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Abstract: Aiming at solving the problems of slow motion and positioning deviation caused by
the change of the moment of inertia of the servo motor due to different loads, an identification
method for the moment of inertia on the basis of the error gain factor model is introduced into the
controller, so that the moment of inertia can be obtained accurately and quickly under dynamic
conditions. First, the electromagnetic and motion equation of the permanent magnet synchronous
motor is built, and the logical relationship between the moment of inertia, torque, speed and other
physical quantities is derived, so that the moment of inertia can be dynamically acquired. Second,
in order to increase the identification accuracy, an adaptive function is introduced in the inertia
identification model to replace the fixed parameters as an error gain factor (EGF). Third, the accuracy
parameter is defined, and the identification algorithm on the basis of the EGF model is compared
with the accuracy parameters of the existing identification method, which verifies that the improved
algorithm has a better accuracy and speed. Finally, on the experimental platform, the working
condition of unsteady speed is simulated. It is further verified that the proposed method has a high
anti-interference capability.

Keywords: permanent magnet synchronous motor; moment of inertia; parameter identification;
error gain factor

1. Introduction

Permanent magnet synchronous motors (PMSMs) have the characteristics of a fast
response speed, high control accuracy, and strong anti-interference ability, and are widely
used in the field of joint servo motors [1-3]. However, their performance is affected because
it is difficult to quickly obtain the moment of inertia of PMSMs, and the control accuracy is
reduced [4,5]. Therefore, the dynamic identification of the moment of inertia of PMSMs
has very important research significance [6,7].

In servo motor drive, the motor load inertia usually changes due to changes in the
working environment. For example, depending on the target mass and the position of
the center of gravity of the robot arm, the moment of inertia converted to the motor shaft
side will also change accordingly [8]. The change of load will also affect the moment of
inertia converted to the motor shaft side [9]. In order to enable the joint motor to adapt to
changing working conditions, it is necessary to make the motor control system have a high
dynamic identification ability for the moment of inertia [10,11]. Therefore, to solve such
problems, it is necessary to quickly and accurately identify the moment of inertia to further
improve the servo performance of the motor control system.

There are many existing identification methods for the moment of inertia, which
are mainly divided into the following two categories: offline identification and online
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identification [12,13]. Offline identification is usually based on a steady-state model, and
the identification accuracy is relatively high, but it is difficult to meet the high dynamic
performance requirements of the servo system [14-16]. Therefore, for the identification of
the high dynamic moment of the inertia of the motor, the identification method studied in
this paper is mainly online identification. Common online identification methods mainly
include the least squares method, model reference adaptive method, state observer method,
and so on [17-20]. The authors of [21] proposed a moment of inertia identification algo-
rithm based on a load torque observer. This algorithm takes into account the mismatch of
the moment of inertia, electromagnetic torque, and viscous friction, and the buffeting phe-
nomenon is well reduced by selecting the appropriate observer parameters. The proposed
load torque observer has a higher observation accuracy and faster convergence speed,
but the stability of its identification results has certain shortcomings. The authors of [22]
proposed an internal model control scheme based on fuzzy adaptive law. This scheme
designs a fuzzy booster-based controller, which automatically adjusts the parameters of
the speed controller according to the identified amount of inertia, and optimizes the speed
regulation problem of the permanent magnet synchronous motor system by dynamically
identifying the amount of inertia. The authors of [23] proposed a method for identifying
the moment of inertia based on the reduced-order extended Luenberger observer (ROELO),
which is very sensitive to changes in the machine parameters and effectively solves the
problem of inaccurate moment of inertia identification when the motor is running at a
low speed. The authors of [24] proposed an extended sliding mode mechanical parameter
observer (ESMMPO) that can simultaneously estimate the system disturbance and angular
velocity; identify system moment of inertia, viscous damping coefficient, and load torque;
and realize multi-parameter identification. Existing online identification algorithms have a
certain impact on the identification effect of the sudden moment of inertia, and cannot take
into account both speed and accuracy.

