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Abstract: This paper demonstrates the use of Kane’s method to derive equations of motion for a
spar-type floating offshore wind turbine taking into account the flexibility of the members. The
recently emerged Kane’s method reduces the effort required to derive equations of motion for
complex multi-body systems, making them simpler to model and more readily solved by computers.
Further, the installation procedure of external vibration control devices on the wind turbine using
Kane’s method is described, and the ease of using this method has been demonstrated. A tuned mass
damper inerter (TMDI) is installed in the tower for illustration. The excellent vibration mitigation
properties of the TMDI are also presented in this paper.

Keywords: flexible multi-body dynamics; Kane’s method; floating offshore wind turbines; control;
tuned mass damper inerter

1. Introduction

The rapid expansion of global wind energy capacity from 59.1 gigawatts (GW) [1] in
2005 to 743 GW [2] in 2021 has been mainly due to developments in wind turbine technol-
ogy during this period. With the increasing demand for renewable energy, researchers have
worked actively to study the dynamic behavior of wind turbines. These structures have
now grown to be the largest rotating structures on Earth. It is not uncommon to have tower
heights greater than 100 m and blade lengths exceeding 80 m. Indeed the current trends
indicate that these components will continue to increase in size for the foreseeable future.
The increase in the size of wind turbine components has led to increased flexibility and
dynamic structural effects that cannot be ignored in design. The harsh environment that
these structures are necessarily placed in further complicates matters. Offshore wind tur-
bines are subjected to large magnitude turbulent aerodynamic loading and hydrodynamic
loads from waves and current. Floating offshore wind turbines (FOWTs) have recently
been proposed and developed, and these structures are inherently more dynamic than
traditional fixed-base offshore wind turbines. With bigger structural components and
floating support structures, the general assumptions made by most design codes of small
deflections and the application of loads on the undeformed structure do not hold. As a
result, modeling of FOWTs has become an increasingly important area of research in the
wind turbine industry. These models have been used for structural control and health
monitoring, fatigue analysis, optimised design, etc. Much work has taken place in this area
in the last decade.

Many researchers have developed dynamic models based on the Euler–Lagrange
energy formulation approach. One of the earliest such models was developed by Murtagh
et al. [3] for onshore wind turbines. The dynamics of onshore wind turbines have been
extensively studied using Euler–Lagrange models for applications such as structural con-
trol [4–10], structural health monitoring [11,12], soil-structure interaction [13–17], etc. Eu-
ler–Lagrange models have also been used to model offshore wind turbines. Dinh et al. [18]
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developed FOWT models with a view to vibration control of their structural components.
Lackner [19,20] also developed FOWT models for use in structural control applications.
The dynamics of FOWTs were also studied in several works [21–24]. Dynamics of spar-type
offshore wind turbines were studied in Karimirad and Moan [21,23]. Waris et al. [22]
studied the dynamics of offshore wind turbines with different kinds of heave plates and
mooring systems.

Multi-body dynamic models have also been developed for offshore wind turbines.
FAST [25,26], an open-source wind turbine simulation tool developed by the National
Renewable Energy Laboratory (NREL) in the United States, is one of the most popular tools
used to simulate the dynamic behaviour of wind turbines. FAST models the wind turbine
as a multi-body system using Kane’s method [27] similar to the works in [28–33]. Similar to
FAST, HAWC2 [34] was developed in the Technical University of Denmark, Risø to study
the dynamics of horizontal axis wind turbines. Numerical codes such as FAST, HAWC2,
the one developed in this paper, etc., can be further validated against experimental results.
One such database of test cases is provided in [35]. Although models such as FAST and
HAWC2 have been developed, little publication on the formulation FOWTs is available.
It is not easy to find detailed work describing the formulation of the FOWT equations of
motion and subsequent dynamic analysis in the published literature.

The literature reviewed in this section summarises the different approaches that
researchers have used for the dynamic modeling of flexible multi-body wind turbines and
their foundations, ranging from simple lumped mass models to sophisticated finite element
models. Much work has been done in the field of FOWT dynamics. However, literature is
unavailable on the formulation and modeling of FOWTs using the recently emerged Kane’s
method. Therefore, the scope of this paper is enlisted as follows.

1. The paper demonstrates in detail the use of the recently emerged Kane’s method in
deriving the equations of motion of flexible multi-body systems like FOWTs. The
method presented here is general and applies to any wind turbine or mechanical
system. Such detailed discussion on Kane’s method for flexible multi-body modeling
is unavailable in the literature.

2. The paper details the powerful vector approach brought about by Kane’s method,
which allows the formulation of the dynamics of the complex wind turbine system
relatively easy.

3. The paper further demonstrates the installation method of an external damper in the
FOWT using Kane’s method. The purpose of this exercise is to emphasize the ease of
using Kane’s method in augmenting/coupling the system equations with an auxiliary
device. Again, the steps presented here are general and apply to any auxiliary device.

Modern-day wind turbines are a combination of large flexible components which undergo
large deformations and rigid bodies. The various parts of the wind turbine come together to
extract kinetic energy from the inflow wind. The blades of a multi-megawatt wind turbine
are mounted on the hub at the tip of the low-speed shaft. The shaft is often tilted up, and
the blades are coned to avoid tower strikes during operation. The conversion of mechanical
torque to electrical power has quite a few stages and involves many components. Modeling
such a wind turbine requires a detailed multi-body approach. A multi-body approach
consists primarily of provisions made to accommodate the fact that reference frames play a
central role in connection with many of the vectors of interest that determine the dynamics
of the wind turbine system. Every component of the wind turbine must be defined in its
own coordinate system/reference frames. The inclusion of multiple coordinate systems
to model various components of a system limits the use of classical methods (like energy
methods) in deriving equations of motion. A vector approach is hence required to replace
the classical scalar approaches. Kane’s method has been shown to reduce the effort required
to derive equations of motion for complex multi-body systems, making them simpler to
model and more readily solved by computers. In this study, Kane’s method [27] is used to
derive the dynamic equations of a flexible wind turbine. Throughout the study, bold upper
case letters are used for matrices, and bold lower case letters are used for vectors.
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2. Methodology

This section presents the development of the flexible multi-body dynamic model for
the FOWTs. In the following sections, the assumptions made to facilitate the development
of the equations of motion are presented first. The following sections present the kinematics
and kinetics of the system. Then, the dynamic loads on the turbine are described briefly.
This section concludes with a discussion on structural control of wind turbine towers using
passive tuned mass inerter dampers (TMDIs).

2.1. Assumptions

The wind turbine is modelled as a flexible multi-body dynamical system. The various
components of importance are the tower, the nacelle, the generator, the gearbox, the low-
speed shaft, the hub, and the blades. The tower, the blades, and the low-speed shaft are
the flexible components of the wind turbine. Modal analysis is often used to study the
dynamics of flexible members. The tower is modelled using the first and second modes
in fore-aft and side-to-side directions. Futhermore, the first two modes in flapwise and
the first mode in edgewise directions are used for the blades. It is assumed that since the
members are highly flexible, the first few modes will capture the dynamics with sufficient
accuracy [36]. The degrees of freedom that define the motion of a floating offshore wind
turbine are the platform motions, the tower vibrations, the nacelle yaw motion, the torsional
distortion of the low-speed shaft, the generator azimuth angle, and the elastic deflections
of the three blades. Therefore, the degrees of freedom for a three-bladed wind turbine can
be written as

q =[qSg qSw qHv qR qP qY qTFA1 qTSS1 qTFA2 qTSS2 qyaw qGeAz qDrTr...

... qB1F1 qB1E1 qB1F2 qB2F1 qB2E1 qB2F2 qB3F1 qB3E1 qB3F2]
T (1)

Therefore, a 22 degrees of freedom model will be derived to model the wind turbine. The
degrees of freedom are also denoted by numbers 1 to 22 in the same sequence as presented
in Equation (1). The degrees of freedom are schematically shown in Figure 1. A list of the
DOFs is presented in Appendix A. Throughout the study, the name of the DOF and its
corresponding number will be used interchangeably. Coordinate systems will be assigned
to each component, and the motion in its local reference frame will be transformed to the
global/inertial reference frame. In the following sections, the coordinate systems required
for the wind turbine will be defined, followed by the system’s kinematics and, finally, the
system’s kinetics, which will be used to derive the equations of motion.

Figure 1. Schematic diagram of the degrees of freedom.



Energies 2021, 14, 6635 4 of 43

2.2. Coordinate Systems

As mentioned earlier, individual components of the floating offshore wind turbine
are modelled in their local reference frames. A combination of small angle approximation
(small angle rotation) and Euler angles (Euler rotation) are used to establish transformation
relations between the coordinate systems. Three consecutive rotations θ1, θ2 and θ3 about
three mutually orthogonal axes (X̂1, X̂2, X̂3) result in a set of orthogonal axes (x̂1, x̂2, x̂3).
This transformation with small angle approximation can be defined asx̂1

x̂2
x̂3

 ≈
 1 θ3 −θ2
−θ3 1 θ1
θ2 −θ1 1


︸ ︷︷ ︸

T

X̂1
X̂2
X̂3

 (2)

The small angle approximation makes the transformation independent of the order of
rotation. Here, the approximation sign is used since the transformation matrix T is not
orthonormal and hence the resulting set of axes are not orthogonal to each other. The
nearest orthonormal matrix is hence obtained by Singular Value Decomposition (SVD). The
nearest orthonormal matrix in Frobenius norm sense TO is given as

TO = UV ′ (3)

where the columns of U contain the eigenvectors of TT ′ and the columns of V contain
eigenvectors of T ′T . This follows from the result of SVD of T obtained as

T = UΣV ′ (4)

where Σ is a diagonal matrix containing the singular values of T . Σ can be obtained as

Σ =
√

eigenvalues of TT ′ =
√

eigenvalues of T ′T (5)

The matrix TO(θ1, θ2, θ3) will be used to define transformations about three mutually
perpendicular axes (X̂1, X̂2, X̂3) when small angle approximation is employed. The different
coordinate systems used are defined as follows.

To accurately model a multi-body system like an offshore wind turbine, the kinematics
of each sub-component of the wind turbine is first written in its local reference frame and
then referred back to the inertial (global) reference frame denoted by ẑ. Figure 2 shows
the different reference frames used in this paper. As shown in Figure 2, local coordinate
systems/reference frames are attached to the floating platform (â), tower nodes along
the height of the tower, the tower-top (b̂), the nacelle (d̂), non-rotating reference frame
attached to the low-speed shaft (ĉ) and rotating reference frame (ê) of the rotor and the
blades (ĝ). To accurately model the blades, they are first coned (î) then pitched (not
pictured in Figure 2). Node-fixed coordinate systems are defined on the blades which
are further rotated according to the elastic deflection of the blades in out-of-plane and
in-plane directions. These blade node-fixed reference frames are used to estimate and
return aerodynamic loads. The platform and the blades and the tower deforms/rotates
simultaneously about more than one axis. Therefore, Euler rotation matrix cannot be used
to define the transformation between two reference frames. However, as the magnitude
of these angles is relatively small, the approximation derived in Equation (3) is used. All
coordinate systems used in this paper are described in details in Appendix B.
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Shaft Tilt

Cone Angle

Figure 2. Coordinate systems for Spar Type FOWT [30].

