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Planning of an energy hub is considered as a case study, because energy hubs are known
as a promising tool to increase the efficiency of the system. Additionally, the accuracy of
the clustering results for heat and electricity demands are so important in energy hubs,
since the day-ahead operation and generation expansion planning of them is done based
on the load demands curves, and results with low accuracy led to a big penalty cost for
energy hub operators. The energy hubs can be modeled based on heuristic algorithms
or mathematical programming. In this study, it is modeled as a linear programming (LP)
mode [25] as presented below.

3.2.1. Energy Hub Model Formulation

The objective of the work is to minimize the operation cost of the studied energy hub
system, while the operating areas constraint of the units are taken into account. Figure 4
shows the energy hub schematic. It consists of one boiler, one combined heat and power
(CHP) unit, and the option to purchase electricity from the grid. The boiler and CHP
are supplied by natural gas. As mentioned before, the electricity demand is supplied by
upstream grid and the CHP unit and the heat demand is supplied by the boiler and CHP
unit [27].

Figure 4. Schematic for the energy hub system.

Equation (21) denotes the energy hub’s objective (cost) function. It is essentially
the energy hub’s operating cost, which includes: fuel (gas) consumption, operation and
maintenance, and grid expenses. This is given as follows:

CF = ∑
h,d

(
ELECCHP

d,h + HEATCHP
d,h

)
∗OMCHP + HEATBoiler

d,h

∗OMboiler +
(

NGCHP
d,h + NGBoiler

d,h

)
∗ PriceNG

+ELECGrid
d,h ∗ PriceGrid

h

(21)

where CF ($/h) is the cost objective function, ELECCHP
d,h (kW) is the CHP’s electricity

generation at the hth hour of the dth day, HEATCHP
d,h (kW) is the CHP’s heat generation

at the hth hour of the dth day, OMCHP ($/kWh) is the CHP’s operation and maintenance
cost, HEATBoiler

d,h (kW) is the boiler’s heat generation at the hth hour of the dth day, OMboiler

($/kWh) is the boiler’s operation and maintenance cost, NGCHP
d,h (m3/h) is the CHP’s

natural gas consumption at the hth hour of the dth day, NGBoiler
d,h (m3/h) is the boiler’s

natural gas consumption at the hth hour of the dth day, PriceNG ($/m3) is the natural gas
price, ELECGrid

d,h (kW) is the electricity consumed from the grid at the hth hour of the dth
day, and PriceGrid

h ($/kWh) is the grid’s hourly electricity price.
The electricity and heat demands are satisfied at any hth hour of day d as shown in

Equations (22) and (23), respectively.

Lelec
d,h = ELECGrid

d,h + ELECCHP
d,h ∀ h, d (22)

Lheat
d,h = HEATBoiler

d,h + HEATCHP
d,h ∀ h, d (23)
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where Lelec
d,h (kW) and Lheat

d,h (kW) are the hourly electricity and heat demands, respectively.
Furthermore, Equations (24) and (25) ensure that the power produced by the CHP

and heat by the boiler at any time are within their corresponding generation capacities as
follows [27]:

ELECCHP
d,h < MaxCHP ∀ h, d (24)

HEATBoiler
d,h < Maxboiler ∀ h, d (25)

where MaxCHP (kW) and Maxboiler (kW) are the maximum installed power and heat
generation capacities for the CHP unit and boiler, respectively.

The following set of Equations (26)–(28) allows calculating the amount of utilities
produced by the energy hub:

ELECCHP
d,h = NGCHP

d,h ∗ ηelec
CHP ∗ b ∀ h, d (26)

HEATCHP
d,h = NGCHP

d,h ∗ ηheat
CHP ∗ b ∀ h, d (27)

HEATBoiler
d,h = NGBoiler

d,h ∗ ηheat
boiler ∗ b ∀ h, d (28)

where ηelec
CHP is the CHP’s electrical efficiency, ηheat

CHP the CHP’s thermal efficiency, ηheat
boiler the

boiler’s thermal efficiency, and b is a unit conversion factor for the natural gas flowrate. All
model’s parameter values are given in Table 5.

Table 5. Energy hub model parameters.