Aiming at resolving the shortcomings of the current moment of inertia identification
methods under high dynamic conditions, this paper proposes a model reference adaptive
algorithm based on EGFE. The algorithm uses calculation parameter feedback control. The
algorithm adopts feedback control of the calculation parameters. In the process of inertia
identification, the intermediate calculation parameters are extracted as feedback, the error
gain factor is calculated, the internal parameters of the identification module are modified
in real time, and the sensitivity of the identification module is adjusted. When the moment
of inertia changes suddenly, the sensitivity is increased to ensure the rapidity of the inertia
identification, and when the inertia becomes stable, the sensitivity is reduced to ensure the
accuracy and stability of the inertia identification. The identification effect of the algorithm
is verified on the simulation and experimental platform.

2. Establishment of PMSM Moment of Inertia Identification Model
2.1. Motion Model of PMSM

The vector control of the permanent magnet synchronous motor usually adopts the
model in the d-g rotating coordinate system, and the d-q axis of the coordinate system
rotates synchronously with the rotor. The motion equation of PMSM in this coordinate
system is given by the following:

C!TC::TE—TL—BW. (1)
where | is the moment of inertia, w is the rotor angular velocity, T, is electromagnetic
torque, T}, is the load torque, and B is the coefficient of friction. Because the sampling
frequency of the motor’s actual rotation speed is relatively high in the moment of inertia
identification algorithm, the viscous friction factor B of the system can be ignored. The
formula above can be simplified to the following;:

dw

o =TT @)
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According to the simplified result of Equation (2) of the permanent magnet syn-
chronous motor motion equation, it can be seen that the moment of inertia is related to
the motor speed and torque. In order to realize the online identification of the moment of
inertia, the analysis can be started from these two parameters. In Formula (2), the speed of
the motor can be directly measured, and the electromagnetic torque is computed as follows:

n:%ﬂ%+@r¢W4 ©3)

where p and ¥ rare pole pair and flux linkage, and iy, iy, Ly, and L, are the current and

inductance in d—gq axis respectively. Figure 1 shows the change trend of the rotational

speed w and the speed —torque change rate AT(w) when the moment of inertia changes.

Among the above, the speed —torque change rate AT(w) is calculated by the following:
dw

AT(w) = a/Te. 4)
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Figure 1. The tendency of torque and speed.

The curve of AT(w) changes with the change of the moment of inertia. Ignoring the
motor startup phase, when the moment of inertia is doubled, the amplitude of the AT(w)
curve is reduced by about 55%. Therefore, the vibration amplitude of AT(w) is used as the
basis for judging whether the moment of inertia has changed. The adaptive module will
only start and then modify the control parameters when the vibration amplitude of AT(w)
changes. When establishing the moment of inertia identification model of PMSM below, w
and T, are used as the input parameters of the identification module.

2.2. MRAS Identification Model

Model reference adaptive control is introduced here. The main idea of this method is
to use the expression containing the parameters to be identified as an adjustable model
and to compare it with the reference model. The difference between the output of the
two models is adjusted through a certain adaptive law to adjust the adjustable model, so
that the system output gradually converges to the output of the reference model. This paper
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uses the motor’s speed and electromagnetic torque as the input of the MRAS identification
algorithm to establish the reference model and the adjustable model of the identification
module. After adding the identification module to the PMSM control system model, it is
shown in Figure 2. The schematic diagram of MRAS is shown in Figure 3.

I

=33
‘g » Inverter
= <
be| 1
1ab(:
PMSM
dq
w

Figure 2. The closed loop control system of PMSM.

Reference
o Model
®, Ls, L, | T, Calculation | @ Te
Model J/
Adjustable
i Model

L Self-adapting

Figure 3. Block diagram of MRAS.