2.3. Kinematics

With all the required coordinate systems on the FOWT defined, the next step is to
define the kinematics of the FOWT. For that, first important points on the turbine are
identified that describe the kinematics of the entire system. The important points that
describe the motion are as follows: Z (tower-base), T (tower node), O (tower-top/base-
plate/yaw bearing mass centre), U (nacelle centre of mass), Q (apex of conning angle),
C (hub centre of mass), S1 (blade nodes for blade 1), S2 (blade nodes for blade 2) and
S3 (blade nodes for blade 3). The various reference frames of importance are denoted as:
E (earth/inertial), X (tower base), F (tower body element), B (tower-top/base-plate), N
(nacelle), L (low speed shaft on rotor end), M1 (blade 1 element body), M2 (blade 2 element
body), M3 (blade 3 element body) and G (high speed shaft/generator).

The complete kinematic description involves defining the position, velocity and
acceleration of each rigid and flexible member of the turbine. For brevity, all equations
are presented in Appendix B. With the kinematics of the system defined, the kinetics and
equations of the motion of the FOWT can be derived as presented in the next section.

2.4. Kinetics and Kane’s Equation of Motion

In this section, the equations of motion of a 3-bladed floating offshore wind turbine
will be derived. As per [27], Kane’s equations of motion for a holonomic system with
22 DOFs are stated as

Fr + F∗r = 0 for r = 1 to 22 (6)

where Fr and F∗r are the generalised active and the generalised inertia forces respectively.
In a set of n rigid bodies characterised by reference frame Ni and centre of mass point Xi
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the generalised active and inertial forces are given as

Fr =
n

∑
i=1

EvXi
r · Fi + EωNi

r ·MNi for r = 1 to 22

F∗r = −
n

∑
i=1

EvXi
r ·

(
mNi EaXi

)
− EωNi

r · EḢNi for r = 1 to 22
(7)

At every rigid body Ni, the active forces are applied at the centre of mass Xi. The time
derivative of the angular momentum of rigid body Ni about its centre of mass Xi is obtained
as [27]

E ḢNi = INi · EαNi + EωNi × INi · EωNi (8)

The mass of the platform, the tower, the yaw bearing, the nacelle, the hub, the blades and
the generator contribute to the total generalised inertia force

F∗r = F∗r
∣∣∣
X
+ F∗r

∣∣∣
T
+ F∗r

∣∣∣
N
+ F∗r

∣∣∣
H
+ F∗r

∣∣∣
B1

+ F∗r
∣∣∣
B2

+ F∗r
∣∣∣
B3

+ F∗r
∣∣∣
G

(9)

Generalised active forces are the forces applied directly on the wind turbine system,
constraint forces (springs/links) between the various rigid bodies and internal elastic
forces within flexible members. The forces that are applied directly on the offshore wind
turbine system include the hydrostatic, hydrodynamic and mooring forces on the floating
platform, the aerodynamic forces acting on the blades and the tower and the gravitational
forces acting on the entire wind turbine etc. It must be noted here that the gear box friction
forces are neglected in this paper. Yaw springs and damper act as constraint forces between
the tower and the nacelle. Elasticity of the tower, the blades and the low-speed shaft also
contribute to the generalised active forces. Thus the total generalised active force can be
given as

Fr = Fr

∣∣∣
HydroX

+ Fr

∣∣∣
AeroT

+ Fr

∣∣∣
AeroB1

+ Fr

∣∣∣
AeroB2

+ Fr

∣∣∣
AeroB3

+ Fr

∣∣∣
GravX

+ Fr

∣∣∣
GravT

+ Fr

∣∣∣
GravN

+ Fr

∣∣∣
GravH

+ Fr

∣∣∣
GravB1

+ Fr

∣∣∣
GravB2

+ Fr

∣∣∣
GravB3

+ Fr

∣∣∣
YawSprng

+ Fr

∣∣∣
YawDamp

+ Fr

∣∣∣
Gen

+ Fr

∣∣∣
Brake

+ Fr

∣∣∣
ElasticT

+ Fr

∣∣∣
ElasticB1

+ Fr

∣∣∣
ElasticB2

+ Fr

∣∣∣
ElasticB3

+ Fr

∣∣∣
DampT

+ Fr

∣∣∣
DampB1

+ Fr

∣∣∣
DampB2

+ Fr

∣∣∣
DampB3

+ Fr

∣∣∣
ElasticDrive

+ Fr

∣∣∣
DampDrive

(10)

Kane’s equations of motion can be written in matrix form as

M(q, t)q̈ + f(q̇, q, t) = 0⇒M(q, t)q̈ = −f(q̇, q, t) (11)

The above equation can be readily solved by a computer using any numerical time inte-
gration scheme. This study recommends the use of Runga–Kutta 4th order method or the
Adams-Bashforth-Moulton 4th order predictor–corrector method. The kinetic description
of each individual component is provided in Appendix C.

2.5. Wave–Current Interaction Model

Airy wave theory is used to model the wave–current interaction considering the effect
of an underlying current [37,38]. Two-dimensional flow is considered, i.e., waves travelling
in a favourable and adverse direction to the underlying current. To describe the flow-field, a
coordinate system is established with its origin placed on the mean water level (MWL) with
the x-axis denoting the horizontal axis and the z-axis denoting the vertical axis pointing
upwards as shown in Figure 3. In Figure 3, η(x, t) denotes the time-varying water surface
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elevation and U(z) denotes the current velocity profile as a function of z without waves.
The still water depth is denoted by hw.

z

x

U(z)

η(x, t)

Mean water level

hw

Seabed

Figure 3. Coordinate system for wave–current interaction definition.

2.5.1. Regular Wave on Current

When the waves travelling on an underlying current has relatively small amplitudes,
the velocity field can be expressed as the summation of the flow due to the current and
surface wave as [39,40]

uT(x, z, t) = U(z) + u(z) cos(κx−ωt) (12)

wT(x, z, t) = w(z) sin(κx−ωt) (13)

where U(z) is the current velocity as a function of z; ω and κ are the angular frequency
and the wave number respectively. It must be noted that ω is the apparent frequency
considering the effect of the underlying current [41]. In the above equations, uT(x, z, t) and
wT(x, z, t) are the flow velocities in the horizontal and the vertical directions respectively,
and u(x, z, t) and w(x, z, t) are the wave velocities using the first-order term [39] in the
horizontal and the vertical directions respectively. Using the Airy wave theory, the free
surface wave elevation η is obtained as

η(x, t) = A cos(κx−ωt) (14)

where A = is the amplitude of the surface wave. For a given free surface function
and a uniform or linear current profile, the flow velocity can be solved analytically
(d2U(z)/dz2 = 0) (see [40] for details), as

uT(x, z, t) =U(z) + A(ω− κU0)
cosh[κ(z + hw)]

sinh(κhw)
cos(κx−ωt) (15)

wT(x, z, t) =A(ω− κU0)
sinh[κ(z + hw)]

sinh(κhw)
sin(κx−ωt) (16)

where U0 = the current velocity at z = 0. Futhermore, the corresponding dispersion
relation is

(ω− κU0)
2 =

[
gκ − (ω− κU0)

dU
dz

]
tanh(κhw) (17)

valid for uniform and linear shear currents. The flow field can be determined using
Equations (15) and (16) after obtaining the wave numbers by solving Equation (17).
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2.5.2. Irregular Waves on Current

To evaluate the effect of the underlying current on irregular waves, the Equations (15)
and (16) are combined with a spectral model. The effect of the underlying current on the
wave spectrum is modelled as [37]

S(ω, U) =
4S(ω)(

1 +
√

1 + 4ωU/g
)2√1 + 4ωU/g

(18)

where the expressions S(ω, U) and S(ω) denote the wave spectra with and without the
current respectively. It can be noted that, as ω →−g/4U, the wave is unable to propagate
against the current and the wave breaks. The above equation is valid only for 1+ 4ωU/g >
0 when waves are travelling on top of an adverse current. To handle the wave breaking
case, refs. [42,43] defined an “equilibrium limit” for deep water as

SER(ω, U) =
A∗g2

(ω− kU)5
1

1 + 2U(ω− κU)/g
(19)

where the equilibrium range is denoted by subscript ER and A∗ is a constant between 0.008
and 0.015 [44]. During wave breaking, Equation (19) is used instead for a wave frequency
when S(ω, U) > SER(ω, U).

Finally, the water surface elevation is expressed as

η(x, t) =
N

∑
j=1

Aj cos(k jx−ωjt + φj) (20)

where φj is a uniformly distributed random phase angle between 0 to 2π and N de-
notes the number of wave components. The amplitude of the jth wave is given as

Aj =
√

2S(ωj, U)∆ω with ∆ω the frequency interval. The corresponding flow veloci-
ties are given as

uT(x, z, t) =U(z) +
N

∑
j=1

Aj(ωj − κjU)
cosh

[
κj(z + hw)

]
sinh(κjhw)

cos(κjx−ωjt + φj) (21)

wT(x, z, t) =
N

∑
j=1

Aj(ωj − κjU)
sinh

[
κj(z + hw)

]
sinh(κjhw)

sin(κjx−ωjt + φj) (22)

The accelerations can be obtained from the preceding equations, as

u̇T(x, z, t) =
N

∑
j=1

Ajωj(ωj − κjU)
cosh

[
κj(z + hw)

]
sinh(κjhw)

sin(κjx−ωjt + φj) (23)

ẇT(x, z, t) =−
N

∑
j=1

Ajωj(ωj − κjU)
sinh

[
κj(z + hw)

]
sinh(k jhw)

cos(κjx−ωjt + φj) (24)

where the wave-number κj is obtained by solving Equation (17) for each wave component.
Figure 4 presents an example of the Pierson–Moskowitz spectrum with and without an
underlying linear current. The significant wave height is 3 m, the peak spectral period is
6 s and surface current velocity of the underlying uniform current profile is 0.609 m/s [45].
It can be observed that there is a reduction of the wave spectrum peak in the presence of an
underlying current.
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Figure 4. Pierson–Moskowitz spectrum with and without an underlying current.

2.6. Aerodynamic Loads

The popular Blade Element Momentum (BEM) theory is used in this paper to estimate
the aerodynamic loads on the wind turbine. The TurbSim [46] package is used to create
the 3D wind fields. TurbSim [46] generated wind fields account for spatial coherence
of the turbulence along with vertical and horizontal wind shear. The package takes the
characteristic wind speeds at a reference height, turbulence intensity level, and wind
power-law coefficients for wind shear as some of the primary inputs. The BEM program
used in this paper interpolates the wind speeds at the blade nodes from the TurbSim wind
fields. It estimates aerodynamic loads using the blades’ quasi-static aerodynamic properties
(i.e., lift and drag). The BEM theory is widely available in the literature [47–49] and is not
repeated here.

A new solution approach proposed by Ning [50] was used here to solve the BEM
equations. In this approach, a 1D root finding method (fzero in MATLAB) is to find the
unknown inflow angle instead of solving the three-dimensional problem of finding the
tangential and the axial induction factors. Different equations are used in the momentum,
empirical, and propeller brake region to form the solution in this approach. Furthermore,
the empirical region is modified using Glauert’s correction with Buhl’s modification. As de-
scribed by [50], using different equations for the different regions enables us to circumvent
the traditional two-point iterative procedure of solving the BEM equations. To account for
the vortices generated by the blade tips and the hub, Prandtl’s hub, and tip loss correction
factors are also included in the program. The Pitt and Peters correction for skewed inflow
has also been included in the program. The solution of the BEM equations at a radial
distance r gives the lift and drag forces on the blades a radial distance r from the root of
the blade. The out-of-plane force (thrust) and in-plane force (torque) on the blades is then
estimated from the lift and drag forces. These forces are then integrated along the length of
the blades to obtain the total forces on the blades. For details on the procedure, please refer
to [51].