Parameter Value Parameter Value

PriceNG 0.325 $/m3 ηheat
CHP 44.0%

OMboiler 0.027 $/kWh ηheat
boiler 90.0%

OMCHP 0.016 $/kWh b 10.7 kW/m3

ηelec
CHP 34.6%

3.2.2. Simulation Results and Discussions

The electricity and heat demands, as well as a number of clusters from Section 3, are
used as inputs for the present energy hub model. For comparison purposes, the objective
cost function is multiplied by a parameter named Nd (as illustrated in Equation (29)) that
let us to compare the full scale model and clustered cases. The repetitions number is
represented by parameter Nd for corresponding d day. This parameter is equal to 1 for full
scale case and is equal to days’ number for the clustered cases. For instance, Nd of cluster 1
will be equal to 40 if cluster 1 represents 40 days.

CF = ∑
h,d

Nd

[(
ELECCHP

d,h + HEATCHP
d,h

)
∗OMCHP + HEATBoiler

d,h

∗OMboiler +
(

NGCHP
d,h + NGBoiler

d,h

)
∗ PriceNG

+ELECGrid
d,h ∗ PriceGrid

h

] (29)

The full scale model considers hourly heat and electricity demands loads for 365 days;
whereas the clustered cases hourly loads take into account 4, 5, and 6 clusters (clusters are
considered as days). Since the energy hub model is a LP, it just takes a few seconds to solve
the full scale case, which made it difficult to illustrate the advantages of clustering applica-
tions in terms of solution time reduction at least for this particular example. However, the
reduction in computational time through the use of clustering has been established in the
previous section. In this section, the focus instead is solution quality.

The values of the objective function for the full scale case is presented in Table 6. For a
better assessment, the objective function values are plotted along with the relative error
and are compared with the optimal case as shown in Figure 5. As can be seen, considering
the objective function value all clustered cases are underestimated. In comparison with
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the sequence clustering, the normal clustering is closer to the optimal case. The average
error of the objective function is −1.7% and −4.2% for normal and sequence clustering,
respectively. In addition, with increasing the number of clusters, the solution quality will be
enhanced for both normal and sequence clustering. Moreover, the weight factor variation
does not have a significant effect on the objective function values. This is due to the high
correlation between heat and electricity demands.

Table 6. Energy hub model’s objective function values (thousand USD) for full scale case.

Weight Optimal
Number of Clusters (Normal) Number of Clusters (Sequence)

4 5 6 4 5 6

1 77.1 75.8 76.0 76.5 72.6 73.2 74.3
2 77.1 76.0 75.9 76.3 72.6 73.2 74.7
3 77.1 75.9 75.9 76.4 73.1 74.2 74.7
4 77.1 75.8 75.9 76.3 73.5 74.4 74.8
5 77.1 75.7 76.1 76.3 73.6 73.9 74.6
6 77.1 75.7 75.8 76.1 73.8 73.9 74.4
7 77.1 74.7 75.7 76.2 73.6 73.9 74.2
8 77.1 74.4 74.6 75.9 73.6 74.2 73.6

Figure 5. Energy hub’s objective function values for all runs and weight factors.

In order to examine the effect of increasing the number of clusters, Figures 6 and 7
showcase the energy hub utility production rates for the normal and sequence clustering
cases for weight factors 1 and 8, respectively. Increasing the number of clusters improves
the solution quality as it closes the gap between the optimal non-clustered and clustered
case. In addition, the results of weight factor 1 are much closer to the optimal non-clustered
case because it leans towards the heat demand. As the heat demand shows the higher
variability among utilities, prioritizing the heat demand allows keeping it the closest to the
original value; thus, minimizing the errors caused by the clusters variability. Moreover,
as one could expect normal clustering showcases higher solution quality than sequence
clustering due to the constraints require for sequencing.
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Figure 6. Energy hub’s utility production rates for normal clustering with weight factors 1 and 8.

Figure 7. Energy hub’s utility production rates for sequence clustering with weight factors 1 and 8.

In order to examine the weight factors effect, Figures 8 and 9 illustrate the energy
hub’s utilities production rates for all weight factors for normal and sequence clustering
with 5-clusters, respectively. As shown in the figures, varying the weight factors has a
gradual effect on solution quality as the priority switches from heat to electricity. Nonethe-
less, varying the weight factors does not have a drastic effect on the objective function
values. This might be due to the fact that the electricity and heat demands have equivalent
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symmetry over the whole horizon. Additionally, as previously stated the weight factor 1
results are much closer to the optimal non-clustered case.

Figure 8. Energy hub’s utility production rates for all weight factors in normal clustering with 5-clusters case.