The process of determining the reference model and adjustable model in MRAS is
as follows.
Discretize Formula (2), and then simplify it as follows:

To(k—1) = To(k— 1) + Lwm(k) — wn(k— 1)), ©)
To(k ~2) = Ty (k—2) + Llwm(k 1) ~ wn(k —2)] ©)

T is the sampling period of the system. In the actual operation of the motor, the
load torque variation within a sampling period is very small and approximately ignored,
as follows:

Tp(k—1) = Tp(k—2). (7)
The formulas above can be derived as follows:
T
W (k) =2wm(k—1) — wm(k —2) + T[TE(k —1) = Te(k = 2)]. (8)

Define parameter b(k) = T/]. Then, the reference model can be expressed as follows:

Wi (k) = 2 (k — 1) — w(k — 2) + b(k)ATo(k — 1). ©)
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Among them, AT, (k —1) = T,(k —1) — T,(k — 2). The adjustable model can be ex-
pressed as follows:

wg (K) = 2wy (k — 1) — wy(k — 2) + by (k) AT, (k — 1). (10)

Parameter by is defined as: by = T/ J. ] is the calculated value of moment of inertia.
According to the Landau discrete—time recursive parameter identification mechanism
adopted in the literature [4], the reference adaptive law can be obtained as follows:

BAT,(k —1)
1+ BAT,(k—1)?

be(k) = bg(k—1) + e(k). (11)

Among (11), e(k) is the difference between the two model outputs. B is a key calcula-
tion parameter, which has an obvious impact on the speed and accuracy of the identification
algorithm. The error adaptive control of this parameter can improve the performance of
the identification algorithm.

2.3. MRAS Based on Error Gain Factor (EGF-MRAS)

In the MRAS algorithm motor control, § is a fixed parameter in the controller, and
its value greatly affects the identification effect. This paper designs an adaptive mod-
ule that introduces an error gain factor to adjust the value of 8 online to achieve better
identification results.

Figure 4 shows the changing trend of the parameter bg (k) when the moment of inertia
has a sudden change. This parameter is stable when the moment of inertia does not change.
When the moment of inertia changes suddenly, the parameter will change immediately
and will recover in a short period of time. Therefore, by analyzing and calculating the
change trend of bg(k), it can be judged whether the moment of inertia has changed and
whether the change process is over.

X
=)
w
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0.5
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Figure 4. The tendency of parameter bg (k).

The mean error Abg (k) of bg(k) is calculated by (12) and (13), as follows:

n o (k — i
Abg(k) = bg(k) — Y ¥ (12)
i=1
A (k) = |Abg (k)| /f bg(kﬂi_l) X 100%. (13)
i=1

The mean error Abg (k) from (13) is defined as the error gain factor. The coefficient  is
determined by the sampling period of the system and its calculation formula is as follows:

n=0.02/T. (14)

Given that the MRAS algorithm will be affected by some external disturbances of
the system, it is necessary to judge the cause of the change through the change trend of
Abg (k). When the adaptive module determines that the change in Abg (k) is caused by
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external disturbances in the system, the change in Abg (k) should be ignored to maintain
the stability of the identification results and improve the anti-interference ability of the
entire identification process.

First, when a change of Abg (k) is detected, the error gain factor adaptive module
is activated. Then, the amplitude of Abg(k) is used to determine the cause of this pa-
rameter change, and to choose whether to keep the adaptive module or enter the anti-
interference module.

In order to analyze the cause of the change in Abg(k), it is necessary to set a standard
threshold Abg(s). The threshold Ab,(s) is used to determine whether the change of this
parameter is caused by the change of the moment of inertia or the external disturbance of
the system. The value of this threshold needs to be analyzed and calculated through several
experiments. Five different initial moments of inertia are set in Table 1. The experiments
of no disturbance, torque disturbance, and moment of inertia disturbance were tested.

Figure 5 shows the results of max{AbZ; (k) } under three different perturbations at different

initial moments of inertia and max{Abg(k)} is the maximum value of Abg (k) in each
experiment. In each set of moment of inertia disturbance experiments, the magnitude of
the introduced moment of inertia disturbance is +33.3% of the initial value of moment
of inertia. In each set of load torque disturbance experiments, the initial value of the
introduced load torque is 9 (N-m), and the size of the introduced load torque disturbance
is +3 (N-m).

Table 1. Grouping of simulation.

Group 1 2 3 4 5
] (kg-mz) 0.0003 0.0006 0.0009 0.0012 0.0015
200% T T T T T T T T T
O —© no disturbance
—=& torque disturbance
= 150% o - 1€ dl _
e inertia disturbance
b
&0
S 100%[ 7
S
S 50% §
0 P ® Q Q Q
1 2 3 4 5

Group

Figure 5. Experimental results of the different disturbance types.