2.7. Hydrodynamic Loads

The hydrodynamic loads on the cylindrical spar of the wind turbine is estimated using
Morison’s equation. Morison’s equations together with strip theory is used to estimate the
linear wave inertia forces and the non-linear viscous drag forces. The total wave loads on
the platform is estimated by integrating the elemental forces along the length/depth of
the platform. The hydrodynamic forces on a strip dz of the platform in surge and sway
directions respectively are given as
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dFP
i (z, t) =−CAρ

(
πD(z)2

4

)
q̈i(z, t)dz︸ ︷︷ ︸

added mass

+CMρ

(
πD(z)2

4

)
a f

i (z, t)dz︸ ︷︷ ︸
fluid inertial force

+
1
2

CDρD(z)
(

v f
i (z, t)− vp

i (z, t)
)
|v f

i (z, t)− vp
i (z, t)|dz︸ ︷︷ ︸

viscous drag force

for i = Sg, Sw (25)

where dFP
i is the elemental force on the platform along the ith degree of freedom. The

rolling and pitching moments on the platform can be obtained as

dMP
i (z, t) =

{
−dFP

Sg(z, t)z i = P
dFP

Sw(z, t)z i = R
(26)

where dMP
i is the moment per unit length on the platform for the ith degree of freedom.

The total forces and moments on the platform are obtained by integrating the distributed
forces and moments along the length/depth of the platform. For the symmetrical spar, the
heave force and the yaw moment are assumed to be zero. Morison’s equations assume
that viscous drag forces dominate the total drag forces on the platform and the radiation
damping is negligible. This assumption is valid when the cylinder diameter is small
compared to the wavelength and the platform’s small motion. It must be noted that
Equation (25) does not include the added mass associated with the platform heave degree
of freedom. Hence, added mass coefficient as per [18] is included in this paper for the
heave degree of freedom.

2.8. Mooring Dynamics Model

OpenMOOR [52] is used to estimate the mooring force on the platform in this paper.
OpenMOOR is an open-source mooring system simulation program developed by L Chen
et al. [52] that can be used to estimate the mooring forces at a reference point on a platform.
The program is developed based on the model of submerged cables [53–55], as shown in
Figure 5. The cables are modelled as Euler beams, including the effects of its bending and
torsional stiffness. The hydrodynamic forces are included using the modified Morison’s
equations. For the part of the cable grounded on the seabed, the seabed is modelled as
a flat visco-elastic mattress. The seabed stiffness was obtained from the FAST [25] case
files. The cable fairlead forces and consequently the FOWT motion are not sensitive to
the value of the seabed stiffness as reported in the literature and verified here using a
parametric analysis. However, it must be noted that the seabed stiffness is important in
case of fatigue analysis of the cable near the touchdown point. When using OpenMOOR to
solve for the mooring forces, the fairlead motion is first computed using the multi-body
dynamics (in this case, the wind turbine). Then the two-point boundary problem for
all three cables is solved parallelly using the generalised-α method for both spatial and
temporal discretization [55]. A Newton-like method with dynamic relaxation is used to
solve the resulting non-linear algebraic equation. OpenMOOR is also capable of including
steady ocean currents of arbitrary profiles. In this paper, the effect of waves on the mooring
cable is ignored as the fairleads of the turbine are deep below the mean water level (MWL),
where currents are predominant. In this work, OpenMOOR is separately compiled into a
dynamic linking library and imported/coupled with the multi-body dynamic model of the
FOWT in MATLAB®.
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Figure 5. Submerged cable subjected to wave and current [30].

The multi-body code of the FOWT is coupled with OpenMoor. The displacements
and velocities of the platform reference points are sent to OpenMoor, and the estimated
mooring loads are applied on the platform. This soft-coupling creates a one-time step
time lag between the platform/wind turbine state and OpenMoor loads. However, the
error becomes insignificant with a sufficiently small time step, and this requirement can be
waived. A similar practice can be found in state-of-the-art simulation tools like FAST [25].

2.9. Structural Control—Passive TMDI Installed on Tower-Top

In this section a passive Tuned Mass Damper Inerter (TMDI) is installed inside the top
of the tower to mitigate vibrations of the wind turbine tower. The damper is installed in
the tower as shown in Figure 6.

Figure 6. TMDI installed inside tower [31].

The TMDI is a relatively new concept in which an ‘inerter’ device (mechanical
flywheel-based device in this case) is attached in parallel to the linear spring and the
linear damper to the mass of a classical tuned mass damper (TMD). The inerter transforms
the linear translation of the tuned mass into a rotation of the flywheels to provide a mass
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amplification effect on the classical TMD. The mass amplification effect increases the de-
vice’s vibration control capabilities, enabling one to achieve enhanced vibration control
using a relatively lighter damper. Several recent studies have investigated the use of TMDIs
for vibration control of FOWTs [31,56,57]. This section will demonstrate the procedure
of installing a TMDI device inside a FOWT using Kane’s method and will emphasise the
relative ease of the procedure compared to traditional energy formulation-based methods.

Installing a TMDI in the tower is straightforward because the position of the essential
points on the wind turbine is not dependent on the position of the TMDI mass. The
position of the TMDI mass is denoted by the new generalised coordinate qTMDI which
is also denoted by the number 23. Therefore, the position vectors, velocity vectors, etc.
derived previously do not change. Only the position vector of the TMDI mass needs to
be derived, followed by its partial linear velocities and acceleration. The kinematic and
kinetic description of the TMDI placed on top of the tower is provided in Appendix D. The
resulting system matrices of the TMDI superimposed on the overall system matrices result
in the coupled system matrices of the FOWT-TMDI system.

2.9.1. TMDI Parameter Optimization Using a Simplified Model

The floating offshore wind turbine system coupled with a TMDI system has a com-
plicated set of non-linear equations of motion that cannot optimise the TMDI properties
in closed form. Therefore, to derive the optimal properties of the TMDI, a couple of
simplifications have been made

• A 2-DOF system with the TMDI represents the wind turbine placed on top of the
tower as shown in Figure 7.

• The wind turbine is subjected to white noise.
• The mass of the blades, the hub, and the nacelle are lumped on top of the tower and

its base is fixed.
• The inerter is hooked between the mass of the damper and the tower at an arbitrary

height HI from the base of the tower.
• The primary structure, in this case, the wind turbine tower, does not offer any damping.

Under the above assumptions, the governing equations of motion normalised by the mass
of the primary structure m0 is given as[

1 + µ + β(1− φ)2 µ + β(1− φ)
µ + β(1− φ) µ + β

](
q̈t
q̈d

)
+

[
0 0
0 2µωtζdωr

](
q̇t
q̇d

)
+

[
ω2

t 0
0 µω2

t ω2
r

](
qt
qd

)
=

(
F

m0
0

) (27)
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Figure 7. Schematic diagram of a tower with a TMDI placed on the top.

qt and qd denotes the tower and the damper degrees of freedom respectively. µ is the
mass ratio and β is the inerter ratio defined as

µ =
md
m0

β =
b

m0
(28)

where md is the damper mass and b is the inertance [58]. b has the units of mass and details
can be found in [58,59]. The tuning ratio and damping ratio of the damper are defined as

ωr =
ωd
ωt

ζd =
cd

2mdωd
(29)

where ωt and ωd are the natural frequency of the tower and the damper respectively, and
cd is the damping coefficient of the TMDI. The normalised (normalised to 1) displacement
of the tower at a height HI from its base can be obtained directly from the primary mode
shape as

φ = φt(HI) where 0 ≤ φ ≤ 1 (30)

where φt is the primary mode shape of the tower. F is the white noise excitation force
of constant intensity. For such a system the optimum tuning parameters were obtained
by [31] as

ωr =

√
−B +

√
B2 − AC

2A
(31)
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where

A = 3µ2(µ2 + 2µφ2β− 4µφβ + 2µβ + 2µ + φ4β2 − 4φ3β2 + 6φ2β2 + 2φ2β− 4φβ2

− 4φβ + β2 + 2β + 1)

B = µ(4µ2ζ2
d − µ2 + 4µφ2ζ2

dβ− 2µφ2β− 8µφζ2
dβ + 2µφβ + 4µζ2

dβ + 4µζ2
d − 2µβ

− 2µ− φ2β2 + 2φβ2

− β2 − 2β)

C = −(µ2 + 2µβ + β2)

and the optimal damping ratio

ζd =
1

2µωr

√
D
E

(32)

where

D = µ4ω4 + 2µ3φ2βω4
r − 4µ3φβω4

r + 2µ3βω4
r + 2µ3ω4

r − µ3ω2
r + µ2φ4β2ω4

r

− 4µ2φ3β2ω4
r + 6µ2φ2β2ω4

r + 2µ2φ2βω4
r − 2µ2φ2βω2

r − 4µ2φβ2ω4
r

− 4µ2φβω4
r + 2µ2φβω2

r + µ2β2ω4
r + 2µ2βω4

r − 2µ2βω2
r + µ2ω4

r − 2µ2ω2
r + µ2

− µφ2β2ω2
r + 2µφβ2ω2

r − µβ2ω2
r − 2µβω2

r + 2µβ + β2

E = µ + φ2β− 2φβ + β + 1

Note that Equations (31) and (32) reduce to the optimal tuning parameters for classical
TMD(s) when b = β = 0 and the primary structure is excited by white noise. In addition,
note that Equations (31) and (32) are coupled. Hence, an iterative procedure must to used
with a sufficiently small tolerance to find the optimal parameter. It is found that a simple
iterative scheme is capable for finding the solution with sufficient speed and accuracy.

3. Results and Discussion

The previous section detailed the method of deriving the equations of motion of a
FOWT and the associated dynamic (aerodynamic and hydrodynamic) loads. To demon-
strate the accuracy of the developed dynamic model, the developed model is compared
and validated against state-of-the-art wind turbine simulator FAST [25]. The results are
provided in the following sub-section. Next, the performance of a optimally tuned TMDI
is investigated in the following sub-section.

3.1. Benchmarking against FAST v8

All numerical codes used to model the FOWT are developed in MATLAB®. In this sec-
tion, the floating offshore wind turbine model developed in this study is validated against
the state-of-the-art wind turbine simulator FAST [25] using code-to-code comparison. The
spar type FOWT multi-body dynamic model developed theoretically is instantiated using
the details provided from the NREL 5 MW baseline offshore wind turbine [60]. The basic
properties of the floating wind turbine are provided in Table 1, for more details on the wind
turbine, please refer to [60]. The offshore wind turbine is simulated under a steady (rated)
wind speed of 11.4 m/s in still water for verification purposes. The aerodynamic loads are
calculated using the Blade Element Momentum Theory (BEM), as described previously.
The verification results for the primary structural responses are shown in Figure 8. The
other responses of the offshore wind turbine are provided in Figure A1 in Appendix F.
A comparison of the time histories after the initial transient phase (50 s) is presented in
terms of the mean, standard deviation, and max/min values in Table 2. The numerical
results compare satisfactorily with FAST [25] which numerically verifies the developed
multi-body model using Kane’s method.
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The responses of the floating offshore wind turbine tower, blades, nacelle, and low-
speed shaft match very well with the ones obtained from FAST [25] as shown in Figure 8.
However, minor dissimilarities are observed in the platform motion in Figure A1. A phase
shift can be observed in the floating platform response time histories. While FAST [25]
includes radiation forces from the linear potential flow theory together with viscous drag
forces from Morison’s equation, the model derived here only includes the viscous drag
forces from Morison’s equation. The difference in the resulting hydrodynamic damping
forces manifests a phase shift in the response time histories. It is also noteworthy that the
degrees of freedom that are subjected to lower levels of hydrodynamic damping like the
platform surge, the platform heaves or reaches steady state quickly like platform pitch and
the platform yaw is less affected by this phase shift. The degrees of freedom most affected
by this phase shift are the platform sway and roll degrees of freedom. However, it can be
observed that the mean and the frequency content of all of the responses match very well
with FAST [25] which is most important from a dynamic analysis point of view.