Figure 9. Energy hub’s utility production rates for all weight factors in sequence clustering with 5-clusters case.
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4. Conclusions

In this paper, a mathematical programming approach for multiscale models with
multiple attributes that are computationally intractable was proposed. The advantages of
the proposed method are simplicity to implement it with low computational cost, also the
proposed method is a mixed-integer linear programming which can guarantee obtain the
global optimal solution. To show the performance of the proposed method the clustering
results are presented in two ways (normal and sequence clustering) and implemented on
the electricity and heat demand because demand patterns are very complex given their
multi-dimensional nature. The results show that a better objective function is achieved
when the number of clusters increases for both normal and sequence clustering as it closes
the gap between the optimal (full-scale model) and clustered cases’ solutions. Normal
clustering results are found to be better than sequence clustering in terms of objective
function value, error average, and standard deviation. The statistical analysis of the heat
demand was challenging as suggested by the results. This is due to the huge fluctuation
in the heat demand; particularly, for demands close to zero. The flexibility of normal
clustering has a major advantage over sequence. There are many clusters of electricity
demand, especially sequence clusters, overlapping with each other. They cannot be merged
since they correspond to different days and heat demand clusters for these days are different.
Therefore, for applications that do not require sequencing, it is advantageous to use normal
clustering to minimize computational effort and deal with large-scale models. Additionally,
in order to demonstrate the application of the proposed method in the real world, this
method is implemented for planning an energy hub as a case study. The results show
that all clustered cases are underestimated in terms of objective function value. Normal
clustering is closer to the optimal compared with sequence. The objective function error
average is −1.7% for normal clustering while for sequence clustering is −4.2%. Moreover,
varying the weight factors does not have a significant effect on the objective function value.
This might be due to a similar symmetry in the heat and electricity demands. In addition,
the weight factor 1’s results (prioritizing heat demand) are much closer to the optimal case.
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Nomenclature/Abbreviations

MILP Mixed integer linear programming
MINLP Mixed integer nonlinear programming
Std Standard
Avg Average
CHP Combined heat and power
GAMS General algebraic modeling system
LP Linear programming
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Variables

ADa,d,h
Absolute difference between load curve L and clustered curve C for the hth hour
in day d for attribute a

b Unit conversion factor for the natural gas flowrate
BL

a,h Lower bound of attribute a load for the hth hour
BU

a,h Upper bound of attribute a load for the hth hour
C Clusters
CF Cost objective function
D Load curves
Da,c,h Demand for the hth hour in cluster c and attribute a
DLa,d,h Demand load of attribute a for the hth hour in day d
ELECCHP

d,h CHP’s electricity generation at the hth hour of the dth day
ELECGrid

d,h Electricity consumed from the grid at the hth hour of the dth day
ERRORh,d,c Relative error between the cluster and curve loads
fa Objective function for attribute a
H Hours
HEATBoiler

d,h Boiler’s heat generation at the hth hour of the dth day
HEATCHP

d,h CHP’s heat generation at the hth hour of the dth day
IAEa Integral absolute error used as a similarity measure for the a attribute
Lelec

d,h Hourly electricity demand in the dth day
Lheat

d,h Hourly heat demand in the dth day
M Matrix
MaxCHP Maximum installed power and heat generation capacities for the CHP unit
Maxboiler Maximum installed heat generation capacity for the boiler
Nd Number of repetitions (frequency) for corresponding d day
NGBoiler

d,h Boiler’s natural gas consumption at the hth hour of the dth day
NGCHP

d,h CHP’s natural gas consumption at the hth hour of the dth day
OMboiler Boiler’s operation and maintenance cost
OMCHP CHP’s operation and maintenance cost
PriceNG Natural gas price
PriceGrid

h Grid’s hourly electricity price
RVa,h,d,c Relaxation variable for the linearization method
S Feasible region
wa Weight factor for attribute a
xd,c Binary variable denoting the assignment of load for the dth day joining cluster c

Greek Symbols

µ1 Value for objective function 1
µ2 Value for objective function 2
µu Utopia point
ηelec

CHP CHP’s electrical efficiency
ηheat

CHP CHP’s thermal efficiency
ηheat

boiler Boiler’s thermal efficiency

Subscripts

a Type of attribute
c Cluster
d Day
h Hour

Superscript

elec Electricity
NG Natural gas
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