According to the data in Table 1, it can be seen that there are obvious differences in
the magnitude of change of Ab (k) when the type of disturbance is different. After setting
the standard threshold Abg(s) according to the data in Figure 5, the error gain factor model
is added to the identification algorithm. When Abg (k) changes and the amplitude is less
than Abg(s), the disturbance is caused by the change in the moment of inertia. Then, the
adaptive module is activated to adjust the value of the control parameter p in a small
amount to improve the identification effect. When Abg (k) changes and the amplitude is
greater than Abg(s), the disturbance is caused by the external disturbance of the system.
Then, the control parameter 8 can be greatly adjusted to make the system return to normal
in a short time. The actual values of B and the standard threshold Abg(s) are shown in
Figure 6. Figure 6 is the working flow chart of the error gain factor module.
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Collect 8, w, T,
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Calculate AT( w), Abg*(k)
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Figure 6. Work flow chart of the error gain factor module.

3. Simulation of EGF-MRAS Identification Algorithm
3.1. Simulation Design of Identification Algorithm

In order to verify the feasibility of the identification algorithm proposed in this paper,
a PMSM dual closed-loop control simulation system was built according to the schematic
diagram shown in Figure 2. The parameters of the PMSM model are shown in Table 2. For
the convenience of adjustment, the moment of inertia of the PMSM is set as an external
input. The moment of inertia identification module with an error gain factor is added to the
double closed-loop control system. Then, the simulation experiment of the identification
algorithm is carried out.

Table 2. Parameter settings of the PMSM model.

Parameter Value
Number of phases 3
Pole pairs 2
Back EMF waveform Sinusoidal
Rotor type Round
Mechanical input 1 Torque Ty,
Mechanical input 2 Inertia |
Stator phase resistance/(ohm) 0.8
Armature inductance/(H) 3.95 x 1074
Flux linkage/(Wb) 0.1852

In order to verify the rapidity, accuracy, and stability of the design method in this paper,
an identification algorithm based on the difference integrator proposed in the literature [18]
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is introduced as a comparison experiment. This algorithm adds a difference integrator
to the MRAS to improve the speed of the identification algorithm. The error gain factor
algorithm (EGF-MRAS), the traditional MRAS algorithm, and the identification algorithm
based on the difference integrator will be compared and analyzed in the following section.

3.2. Simulation Analysis

First, set the speed and torque of the PMSM, and then set the input of the moment
of inertia as a changing signal. Then, three different identification algorithms are used to
identify the moment of inertia. The following will analyze the identification result curve.

In order to quantify and compare the identification effects of the three algorithms,
this paper designs the identification effect accuracy parameters of Py, Pg, and P,. The
calculation formula of the parameters is defined as follows:

P, = Il 5 100%,
Pg = JmsJuin  1002%, (15)

Py = togy, — to-

Among them, the overshoot parameter P, is the maximum overshoot of the identifica-
tion result after the moment of inertia changes. The stability parameter Pg is the degree
of fluctuation when the identification result reaches a steady state after the moment of
inertia changes. The speed parameter P, is the time required for the identification result
to reach 90% of the standard value after the moment of inertia changes. Calculating each
performance parameter separately in the simulation results can quantitatively analyze
the identification performance of each algorithm. P, and P, can characterize the dynamic
performance of the identification algorithm. Py can characterize the steady-state perfor-
mance of the identification algorithm. The simulation experiment group setting is shown in
Table 3.

Table 3. Simulation groups of algorithms.

Group Algorithm
(@) EGF-MRAS algorithm
(b) MRAS algorithm
(c) Error integrator adaptive algorithm

First, under steady-state conditions, these three algorithms are used for identification.
Record the identification result and calculate the stability parameter Pg. Then, set the
dynamic conditions, the identification algorithm starts at f = 0 s, and the moment of inertia
changes at t = 1 5. Three sets of identification results are recorded in order to calculate the
overshoot parameter P, and the speed parameter P,.

The stability parameter in Table 4 shows Pg(a) < Pg(b) < Pg(c). Combined with the
steady-state identification result curve in Figure 7, it can be seen that (a) the EGF-MRAS
algorithm has the best stability, whereas (c) the MRAS algorithm has the worst stability.