Table 1. Basic properties of the NREL 5 MW baseline offshore wind turbine.

Baseline turbine properties

Rating 5 MW
Rotor orientation, no of blades Upwind, 3 blades
Rotor diameter, hub diameter 126 m, 3 m
Hub height 90 m
Cut-in, rated, cut-out wind speeds 3 m/s, 11.4 m/s, 25 m/s
Cut-in, rated rotor speeds 6.9 RPM, 12.1 RPM
Rated tip speed 80 m/s
Control Variable speed, collective pitch
Drivetrain 3-stage gearbox
Overhang, shaft tilt, precone 5 m, 5◦, 2.5◦

Tower properties

Elevation of tower base from SWL 10 m
Elevation of tower top from SWL 87.6 m

Floating platform properties

Depth of platform base below SWL 120 m
Elevation of platform top above SWL 10 m
Depth to top of taper below SWL 4 m
Depth to bottom of taper below SWL 12 m
Platform diameter above taper 6.5 m
Platform diameter below taper 9.4 m

Table 2. Comparison of response statistic between FAST and the derived model (DM).

Response
Mean Min Max Std.

FAST DM FAST DM FAST DM FAST DM

Blade OOP displacement (m) 5.283 5.296 4.396 4.366 5.971 6.037 0.448 0.477
Blade IP displacement (m) −0.559 −0.565 −1.085 −1.090 −0.038 −0.046 0.354 0.353
Tower-top FA displacement (m) 0.460 0.458 0.436 0.431 0.481 0.478 0.011 0.011
Tower-top SS displacement (m) −0.051 −0.051 −0.058 −0.062 −0.040 −0.040 0.003 0.003
Nacelle yaw angle (◦) 2.2E-3 2.2E-3 7.1E-4 6.1E-4 3.8E-3 3.8E-3 1.0E-3 1.0E-3
Rotor speed (RPM) 11.910 11.899 11.840 11.834 11.970 11.959 0.035 0.035
Platform surge (m) 25.075 24.872 20.380 20.009 30.830 30.837 3.430 3.564
Platform sway (m) −0.319 −0.309 −0.359 −0.372 −0.261 −0.253 0.026 0.027
Platform heave (m) −0.589 −0.611 −0.961 −0.968 −0.377 −0.417 0.133 0.131
Platform roll (rad) 4.4E-3 4.4E-3 3.7E-3 3.4E-3 5.1E-3 5.3E-3 2.95E-4 4.45E-4
Platform pitch (rad) 0.085 0.086 0.079 0.079 0.090 0.090 3.1E-3 2.9E-3
Platform yaw (rad) 3.9E-3 3.9E-3 3.5E-3 3.6E-3 4.4E-3 4.5E-3 2.1E-4 2.1E-4
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Figure 8. Model verification: motion of the floating offshore wind turbine. (a) Blade 1 out-of-plane displacement; (b) Blade 1
in-plane displacement; (c) Tower top fore-aft displacement; (d) Tower to side-to-side displacement; (e) Nacelle yaw rotation;
(f) Low speed shaft speed.
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3.2. Performance of the Passive TMDI

The TMDI is coupled to the baseline offshore wind turbine [60] used earlier in this
study. The TMDI is optimised according to Section 2.9.1. The damper’s performance
has been investigated over an extensive range of wind-wave loading environments by
the authors in [31]. In this paper, only one case of met-ocean condition is presented for
illustrative purposes. The chosen met-ocean condition has a hub-height mean wind speed
of 20 m/s, a significant wave height of 6 m, and a peak spectral period of 8 s. The TMDI
is installed in the nacelle, has 1% of the tower mass (excluding the RNA), and is tuned to
the tower’s natural frequency. The tower side-to-side motion with and without the TMDI
is shown in Figures 9 and 10. Futhermore, the tower fore-aft motion with and without
the TMDI is shown in Figures 11 and 12. Excellent damping of the tower side-to-side
vibrations is observed using a damper having a mass of just 1% of the tower mass. On the
other hand, the vibration reduction for the fore-aft motion of the tower is modest as the
fore-aft modes experience considerable aerodynamic damping. The figures also include
a case where the inerter ratio β is zero, reducing the TMDI to a classical TMD. It can be
observed that, expectantly, the performance of the classical TMD is considerably worse
than the TMDI.

Another critical aspect of the TMDI is the drastic reduction of tuned mass stroke.
The comparison of the damper stroke between a classical TMD and a TMDI is shown
in Figures 13 and 14. The authors also showed in [31] that increasing the mass ratio of
the damper to improve vibration reduction is not a good idea for floating offshore wind
turbines. Increasing the mass lumped on top of the tower will destabilise the floating
platform. For more details on vibration control of floating offshore wind turbine towers
using TMDI(s), refer to [31].
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Figure 9. Tower side-to-side displacement.
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Figure 13. Tower side-to-side damper stroke.
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Figure 14. Tower fore-aft damper stroke.

4. Conclusions

This paper demonstrated the use of Kane’s method for deriving equations of motion
for spar-type floating offshore wind turbines, the steps of which apply to any multi-body
system. The flexible multi-body wind turbine was modelled as a system comprising flexible
and rigid members. Each component was modelled in its local coordinate system and
transformed back to the inertial frame of reference using suitable transformation relation-
ships. The derived model was benchmarked against the industry standard FAST [25].
Kane’s method was further used for the installation of an external damper. The excellent
performance of the recently conceptualised TMDI in vibration control of floating offshore
wind turbine towers was also presented.

It has been shown in this paper that Kane’s method vastly reduces the labor needed
to derive equations of motion of a complicated multi-degree of freedom system. The
resulting equations of motion are obtained as ODEs (rearrangement of terms not required),
and the required vector multiplications can be performed on a computer. Therefore, the
equations of motion are formed directly on a computer without human intervention, which
is particularly desirable when working with many variables. The paper also demonstrates
Kane’s method’s ease in installing an external device on the wind turbine.

As described in this paper, a large number of vector multiplications are performed on
a computer to evaluate kinematics and kinetics of the system. A limitation of this method
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is the increasing computational time with increasing complexity of the system. However,
with the rapid increase in computational power, it is unlikely to hinder performance.

Lastly, it is essential to mention that Kane’s method presented in this paper is general
and applicable to any offshore/onshore wind turbine. Therefore, the steps are general to
any dynamic system. This project envisages the use of this powerful modeling technique
in extending the capabilities of the current wind turbine models. Some examples are as fol-
lows, installation of auxiliary devices [31], modification of current structural arrangements
and components [61,62]. Investigation of improved foundation techniques and modeling
future wind turbines. [63] etc. The developed knowledge will be used for modeling and
dynamic analysis of the future larges-scale wind turbines.
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Abbreviations
The following abbreviations are used in this manuscript:

LSS− S Low speed shaft-skew angle (rad)
LSS− T Low speed shaft-tilt angle (rad)
TwrHt Height of the wind turbine tower (m)
PreCone Blade cone angles (rad)
BlPit Blade pitch angles (rad)
Pt f mCMzt Vertical distance from the MSL to the platform CM (m)
Pt f mRe f zt Vertical distance from the MSL to the platform reference point (m)
NacCMxn Downwind distance from the tower-top to the nacelle CM (m)
NacCMzn Vertical distance from the tower-top to the nacelle CM (m)
NacCMyn Lateral distance from the tower-top to the nacelle CM (m)
Overhang Distance from yaw axis to rotor apex [3 blades] (m)
Twr2Sh f t Vertical distance from the tower-top to the rotor shaft (m)
Yaw2Sh f t Lateral distance from the tower center line to the rotor shaft (m)
HubCM Distance from rotor apex to hub mass [positive downwind] (m)
HubRad Hub Radius
GenDir Generator direction
GBR Gear Box ratio
GenIner Generator inertia about HSS (kg m2)
TFA1 First fore-aft tower bending-mode
TFA2 Second fore-aft tower bending-mode
TSS1 First side-to-side tower bending-mode
TSS2 Second side-to-side tower bending-mode
GeAz Generator azimuth angle
DrTr Drive-train torsion
BiF1 First flapwise bending-mode of ith blade
BiF2 Second flapwise bending-mode of ith blade
BiE1 First edgewise bending-mode of ith blade
Sg Platform surge
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Sw Platform sway
Hv Platform heave
R Platform roll
P Platform pitch
Y Platform yaw
FA Fore-aft
SS Side-to-side
OOP Out-of-plane
IP In-plane
Pt f mRIner Platform inertia for roll tilt rotation about the platform CM (kg m2)
Pt f mYIner Platform inertia for yaw rotation about the platform CM (kg m2)
Pt f mPIner Platform inertia for pitch tilt rotation about the platform CM (kg m2)
YBMass Yaw bearing mass (kg)
YawSpring Nacelle-yaw spring constant (N-m/rad)
YawDamp Nacelle-yaw damping constant (N-m/(rad/s))
NacYIner Nacelle inertia about yaw axis (kg m2)
HubIner Hub inertia about rotor axis (kg m2)
BlLn Flexural length of the blade
HSS High speed shaft
LSS Low speed shaft
DTTorSpr Drive-train torsional spring (N-m/rad)
DTTorDmp Drive-train torsional damper (N-m/(rad/s))
TMD Tuned mass damper
TMDI Tuned mass damper inerter

Appendix A. Symbols

The following symbols are used in this manuscript:

qSg Platform surge DOF
qSw Platform sway DOF
qHv Platform heave DOF
qR Platform roll DOF
qP Platform pitch DOF
qY Platform yaw DOF
qTFA1 First tower fore-aft bending mode DOF
qTFA2 Second tower fore-aft bending mode DOF
qTSS1 First tower side-to-side bending mode DOF
qTSS2 Second tower side-to-side bending mode DOF
qyaw Nacelle yaw DOF
qGeAz Generator azimuth angle DOF
qDrTr Drive-train torsional flexibility DOF
qBiF1 First flapwise bending mode for ith blade DOF
qBiF2 Second flapwise bending mode for ith blade DOF
qBiE1 First edgewise bending mode for ith blade DOF
qTMD Tuned mass damper DOF
θSS(h) Tower side-to-side rotation (rad)
θFA(h) Tower fore-aft rotation (rad)
θBi

s (r) Structural pre-twist of blades (rad)
θBi

x (r) Blade out-of-plane rotation (rad)
θBi

y (r) Blade in-plane rotation (rad)
µT(h) Tower mass per unit length (kg/m)
mN Nacelle mass (kg)
mH Hub mass (kg)
µB Blade per unit length of ith blade (kg/m)
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φTFA
1 First fore-aft tower mode shape

φTFA
2 Second fore-aft tower mode shape

φTSS
1 First side-to-side tower mode shape

φTSS
2 Second side-to-side tower mode shape

φBiF
1 First flapwise blade i mode shape

φBiF
2 Second flapwise blade i mode shape

φBiE
1 First edgewise blade i mode shape

CA Normalised hydrodynamic-added-mass coefficient in Morison’s equation
CM Normalised mass (inertia) coefficient in Morison’s equation
CD Normalised viscous-drag coefficient in Morison’s equation
hTMDI Vertical distance of TMDI centre of mass from tower top
b Inertance constant of the TMDI
mTMDI Mass of the TMDI
kTMDI Linear stiffness of the TMDI
ζTMDI Linear damping ratio of the TMDI
fTMDI Natural frequency of the TMDI

Appendix B. Kinematics

This section describes the coordinates systems: the kinematic of the floating offshore
wind turbine. The various quantities defined in this section facilitate the development of
the equations of motion of the complete non-linear system.