Table 4. Calculation results of the accuracy parameters.

Groups P, Pﬁ P,
a 6.6% 2.9% 0.025s
13.7% 0.179 s

c 7.2% 6.6% 0.062 s
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Figure 7. Simulation results of group (a), group (b), and group (c).

It can be seen from the dynamic identification result curve in Figure 7 that the tracking
speed of curve (a) and curve (c) in the initial stage is significantly greater than that of curve
(b). At the moment when the moment of inertia changed, P, (a) ~ Py(c) < Py(b). The
EGE-MRAS algorithm and the error integrator adaptive algorithm can follow the changes
of the system’s moment of inertia faster, and have a better speed performance. The over-
shoot parameter shows that P,(a) < P,(c). This means that the error integrator adaptive
algorithm has a larger overshoot than the other two algorithms. It can be clearly seen
from a comprehensive comparison that the EGF-MRAS algorithm has better identification
performance under both steady-state and dynamic conditions. It is proven that the error
gain factor has a good optimization effect for the identification algorithm.

4. Experimental Verification
4.1. Construction of the Experimental Platform

In order to verify the identification effect of the EGF-MRAS algorithm used in this
paper, a PMSM control platform with an adjustable moment of inertia was built to identify
the moment of inertia. The encoder is used to collect the motor speed. The adjustment
of the PMSM moment of inertia is achieved by adding stainless-steel half shaft sleeves.
The off-line algorithm has the characteristics of a high identification accuracy, and the
off-line algorithm acceleration and deceleration method is introduced here. This method
is used to measure the new moment of inertia of the motor after the stainless-steel half
shaft sleeves is installed. The result can be used as the basis for judging the accuracy of the
identification result.

The experiment uses one AC synchronous servo motor, several stainless-steel half
shaft sleeves, 2500PPR incremental encoder, CSPACE, and the motor drive circuit board.
CSPACE is a fast control prototype based on TMS320F28335DSP. It has AD, DA, IO, Encoder,
PWM, and other simulation functions. After the control algorithm has been designed in
MATLAB/Simulink, the DSP code can be generated and the corresponding control signals
can be generated.

Figure 8 is the photo of the experimental platform. Table 5 shows the motor parameters
for the experiment.
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Figure 8. Experiment platform.

Table 5. Parameters of the PMSM.

Parameter Value
motor type ASM200-36-1250/2500
Excitation mode Permanent magnet
Number of Pole Pairs 4
Line resistance 0.33 Q2
Line inductance 0.9 mH
Rated voltage 36V
Rated torque 1.276 N-m
Rated current 75A
Maximum speed 3000 rpm
Motor weight 1.1kg

A set of simple experiments is used to verify the feasibility of the acceleration and de-
celeration algorithm. Moment of inertia of the experimental motor | = 6.30 x 10~#(kg-m?).
The offline algorithm identification results are organized in Table 6.

Table 6. Acceleration and deceleration method measurement results.

w (rad/s) 0 820 820 0
t(s) 0 0.052 1 1.051

The data in Table 7 are calculated using Equation (16):

At

] = Te'@- (16)
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Table 7. Comparison of the calculation results.
Groups T Ja I T
J (x10~* kg-m?) 6.34 6.24 6.29 6.30

The error between the calculated result of | and the actual value J, is less than 0.5%.
The accuracy of this offline algorithm is proven. The standard values of the moments of
inertia at each level after the addition of each group of the stainless-steel half shaft sleeves
are calculated as the standard for the subsequent online identification experiment results.

Magnetic powder brakes are used to generate load torque.

The 2500CPR incremental encoder is used to calculate the speed of the motor. The
encoder adopts a grating structure. The grating disc rotates synchronously with the motor
shaft, with a loop of 4 x 2500 pulses. So, the calculation formula of speed is as follows:

Q(k) = Q(k=7)

M= rxaxaso <o (17)

Among (17), n, is the actual speed of the motor in rpm. T is the sampling period. Q(k)
is the number of encoder pulses collected at time k. In the experiment process, the set value
of the speed loop can be modified by the computer in real time.