Appendix B.1. Coordinate Systems

A set of inertial coordinate system ẑ is fixed to the earth. Then, a set of coordinate
system is attached to the base of the tower. The transformation relation can be obtained asâ1

â2
â3

 = TO(θ1 = qR, θ2 = qY, θ3 = −qP)

ẑ1
ẑ2
ẑ3

 (A1)

where qR, qY and qP are the roll, yaw and pitch degrees of freedom of the platform
respectively. The tower element fixed coordinate system along the height of the tower can
be obtained from the elastic deformation of the tower ast̂1(h)

t̂2(h)
t̂3(h)

 = TO(θSS(h), 0,−θFA(h))

â1
â2
â3

 (A2)

where θSS(h) and θFA(h) are the tower rotations in the side-to-side and fore-aft directions
respectively at various sections along the height of the tower. The rotations are due to
elastic deformation of the tower and can be obtained from the spacial derivatives of the
mode shapes. Here, it must be noted the torsion of the tower is neglected because the yaw
bearing is used to release the torsional moment. Next, the tower top/base plate coordinate
system is defined as b̂1

b̂2
b̂3

 = TO(θSS(Ht), 0,−θFA(Ht))

â1
â2
â3

 (A3)

where Ht is the flexural height of the tower. For reference frame where the orientation
can be described by a simple rotation, Euler rotation matrix is used to transform the set
of coordinates into the new frame. Rx(θ), Ry(θ), Rz(θ) represent anti-clockwise rotation
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by an angle θ about x, y and z respectively. Hence, the nacelle yaw coordinate system is
rotated about b̂2 axis by the yaw angle (qyaw) of the nacelle and can be defined asd̂1

d̂2
d̂3

 = Rb̂2
(qyaw)

b̂1
b̂2
b̂3

 (A4)

The shaft is often tilted and sometimes skewed with respect to the tower top. The coordinate
system attached to the shaft can be given asĉ1

ĉ2
ĉ3

 = Rd̂2
(LSS− S)Rd̂3

(LSS− T)

d̂1
d̂2
d̂3

 (A5)

where LSS − S and LSS − T denotes shaft-skew and shaft-tilt angles respectively. The
azimuth coordinate system is also attached to the low speed shaft but rotates with the rotor
and is defined next as ê1

ê2
ê3

 = Rĉ1(qDrTr + qGeAz)

ĉ1
ĉ2
ĉ3

 (A6)

The rotation angle is summation of the generator azimuth angle (qGeAz) and the torsional
rotation of the drive train (qDrTr). The coordinate system for blade 1 (ĝB1

1 , ĝB1
2 , ĝB1

3 ) is
obtained as shown in Figure 2. As convention to three bladed wind turbines, the blades are
120◦ degrees apart. Next, the blade coned coordinate system is defined asîB1

1
îB1
2

îB1
3

 = RĝB1
2
(PreCone(1))

ĝB1
1

ĝB1
2

ĝB1
3

 (A7)

The coned coordinate system for blade 2 and 3 can be defined similarly. The pitched
coordinate system is defined as ĵB1

1
ĵB1
2

ĵB1
3

 = RîB1
3
(−BlPit(1))

îB1
1

îB1
2

îB1
3

 (A8)

where BlPit are blade pitch angles. Again, the pitched coordinate system for blades 2 and
3 can be defined similarly. The blade coordinate system aligned to the local structural axes
is defined as l̂B1

1 (r)
l̂B1
2 (r)

l̂B1
3 (r)

 = R ĵB1
3
(−θB1

s (r))

 ĵB1
1

ĵB1
2

ĵB1
3

 (A9)

Here, θB1
s (r) is the structural twist angle of blade 1. The equations of l̂B2(r) and l̂B3(r) are

similar. The blade element fixed coordinate system is given asn̂B1
1 (r)

n̂B1
2 (r)

n̂B1
3 (r)

 = TO(θx(r), θy(r), 0)

l̂B1
1 (r)

l̂B1
2 (r)

l̂B1
3 (r)

 (A10)
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θx(r) and θy(r) are blade rotations due to elastic deformation in the in-plane and out-of-
plane directions respectively at a distance r from the apex of coning angle. The element
fixed coordinate system for determining and returning aerodynamic loads are given asm̂B1

1 (r)
m̂B1

2 (r)
m̂B1

3 (r)

 = Rn̂B1
3
(BlPit(1) + θB1

s (r))

n̂B1
1 (r)

n̂B1
2 (r)

n̂B1
3 (r)

 (A11)

The equations for m̂B2(r) and m̂B3(r) are similar. When the blades are undeflected, this
coordinate system is coincident with îB1. With all the required coordinate systems defined,
the kinematics of the wind turbine is described in the next section.

Appendix B.2. Position Vectors

The position vectors of the various points are listed in this section. The position vector
of the tower base (reference point) is given as

rZ = qSqẑ1 + qHvẑ2 − qSwẑ3 (A12)

The position vector of the centre of gravity of the platform (Y) from the tower base (Z) is
given as

rZY = (Pt f mCMzt− Pt f mRe f zt)â2 (A13)

The position vector of tower node at a distance h from tower base is given as

rZT(h) =
[
φTFA

1 (h)qTFA1 + φTFA
2 (h)qTFA2

]
â1 +

[
h− 0.5

(
STFA

11 (h)q2
TFA1 + STFA

22 (h)q2
TFA2

+ 2STFA
12 (h)qTFA1qTFA2 + STSS

11 (h)q2
TSS1 + STSS

22 (h)q2
TSS2 + 2STSS

12 (h)qTSS1qTSS2

)]
â2

+
[
φTSS

1 (h)qTSS1 + φTFA
2 (h)qTSS2

]
â3

(A14)

where φTFA
1 , φTFA

2 , φTSS
2 and φTSS

2 are the first two mode shapes of the tower in the fore-
aft and the side-to-side directions respectively. STFA

ij and STSS
ij are axial deflection shape

functions for the tower. The expressions for these quantities are presented in Appendix E.
The position vector of tower top/base-plate is given as

rZO = [qTFA1 + qTFA2]â1 +
[

Ht− 0.5
(

STFA
11 (Ht)q2

TFA1 + STFA
22 (Ht)q2

TFA2

+ 2STFA
12 (Ht)qTFA1qTFA2 + STSS

11 (Ht)q2
TSS1 + STSS

22 (Ht)q2
TSS2

+ 2STSS
12 (Ht)qTSS1qTSS2

)]
â2 + [qTSS1 + qTSS2]â3

(A15)

Position vector from the tower-top to the centre of mass of the nacelle is given as

rOU = NacCMxnd̂1 + NacCMznd̂2 + NacMynd̂3 (A16)

Position vector from the tower-top to the apex of coning angle is given as

rOQ = OverHangĉ1 + Twr2Sh f td̂2 −Yaw2Sh f td̂3 (A17)

Position vector from the apex of coning angle to the hub centre of mass is given as

rQC = HubCMĉ1 (A18)
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Position vector from the apex of coning angle to the blade element node for blade 1 is given
as

rQS1 =
[
φB1

1 (r)qB1F1 + φB1
2 (r)qB1F2 + φB1

3 (r)qB1E1

]
ĵB1
1 +

[
ψB1

1 (r)qB1F1

+ ψB1
2 (r)qB1F2 + ψB1

3 (r)qB1E1

]
ĵB1
2 +

[
r + HubRad− 0.5

(
SB1

11 (r)q
2
B1F1

+ SB1
22 (r)qB1F2 + SB1

33 (r)qB1E1 + 2SB1
12 (r)qB1F1qB1F2 + 2SB1

13 (r)qB1F1qB1E1

+ 2SB1
23 (r)qB1F2qB1E1

)]
ĵB1
3

(A19)

where φi(r) and ψi(r) are the twisted mode shapes in out-of-plane and in-plane directions
respectively and SB1

ij is the shape of axial deflection. The expression of these quantities are

provided in Appendix E. Equations for rQS2 and rQS3 are similar.

Appendix B.3. Angular Velocities

The angular velocities of various rigid bodies of the wind turbine are defined in the section.
The angular velocity of the base of the tower in the inertial (Earth) reference frame is

EωX = q̇Rẑ1 + q̇Y ẑ2 − q̇Pẑ3 (A20)

The angular velocity of tower node in inertial frame of reference assuming small rotation
angles is given as

EωF(h) =

[
dφTSS

1 (h)
dh

q̇TSS1 +
dφTSS

2 (h)
dh

q̇TSS2

]
â1

−
[

dφTFA
1 (h)
dh

q̇TFA1 +
dφTFA

2 (h)
dh

q̇TFA2

]
â3

(A21)

The angular velocity of tower-top in the inertial reference frame is

EωB =
[dφTSS

1 (h)
dh

∣∣∣∣∣
h=Ht

q̇TSS1 +
dφTSS

2 (h)
dh

∣∣∣∣∣
h=Ht

q̇TSS2

]
â1

−
[dφTFA

1 (h)
dh

∣∣∣∣∣
h=Ht

q̇TFA1 +
dφTFA

2 (h)
dh

∣∣∣∣∣
h=Ht

q̇TFA2

]
â3

(A22)

The angular velocity of the nacelle in the inertial reference frame

EωN = EωB + q̇yawd̂2 (A23)

The angular velocity of the low speed shaft at the rotor end in inertial reference frame

EωL = EωN + q̇DrTr ĉ1 + q̇GeAz ĉ1 (A24)

The angular velocity of blade 1 element in the inertial reference frame

EωM1(r) = EωL −
[dψB1

1 (r)
dr

q̇B1F1 +
dψB1

2 (r)
dr

q̇B1F2

+
dψB1

3 (r)
dr

q̇B1E1

]
ĵB1
1 −

[dφB1
1 (r)
dr

q̇B1F1

+
dφB1

2 (r)
dr

q̇B1F2 +
dφB1

3 (r)
dr

q̇B1E1

]
ĵB1
2

(A25)

EωM2(r) and EωM3(r) can be obtained similarly. The generator is connected to the high
speed shaft which may or may not rotate in the opposite direction of the low speed shaft
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and since qGeAz represents the position of the low speed shaft near the entrance of the
gearbox; the angular velocity of the generator is given as

EωG = EωN + GenDir.GBR.q̇GeAz ĉ1 (A26)

where GBR is the gear box ratio and

GenDir =

{
−1 for Gear Box Reverse = True
1 for Gear Box Reverse = False

(A27)

Appendix B.4. Linear Velocities

In this section the linear velocities of all important points of the wind turbine are
described. The linear velocity of the tower base can be given as