4.2. Design of the Experiment

The three identification algorithms are added into the controller. The identification
performance of the three algorithms is analyzed by comparison experiment. The grouping
method of the comparison experiment of the identification algorithm is shown in Table 8.

Table 8. Experiment groups of algorithms.

Group Algorithm
(@) EGF-MRAS algorithm
(b) MRAS algorithm
(c) Error integrator adaptive algorithm

Firstly, the stability and velocity of the three algorithms are compared pairwise without
external disturbance, and the accuracy parameters are calculated. Secondly, the speed
disturbance is introduced to compare the anti-disturbance ability and the recovery ability of
the three algorithms when the speed changes. Finally, the stability and velocity of the three
algorithms are verified by adding a stainless steel sleeve to change the moment of inertia.

4.3. Experimental Results and Analysis

Experiment (i): Compare the EGF-MRAS algorithm (a) with the MRAS algorithm (b)
under dynamic speed.

The standard value of the experimental motor’s moment of inertia is 6.3 x 10~ (kg-m?).
In order to facilitate the calculation of the moment of inertia, the speed jitter is not
completely filtered out. Figure 9 shows the identification results of the Algorithm (a)
and Algorithm (b) experiments recorded from the start state of the motor. The calcula-
tion results of the accuracy parameters in Figure 9 are recorded in Table 9. In Figure 9,
AJ(a) e = [J(a) =] /T is defined.
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— — — — Reference
Real value

Speed(rpm)

— — — — Reference
Group(a)
Group(b) |]

Rotational Inertia

03 04 05 06 07 08 09 1

t(s)

Figure 9. Steady-state identification results of Experiment (i).

Table 9. Calculation results of the accuracy parameters of Figure 9.

Groups P, Pg P,
(a) 15.6% 12.7% 0.090 s
(b) 16.0% 19.6% 0.239 s

From the experimental results in Figure 9 and the calculation results in Table 9, it
can be seen that the overshoots of the two sets of experimental results are almost equal.
However, a comparison of the calculation results of Pg and P, shows that EGF-MRAS
algorithm is 6.9% higher than MRAS algorithm in terms of stability. The EGF-MRAS
algorithm is 60.8% higher than MRAS algorithm in terms of identification speed. The
starting stage of the motor is about 0.1 s. At the end of the starting stage the motor runs
relatively smoothly, and the EGF-MRAS algorithm can quickly and accurately calculate the
moment of inertia. So, EGF-MRAS algorithm has better stability and speed.

The most common fluctuation in the actual servo system is the speed disturbance.
Therefore, the experiment of rotational speed disturbance was carried out. Under the
condition of keeping the moment of inertia unchanged, experiments were carried out on
the appearance of rotation speed disturbance, and the results are shown in Figure 10.

— — — — Reference
Real value

120]

Speed(rpm)
s

'S
=3

— — — — Reference!
— Group(a) |
Group(b)

-
T

Rotational Inertia
(kg'm®)

.................

o - -
(=2}
o - ——
g
o b — -
©
o - —
©

t(s)

Figure 10. Speed interference identification results of Experiment (i).
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From the experimental results in Figure 10 and the calculation results in Table 10, it
can be seen that MRAS algorithm is greatly affected by speed fluctuations.The overshoot
of the EGF-MRAS algorithm is significantly lower than that of the MRAS algorithm. This
means that the EGF-MRAS algorithm effectively suppresses the influence of the speed
interference on the overshoot of the moment of the inertia identification result.

Table 10. Calculation results of the accuracy parameters of Figure 10.

Groups P, Pg
(@) 31.0% 12.7%
(b) 128.7% 28.6%

Experiment (ii): Compare the EGF-MRAS algorithm (a) with the error integrator
adaptive algorithm (c) under dynamic speed.

The experimental results from the start state to the steady state of the motor are
recorded in Figure 11.

200 T T

— — — — Reference [
Real value

Speed(rpm)
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(kg'm?)
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07 08 09 1

Figure 11. Steady-state identification results of Experiment (ii).

From the experimental results in Figure 11 and the calculation results in Table 11, it
can be seen that the overshoot of Algorithm (c) is slightly higher than Algorithm (a), which
is about 2% higher. Algorithm (a) is 27.8% faster than that of Algorithm (c) in terms of the
identification speed. Algorithm (a) is also 8.4% higher in stability than Algorithm (c). The
comparison of the accuracy parameters Py, Pg, and P, shows that the dynamic performance
of the EGF-MRAS algorithm is better than that of the difference integrator algorithm.

Table 11. Calculation results of the accuracy parameters of Figure 11.

Groups P, P,; P,
(a) 15.4% 12.7% 0.090 s
(c) 17.2% 21.1% 0.115s

Figure 12 shows the experimental results of the appearance of the rotation speed
interference while keeping the moment of inertia unchanged, and compares and analyzes
the identification effect of the moment of inertia.
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Figure 12. Speed interference identification results of Experiment (ii).

It can be seen from the experimental results that Algorithm (c) suppresses the in-
terference caused by the speed disturbance to some extent, which is 33.9% higher than
the algorithm (b) in Experiment (i). However, the suppression effect of Algorithm (a) is
much better. Algorithm (a) is 46.3% higher than Algorithm (b) according to the accuracy
parameters in Tables 10 and 12. Therefore, among the three groups of algorithms, the
EGF-MRAS algorithm has the strongest anti-interference performance.

Table 12. Calculation results of the accuracy parameters of Figure 12.

Groups P, Pﬂ
(a) 31.0% 12.7%
(c) 77.3% 21.1%

Experiment (iii): Verification experiment under dynamic load torque.

After the motor runs to steady state, the load torque is changed through the magnetic
particle brake connected to the rotating shaft.

Figure 13 shows the identification results under dynamic load torque. It can be seen
from the experimental results that Py (a) = 18.3% and P,(b) = 50.8%. Algorithm (a) has
less errors and a faster recovery speed than Algorithm (b) under dynamic load torque.
The identification accuracy of Algorithm (a) is also higher when the load torque tends
to be stable. Therefore, the EGF-MRAS algorithm has better stability than the traditional
MRAS algorithm.
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Figure 13. Identification results of Experiment (iii).
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Experiment (iv): Verification experiment under different moment of inertia.

Figure 14 shows the calculation results of parameters Py and P, under three different
moments of inertia. The three abscissa values in the figure represent the standard value
of the moments of inertia after 0, 1, and 2 groups of half shaft sleeves are installed on the
motor shaft. It shows Pg(a) < Pg(c) < Pg(b), Py(a) =~ Py(c) < Py(b). In the process of
increasing the moment of inertia, the relationship between the accuracy parameters of each
algorithm remains unchanged. This proves that the EGF-MRAS algorithm has a better
dynamic performance under different working conditions.
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Figure 14. Comparison of the parameters Pg and P, under different inertia.

5. Conclusions

In actual engineering, the identification effect of the moment of inertia of the servo
motor has a great influence on the accuracy of its control system and on its other perfor-
mances. Aiming at the shortcomings of the traditional MRAS identification algorithm in
terms of stability and speed, this paper proposes an improved algorithm based on the
error gain factor model. The calculation formula for the accuracy parameter is established.
Through multiple sets of experimental analyses, the conclusions are as follows:

(1) The PMSM motion control model is established. Under the condition of the change
of the moment of inertia, the relationship between the motor speed and the electromagnetic
torque is obtained, and the PMSM’s moment of inertia identification model is established
with the motor speed and the electromagnetic torque as the input parameters.

(2) The error gain factor is introduced to optimize the MRAS algorithm. Under
dynamic conditions, the improved algorithm is compared with the two existing algorithms
to verify the identification effect, which proves that the algorithm proposed in this paper
has a higher speed, accuracy and stability.

(3) An experimental platform is set up to compare the identification results of the EGF-
MRAS algorithm with the two existing algorithms under a variety of different working
conditions. It is verified that the speed of the improved identification algorithm increased
by about 55%, and the stability increased by 10-15% under dynamic speed. Under dy-
namic load torque conditions, the algorithm has a stronger anti-interference ability and
higher accuracy. The EGF-MRAS algorithm effectively solves the problem of the poor anti-
interference ability of the existing algorithm without reducing the identification accuracy,
and improves the performance of the PMSM servo system.
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