EvZ = q̇Sqẑ1 + q̇Hvẑ2 − q̇Swẑ3 (A28)

Linear velocity of tower element in inertial reference frame can be obtained from one point
moving on a rigid body formula [27]

EvT(h) = EvZ + EvT(h) + X vT(h)

= EvZ + EωX(h)× rZT(h) + X vT(h)
(A29)

where EvT denotes the velocity in E of the point T of X that coincides with T at the instant
under consideration. In the above equation X vT is given as

X vT(h) =
[
φTFA

1 (h)q̇TFA1 + φTFA
2 (h)q̇TFA2

]
â1

−
[
STFA

11 (h)qTFA1q̇TFA1 + STFA
22 (h)qTFA2q̇TFA2

+ STFA
12 (h)

(
q̇TFA1qTFA2 + qTFA1q̇TFA2

)
+ STSS

11 (h)qTSS1q̇TSS1 + STSS
22 (h)qTSS2q̇TSS2

+ STSS
12 (h)

(
q̇TSS1qTSS2 + qTSS1q̇TSS2

)]
â2

+
[
φTSS

1 (h)q̇TSS1 + φTSS
2 (h)q̇TSS2

]
â3

(A30)

Similarly, the velocity of tower top/base plate can be given as X vO = X vT(Ht). Linear
velocity of the nacelle centre of mass can be obtained from two points fixed on a rigid body
formula as [27]

EvU = EvO + EωN × rOU (A31)

Linear velocity of apex of the coning angle is given as

EvQ = EvO + EωL× rOQ (A32)

Linear velocity of centre of mass of hub can be given as

EvC = EvQ + EωL× rQC (A33)

Finally, the linear velocity of blade 1 element is given as

EvS1(r) = EvQ + EωL× rQS1 + LvS1(r) (A34)
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where

LvS1(r) =
[
φB1

1 (r)q̇B1F1 + φB1
2 q̇B1F2 + φB1

3 q̇B1E1

]
ĵB1
1

+
[
ψB1

1 (r)q̇B1F1 + ψB1
2 q̇B1F2 + ψB1

3 q̇B1E1

]
ĵB1
2

+
[
SB1

11 (r)qB1F1q̇B1F1 + SB1
22 (r)qB1F2q̇B1F2

+ SB1
33 (r)qB1E1q̇B1E1 + SB1

12

(
q̇B1F1qB1F2 + qB1F1q̇B1F2

)
+ SB1

13

(
q̇B1F1qB1E1

+ qB1F1q̇B1E1

)
+ SB1

23

(
q̇B1F2qB1E1 + qB1F2q̇B1E1

)]
ĵB1
3

(A35)

The linear velocities for blade 2, EvS2(r) and blade 3, EvS3(r) can be obtained similarly.

Appendix B.5. Partial Angular Velocities

According to Kane and Levinson [27], all linear angular velocities can be written as a
combination of the partial angular velocities as

EωNi (q̇, q, t) =
n

∑
r=1

EωNi
k (q, t)uk +

EωNi
t (q, t) (A36)

for each rigid body Ni in the system; where n is the number of degrees of freedom in the
system and EωNi

k (q, t) are the partial angular velocities. ur are the generalised speeds. In
general, ur are chosen to bring the linear velocities in the above section into particular
advantageous form. Here, time derivatives of the DOFs in Equation (1) are chosen as
the generalised speeds (i.e., uk = q̇k). The choice of generalised speeds renders all the
EωNi

t (q, t) terms as zeros. The angular velocities can be then reorganised to find the partial
angular velocity terms EωNi

r for every body Ni in the system.

Appendix B.6. Partial Linear Velocities

Similar to partial angular velocities the linear velocities of each point Xi in the system
can be written in the form

EvXi (q̇, q, t) =
n

∑
k=1

EvXi
k (q, t)uk +

EvXi
t (q, t) (A37)

where EvXi
k (q, t) are the partial linear velocities. Again, the choice of generalised speeds

ur renders all the EvNi
t (q, t) terms as zeros. The partial linear velocity terms EvXi

r can be
obtained from the linear velocities after appropriate arrangement.

Appendix B.7. Angular Accelerations

For every rigid body Ni, in the system the angular acceleration can be obtained from
Equation (A36)

EαNi =
n

∑
r=1

EωNi
k (q, t)q̈k +

n

∑
r=1

Ed
dt
{EωNi

k (q, t)}q̇k +
Ed
dt
{EωNi

t (q, t)} (A38)

In the above expression,
Ed
dt
{EωNi

k (q, t)} are the only terms to be evaluated since all other
terms are known at this stage. These partial angular acceleration terms can be found using
linear velocity relation.
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Appendix B.8. Linear Accelerations

Linear accelerator for each point Xi in the system can be obtained from Equation (A37) as

EaXi =
n

∑
r=1

EvXi
k (q, t)q̈k +

n

∑
r=1

Ed
dt
{EvXi

k (q, t)}q̇k +
Ed
dt
{EvXi

t (q, t)} (A39)

Again, the
Ed
dt
{EvXi

k } terms are the only required terms as all the other terms are known at
this stage.

Appendix C. Kinetics

The kinetic of the FOWT and the resulting equations of motion of the wind turbine
system is provided in this section.

Appendix C.1. Platform

The mass of the platform brings about generalised inertia forces. The generalised
active forces associated with the platform arise from the gravitational forces, hydrostatic
forces, mooring lines and hydrodynamic forces including the effect of added mass. The
generalised inertia forces associated with the platform are given as

F∗r
∣∣∣
X
= EvY

r · (−mX EaY ) + EωX
r · (−E ḢX) (A40)

or
F∗r
∣∣∣
X
= EvY

r · (−mX EaY ) + EωX
r · (−IX · EαX − EωX × IX · EωX) (A41)

where
IX = Pt f rmRInerâ1â1 + Pt f rmYInerâ2â2 + Pt f rmPInerâ3â3 (A42)

Therefore,

F∗r
∣∣∣
X
= EvY

r ·
[
−mX

{( 6

∑
i=1

EvY
i q̈i

)
+
( 6

∑
i=4

dr
drt

(EvY
i )q̇i

)}]
+ EωX

r ·
[
− IX ·

( 6

∑
i=4

EωX
i q̈i

)
− EωX × IX · EωX

] (A43)

The elements of the system matrices can be obtained as

[M(q, t)]
∣∣∣
X
(k, l) = mX EvY

k · EvY
l + EωX

k IX EωX
l for k, l = 1 to 6

= 0 otherwise

[f(q̇, q, t)]
∣∣∣
X
(k) = −mX EvY

k ·
[ 6

∑
i=4

dr
drt

(EvY
i )q̇i

]
− EωX

k · (EωX × IX · EωX) for k = 1 to 6

= 0 otherwise

(A44)

where the indices k, l are used to denote the row and column respectively of the matrix.
Hydrodynamic and hydrostatic forces contribute to the generalised active forces. These
forces can be written as

Fr

∣∣∣
HydroX

= EvY
k · FY

HydroX + EωX
r ·MY

HydroX for 1 to 22 (A45)
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where FY
HydroX and MY

HydroX are the forces and moments acting at the platform centre of
mass. These forces can be transformed to forces at the base of the wind turbine as

FZ
HydroX = FY

HydroX (A46)

and
MY

HydroX = MZ
HydroX + rYZ × FZ

HydroX = MZ
HydroX − rZY × FZ

HydroX (A47)

However, since, EvY
r = EvZ

r + EωX
r × rZY , the generalised active forces can be written as

Fr

∣∣∣
HydroX

=
[EvZ

r + EωX
r × rZY ] · FZ

HydroX + EωX
r ·
[
MZ

HydroX − rZY × FZ
HydroX

]
for 1 to 22

(A48)

This simplifies to

Fr

∣∣∣
HydroX

= EvZ
k · FZ

HydroX + EωX
r ·MZ

HydroX for 1 to 22 (A49)

Other than the motion of the liquid the hydrodynamic forces and moments also depend on
the motion of the platform. The forces and moments can be written as

FZ
HydroX =

( 6

∑
i=1

FZ
HydroXj

q̈j

)
+ FZ

HydroXt
(A50)

and

MZ
HydroX =

( 6

∑
i=1

MZ
HydroXj

q̈j

)
+ MZ

HydroXt
(A51)

where FZ
HydroXt

and MZ
HydroXt

are the hydrodynamic forces and moments that do not
depend of the acceleration of the platform. Thus,

Fr

∣∣∣
HydroX

= EvZ
k ·
[( 6

∑
i=1

FZ
HydroXj

q̈j

)
+ FZ

HydroXt

]

+ EωX
r ·
[( 6

∑
i=1

MZ
HydroXj

q̈j

)
+ MZ

HydroXt

]
for r = 1 to 22

(A52)

Finally, the system matrices can be obtained as

[M(q, t)]
∣∣∣

HydroX
(k, l) = −EvZ

k · FZ
HydroXl

− EωX
k ·MZ

HydroXl
k, l = 1 to 6

= 0 otherwise

f (q̇, q, t)
∣∣∣

HydroX
(k) = EvZ

k · FZ
HydroXt

+ EωX
k ·MZ

HydroXt
k = 1 to 6

= 0 otherwise

(A53)

Gravitational force contribute to the generalised active forces on the platform. These forces
can be written as

Fr

∣∣∣
GravX

= EvY
k · (−mX gẑ2) (A54)
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where g is acceleration due to gravity. The system matrices can be obtained as

[M(q, t)]
∣∣∣
GravX

(k, l) = 0 for all

f (q̇, q, t)
∣∣∣
GravX

(k) = −mX gEvY
k · ẑ2 k = 1 to 6

= 0 otherwise

(A55)

Appendix C.2. Tower

The distributed sectional properties of the tower bring about generalised active and
inertia forces and associated with tower elasticity, damping, aerodynamics and mass. The
generalised inertial forces associated with the tower mass can be obtained as [64]

F∗k
∣∣∣
T
= −

∫ Ht

0
µT(h)EvT

k (h) · EaT(h)dh

−YBMass.EvO
k ·

EaO for k = 1 to 10
(A56)

where YBMass is the yaw bearing mass. Using the expression for the partial linear velocities
and acceleration of tower nodes the elements of the system matrices can be found as

[M(q, t)]
∣∣∣
T
(k, l) =

∫ Ht

0
µT(h)EvT

k (h) · EvT
l (h)dh

+ YBMass.EvO
k ·

EvO
l for k, l = 1 to 10

= 0 otherwise

{− f (q̇, q, t)}
∣∣∣
T
(k) = −

∫ Ht

0
µT(h)EvT

k (h) ·
( 4

∑
i=1

d
dt
{EvT

i (h)}q̇i

)
dh

−YBMass.EvO
k ·
( 4

∑
i=1

d
dt
{EvO

i }q̇i

)
for k = 1 to 10

= 0 otherwise

(A57)

where the indices k, l are used to denote the row and column respectively of the matrix.
Generalised active forces arise from the elasticity and damping of the flexible members. The
generalised elastic forces can be obtained from the potential energy stored in the member as

Fk

∣∣∣
ElasticT

=
∂VT

∂qk
for k = 1 to 10 (A58)

{− f (q̇, q, t)}
∣∣∣
T
(k) = Fk

∣∣∣
ElasticT

=



−kTFA
11 qTFA1 − kTFA

12 qTFA2 for k = 7
−kTSS

11 qTSS1 − kTSS
12 qTSS2 for k = 8

−kTFA
21 qTFA1 − kTFA

22 qTFA2 for k = 9
−kTSS

21 qTSS1 − kTFA
22 qTSS2 for k = 10

0 otherwise

(A59)

where kTFA
ij and kTSS

ij are the generalised stiffness of the tower in the fore-aft and side-to-side
directions respectively when gravitational de-stiffening effects are not included

kTFA
ij =

∫ Ht

0
EITFA(h)

d2φTFA
i

dh2

d2φTFA
j

dh2 dh for i, j = 1, 2

kTSS
ij =

∫ Ht

0
EITSS(h)

d2φTSS
i

dh2

d2φTSS
j

dh2 dh for i, j = 1, 2

(A60)
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Using Rayleigh damping technique where the damping is assumed proportional to the
stiffness, the generalised active forces can be obtained as

{− f (q̇, q, t)}
∣∣∣
T
(k) = Fk

∣∣∣
DampT

=



− ζTFA
1 kTFA

11
π f TFA

1
q̇TFA1 −

ζTFA
2 kTFA

12
π f TFA

2
q̇TFA2 for k = 7

− ζTSS
1 kTSS

11
π f TSS

1
q̇TSS1 −

ζTSS
2 kTSS

12
π f TSS

2
q̇TSS2 for k = 8

− ζTFA
1 kTFA

21
π f TFA

1
q̇TFA1 −

ζTFA
2 kTFA

22
π f TFA

2
q̇TFA2 for k = 9

− ζTSS
1 kTFA

21
π f TSS

1
q̇TSS1 −

ζTFA
2 kTSS

22
π f TSS

2
q̇TSS2 for k = 10

0 otherwise

(A61)

where ζTFA
i and ζTSS

i represents the structural damping ratio of the tower for the ith mode
in the fore-aft and side-to-side direction respectively. Futhermore, f TFA

i and f TSS
i represent

the natural frequency of the tower for the ith mode of the tower in the fore-aft and side-
to-side directions respectively without the tower-top mass or gravitational de-stiffening
effects. Gravitation forces on the tower contribute to the generalised active force as

Fk

∣∣∣
GravT

=
∫ Ht

0

EvT
k (h) · {−µT(h)gẑ2}dh

−YBMass.g.EvO
k · ẑ2 for k = 1 to 10

(A62)

Thus,

[M(q, t)]
∣∣∣
GravT

(k, l) = 0 for all

{− f (q̇, q, t)}
∣∣∣
GravT

(k) = −
∫ Ht

0

EvT
k (h) · {µT(h)gẑ2}dh

−YBMass.g.EvO
k · ẑ2 for k = 1 to 10

= 0 otherwise

(A63)

Aerodynamic forces on the tower contribute to the generalised active force as

Fk

∣∣∣
AeroT

=
∫ Ht

0

[
EvT

k (h) · FT
AeroT(h) +

EωF
k (h) ·MF

AeroT(h)
]
dh for k = 1 to 10 (A64)

where FT
AeroT(h) and MF

AeroT(h) are aerodynamic forces and moments applied on the tower
expressed per unit length. Thus,

[M(q, t)]
∣∣∣

AeroT
(k, l) = 0 for all

{− f (q̇, q, t)}
∣∣∣
GravT

(k) =
∫ Ht

0

[
EvT

k (h) · FT
AeroT(h)

+ EωF
k (h) ·MF

AeroT(h)
]
dh for k = 1 to 10

= 0 otherwise

(A65)

Appendix C.3. Yaw Bearing

The yaw spring and damper bring about generalised active forces. The generalised
active force from the yaw spring

Fr

∣∣∣
YawSpr

=

{
−YawSpr.(qyaw − qyaw0) for k = 11
0 otherwise

(A66)
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where qyaw0 is the initial neutral position of the yaw bearing. Futhermore, the generalised
active force from the yaw damper

Fr

∣∣∣
YawDamp

=

{
−YawDamp.q̇yaw for k = 11
0 otherwise

(A67)

Thus,
[M(q, t)]

∣∣∣
YawBear

(k, l) = 0 for all

{− f (q̇, q, t)}
∣∣∣
YawBear

(k) = −YawSpr.(qyaw − qyaw0)

−YawDamp.q̇yaw for k = 11

= 0 otherwise

(A68)

Appendix C.4. Nacelle

The rigid lump mass of the nacelle brings about generalised inertia forces and gener-
alised active forces associated with nacelle weight. Generalised inertia forces can be given
as

F∗r
∣∣∣

N
= EvU

r ·
(
−mN EaU

)
− EωN

r ·
(

IN · EαN + EωN × IN · EωN
)

for r = 1 to 11 (A69)

where mN is the nacelle mass and the inertia dyadic can be given as

IN =
[

NacYIner−mN
(

NacCMxn2 + NacCMyn2
)]

d̂2d̂2 (A70)

using parallel axis theorem. Using the expressions for partial linear velocities, acceleration
and rate of change of angular momentum of the nacelle the system matrices can be obtained
as Thus,

[M(q, t)]
∣∣∣

N
(k, l) = mN EvU

k ·
EvU

l + EωN
k · IN · EωN

l for k, l = 1 to 11

= 0 otherwise

{− f (q̇, q, t)}
∣∣∣

N
(k) = −mN EvU

k ·
5

∑
i=1

d
dt
(EvU

i )q̇i

− EωN
k ·
[
− IN ·

{
5

∑
i=1

d
dt
(EωN

i )q̇i

}
− EωN × IN · EωN

]
for k = 1 to 11

= 0 otherwise

(A71)

The generalised active force brought about by the gravitational force is given as

Fk

∣∣∣
N
= EvU

k ·
(
−mN gẑ2

)
for k = 1 to 11 (A72)

Thus,
[M(q, t)]

∣∣∣
GravN

(k, l) = 0 ∀ k, l

{− f (q̇, q, t)}
∣∣∣
GravN

(k) = EvU
k ·
(
−mN gẑ2

)
for k = 1 to 11

= 0 otherwise

(A73)
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Appendix C.5. Hub

The rigid lump mass of the hub brings about generalised inertia forces and generalised
active forces associated with the hub weight. Generalised inertia forces are given as

F∗r
∣∣∣

H
= EvC

r ·
(
−mH EaC

)
− EωH

r ·
(

IH · EαH + EωH× IH · EωH
)

for r = 1 to 13 (A74)

where mH is the hub mass and the inertia dyadic can be given as

IH =
[

HubIner−mH
(

HubCM2
)]

ê1ê1 (A75)

using parallel axis theorem. Using the expressions for partial linear velocities, acceleration
and rate of change of angular momentum of the hub the system matrices can be obtained
as Thus,

[M(q, t)]
∣∣∣

H
(k, l) = mH EvC

k ·
EvC

l + EωH
k · IH · EωH

l for k, l = 1 to 13

= 0 otherwise

{− f (q̇, q, t)}
∣∣∣

H
(k) = −mH EvC

k ·
7

∑
i=1

d
dt
(EvC

i )q̇i

− EωH
k ·
[
− IH ·

{
7

∑
i=1

d
dt
(EωH

i )q̇i

}

− EωH × IH · EωH

]
for k = 1 to 13

= 0 otherwise

(A76)

The generalised active force brought about by the gravitational force is given as

Fk

∣∣∣
GravH

= EvC
k ·
(
−mH gẑ2

)
for k = 1 to 13 (A77)

Thus,
[M(q, t)]

∣∣∣
GravH

(k, l) = 0 for all

{− f (q̇, q, t)}
∣∣∣
GravH

(k) = EvC
k ·
(
−mH gẑ2

)
for k = 1 to 7

= 0 otherwise

(A78)

Appendix C.6. Blades

The distributed properties of blade 1 brings about generalised inertia forces and
generalised active forces associated with blade elasticity, damping, weight and aerodynamic
loads. Generalised inertia forces can be given as

F∗k
∣∣∣
B1

= −
∫ BlLn

0
µB1(r)EvS1

k (r) · EaS1(r)dr for k = 1 to 16 (A79)

Thus, using the partial linear velocities and acceleration of the blade nodes the system
matrices can be found as
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[M(q, t)]
∣∣∣
B1
(k, l) =

∫ BlLn

0
µB1(r)EvS1

k (r) · EvS1
l (r)dr for k, l = 1 to 16

= 0 otherwise

{− f (q̇, q, t)}
∣∣∣
B1
(k) = −

∫ BlLn

0
µB1(r)EvS1

k (r) ·
( 10

∑
i=1

d
dt
{EvS1

i (r)}q̇i

)
dr for k = 1 to 16

= 0 otherwise

(A80)

The generalised elastic forces can be obtained from the potential energy stored in the
member as

Fk

∣∣∣
ElasticB1

=
∂VB1

∂qk
for k = 1 to 16 (A81)

{− f (q̇, q, t)}
∣∣∣
ElasticB1

(k) = Fk

∣∣∣
ElasticB1

=


−kB1F

11 qB1F1 − kB1F
12 qB1F2 for k = 14

−kB1E
11 qB1E1 for k = 15

−kB1F
22 qB1F2 − kB1F

21 qB1F1 for k = 16
0 otherwise

(A82)

where kB1F
ij and kB1E

ij are the generalised stiffness of the blade in the local flapwise and
edgewise directions respectively when gravitational de-stiffening and centrifugal stiffening
effects are not included

kB1F
ij =

∫ BlLn

0
EIB1F(r)

[
d2φB1F

i (r)
dr2

][
d2φB1F

j (r)

dr2

]
dr i, j = 1, 2

kB1E
11 =

∫ BlLn

0
EIB1E(r)

[
d2φB1E

1 (r)
dr2

]2

dr

(A83)

Using Rayleigh damping technique where the damping is assumed proportional to the
stiffness, the generalised active forces arising from the damping in the member can be
obtained as

{− f (q̇, q, t)}
∣∣∣
DampB1

(k) = Fk

∣∣∣
DampB1

=

− ζB1F
1 kB1F

11
π f B1F

1
q̇B1F1 −

ζB1F
2 kB1F

22
π f B1F

2
q̇B1F2 for k = 14

− ζB1E
1 kB1E

11
π f B1E

1
q̇B1E1 for k = 15

− ζB2F
1 kB1F

22
π f B1F

2
q̇B1F2 −

ζB1F
1 kB1F

11
π f B1F

1
q̇B1F1 for k = 16

0 otherwise

(A84)

where ζB1F
i and ζB1E

i represents the structural damping ratio of the blade in the flapwise
and edgewise directions respectively. Futhermore, f B1F

i and f B1E
i represent the natural fre-

quency of the blade for the first mode in the flapwise and edgewise directions respectively
without the centrifugal stiffening or gravitational de-stiffening effects. Gravitational forces
on the blades contribute to the generalised active force as

Fk

∣∣∣
GravB1

=
∫ BlLn

0

EvS1
k (r) · {−µB1(r)gẑ2}dr for k = 1 to 16 (A85)
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Thus,

[M(q, t)]
∣∣∣
GravB1

(k, l) = 0 for all

{− f (q̇, q, t)}
∣∣∣
GravB1

(k) = −
∫ BlLn

0

EvS1
k (r) · {µB1(r)gẑ2}dh for k = 1 to 10

= 0 otherwise

(A86)

Aerodynamic forces on the blades contribute to the generalised active force as

Fk

∣∣∣
AeroB1

=
∫ BlLn

0

[
EvS1

k (r) · FS1
AeroB1(r) +

EωM1
k (r) ·MM1

AeroB1(r)
]
dr for k = 1 to 16 (A87)

where FS1
AeroB1(r) and MM1

AeroB1(r) are aerodynamic forces and pitching moments per unit
length on the blade receptively. MM1

AeroB1(r) can include effect of both direct aerodynamic
pitching moments and aerodynamic pitching moments caused by an aerodynamic offset
(i.e., moments due to aerodynamic lift and drag acting at a distance away from the centre
of mass of the blade element along the aerodynamic cord). Thus, using the partial angular
and linear velocities of the blade nodes

[M(q, t)]
∣∣∣

AeroB1
(k, l) = 0 ∀ k, l

{− f (q̇, q, t)}
∣∣∣

AeroB1
(k) =

∫ BlLn

0

[
EvS1

r (r) · FS1
AeroB1(r)

+EωM1
r (r) ·MM1

AeroB1(r)
]
dr for k = 1 to 10

= 0 otherwise

(A88)

Similar to blade 1, the distributed properties of blade 2 and blade 3 bring about generalised
inertia forces and active forces associated with blade elasticity, blade damping, blade weight,

and aerodynamic loads. The equations for F∗k
∣∣∣
B2

, F∗k
∣∣∣
B3

, Fk

∣∣∣
ElasticB2

, Fk

∣∣∣
ElasticB3

, Fk

∣∣∣
DampB2

,

Fk

∣∣∣
DampB3

, Fk

∣∣∣
GravB2

, Fk

∣∣∣
GravB3

, Fk

∣∣∣
AeroB2

and Fk

∣∣∣
AeroB3

can be found similarly.

Appendix C.7. Drivetrain

The inertia of the drivetrain brings about generalised inertia forces and the load in
the generator, high speed shaft brake and the flexibility of the low speed shaft bring about
generalised active forces. Note that it is assumed that the rotor is spinning about positive
ĉ axis. This is a simply gearbox model which assumes that the gearbox rotates about the
shaft axis (i.e., the gear box may not be skewed with respect to the shaft) and there is no
friction forces between in the gear box. If there is no gearbox, GBR = GenDir = 1. The
mechanical torque within the generator is applied to the high speed shaft equally and
oppositely to the structure that rotates with the rotor

Fk

∣∣∣
Gen

=
(

EωG
k −

EωN
k

)
·MG

Gen for k = 1 to 12 (A89)

Thus,

Fk

∣∣∣
Gen

=

{
EωG

GeAz ·MG
Gen for k = GeAz

0 otherwise
(A90)

where the mechanical torque can be given as

MG
Gen = −GenDir.TGen(GBR.q̇GeAz, t)ĉ1 (A91)



Energies 2021, 14, 6635 36 of 43

A positive TGen represents a load (positive power extracted) whereas a negative TGen

represents a motoring-up (negative power extracted or power input). Thus,

Fk

∣∣∣
Gen

=

{
−GBR.TGen(GBR.q̇GeAz, t) for k = GeAz
0 otherwise

(A92)

And,
[M(q, t)]

∣∣∣
Gen

(k, l) = 0 for all

{− f (q̇, q, t)}
∣∣∣
Gen

(k) = −GBR.TGen(GBR.q̇GeAz, t) for k = 12

= 0 otherwise

(A93)

The transnational inertia of the drivetrain is to be incorporated into the structure that
rotates with the nacelle, then the high speed shaft generator inertia generalised force is
given as

F∗r
∣∣∣
G
= −EωG

r ·
(

IG · EαG + EωG× IG · EωG
)

for r = 1 to 12 (A94)

where the inertia dyadic can be given as

IG = GenInerĉ1ĉ1 (A95)

The terms associated with DOFs 1 to 12 represent the fact that the rate of change of angular
momentum of the generator can be considered as an additional torque on the structure that
rotates with the nacelle (i.e., in addition to the torque on the structure transmitted from the
low speed shaft). After some mathematical manipulation

[M(q, t)]
∣∣∣
G
(k, l) = EωG

k · I
G · EωG

l for k, l = 1 to 12

= 0 otherwise

{− f (q̇, q, t)}
∣∣∣
G
(k) = −EωG

k ·
[

IG ·
{

5

∑
i=1

d
dt
(EωN

i )q̇i

}

+ EωG× IG · EωG

]
for k = 1 to 11

= −EωG
k · I

G ·
{

5

∑
i=1

d
dt
(EωN

i )q̇i

}
for k = 12

= 0 otherwise

(A96)

The elasticity of the low speed shaft brings about generalised active force which can be
obtained as

Fk

∣∣∣
ELasticDrive

=
∂VDrive

∂qk
for k = 1 to 12 (A97)

where VDrive is the potential energy in the drivetrain given as
1
2

DTTorSpr.q2
DrTr. Hence,

[M(q, t)]
∣∣∣
DriveTrain

(k, l) = 0 for all (A98)

and

{− f (q̇, q, t)}
∣∣∣
G
(k) = Fr

∣∣∣
ELasticDrive

=

{
−DTTorSpr.qDrTr for k = 12
0 otherwise

(A99)
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Likewise, the contribution of damping to the generalised active forces can be written as

{− f (q̇, q, t)}
∣∣∣
G
(k) = Fr

∣∣∣
DampDrive

=

{
−DTTorDmp.q̇DrTr for k = 12
0 otherwise

(A100)

Here, it must be noted that the mechanical friction in the gearbox will exert a torque on
the high speed shaft. In this study, the mechanical friction torque is neglected and it is
assumed that the gearbox operates with 100% efficiency.

The final equations of motion of the system are obtained by assembling the contri-
bution from every component to form the final [M(q, t)] and {− f (q̇, q, t)} matrices. It is
worth noting here that terms in [M(q, t)] and {− f (q̇, q, t)} can be evaluated directly using
a computer and a priori closed form knowledge of equations of motion are not required.
This has a particular advantage for complex structures with large numbers of components
and reference frames which makes the evaluation of closed form equations practically
impossible.

Appendix D. Coupling TMDI to FOWT

This section provides the kinematics, kinetics and system matrices of the TMDI couple
to the wind turbine tower.

Appendix D.1. Position Vector

Position vector from tower top to the centre of mass of the TMD denoted by the point
D is defined as

rOD =

{
hTMDI d̂2 + qTMDI d̂3 for side-to-side coupling
hTMDI d̂2 + qTMDI d̂1 for fore-aft coupling

(A101)

where hTMDI is the vertical distance of the TMD centre of mass from tower top and qTMDI
is the new generalised coordinate that describes the motion of the TMDI mass in the nacelle
coordinate system along d̂3 when coupled to the side-to-side direction and along d̂1 when
coupled to the fore-aft direction.

Appendix D.2. Linear Velocity Vector

The linear velocity vector of the TMDI mass can be obtained as

EvD = EvO + N vD + EωN × rOD (A102)

Appendix D.3. Partial Linear Velocities

The linear velocity of the TMD can be rearranged to obtained the partial linear veloci-
ties

EvD
k = EvO

k +


EωN

k × rOD for k = 1 to 11

d̂3 or d̂1 for k = 23

0 otherwise
EvD

t = 0

(A103)

Appendix D.4. Linear Accelerations

Lastly, the acceleration of the TMD mass is written in terms of partial linear accelera-
tion as

EaD =
n

∑
k=1

EvD
k q̈k +

n

∑
k=1

Ed
dt

(EvD
k )q̇k +

Ed
dt
{EvDi

t (q, t)} (A104)
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Similar to the previous section, the only terms to be estimated are
Ed
dt (

EvD
k ) as the rest of

the terms are known at this stage.

Appendix D.5. Kinetics and Kane’s Equations of Motion

The TMDI will bring about generalised active and inertial forces will can be summed
up with the generalised active and inertial forces of the wind turbine to obtain the coupled
equations of motion.

Generalised inertial forces can be given as

F∗k
∣∣∣
TMDI

= EvD
k · (−mTMDI

EaD) (A105)

The system matrices are obtained as

[M(q, t)]
∣∣∣
TMDI

(k, l) = mTMDI
EvD

k · EvD
l for k, l = 1 to 11, 23

{− f (q̇, q, t)}
∣∣∣
TMDI

(k) = −mTMDI
EvD

k ·
[

11

∑
i=1

d
dt
(EvD

i )q̇i

+
d
dt
(EvD

T MDI)q̇TMDI

]
for k, l = 1 to 11, 23

(A106)

The inerter force brings about generalised active forces on the damper and the tower as

{− f (q̇, q, t)}
∣∣∣
TMDIInerter

(k) = EvD
k ·
{
−b
[

EaD − EaT(HI)
]}

for k = 1 to 11, 23

(A107)

and

{− f (q̇, q, t)}
∣∣∣
TwrInerter

(k) = EvT
k (HI) ·

{
b
[

EaD − EaT(HI)
]}

for k = 1 to 11, 23

(A108)

where b is the constant of proportionality of the force generated by the inerter due to the
relative acceleration between its two nodes and HI is an arbitrary distance from the base of
the tower. Gravitational force on the TMDI brings about generalised active forces as

Fk

∣∣∣
TMDI

= EvD
k · (−mTMDI gẑ2) (A109)

The elements of the system matrices can be obtained as

{− f (q̇, q, t)}
∣∣∣
TMDIGrav

(k) = EvD
k · (−mTMDI gẑ2) for k, l = 1 to 11, 23 (A110)

The spring and the damper attached to the TMDI mass brings about generalised active
force given as

{− f (q̇, q, t)}
∣∣∣
TMDIElastic

(k) =
∂VTMDI

∂qr
= −kTMDIqTMDI for k = 23 (A111)

where VTMD is the potential energy stored in the spring of the TMD. Using Rayleigh
damping technique the damping is assumed to be proportional to the stiffness. The
generalised active forces arising from the damping is given as

{− f (q̇, q, t)}
∣∣∣
TMDIDamp

(k) = − ζTMDIkTMDI
π fTMDI

q̇TMDI

for k = 23
(A112)
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where mTMDI , kTMDI , fTMDI and ζTMDI are the damper mass, stiffness, frequency of the
TMDI in Hz and damping ratio respectively. Including these terms in the global system
matrices of the wind turbine forms the final system matrices for a wind turbine with a
TMDI installed in the nacelle.

Appendix E. Blade and Tower Deflection Shapes

Tower axial deflections deflection shape functions are given as [65]

STFA
ij (h) =

∫ h

0

[
dφTFA

i (h′)
dh′

dφTFA
j (h′)

dh′

]
for i, j = 1, 2

STSS
ij (h) =

∫ h

0

[
dφTSS

i (h′)
dh′

dφTSS
j (h′)

dh′

]
for i, j = 1, 2

where STFA
ij (r) and STSS

ij (r) are symmetric. Blade 1 axial deflections deflection shape
functions are given as[65]

SB1
ij (r) =

∫ r

0

[
dφB1

i (r)
dr′

dφB1
j (r)

dr′
+

dψB1
i (r)
dr′

dψB1
j (r)

dr′

]
dr′

for i, j = 1, 2, 3

and SB1
ij (r) = SB1

ji (r) (i.e., the shape functions are symmetric). In the above equation φB1
1 ,

φB1
2 , φB1

3 , ψB1
1 , ψB1

2 and ψB1
3 are the twisted mode shapes that can be obtained as [65]

φB1
1 (r) =

∫ r

0

{∫ r′

0

d2φB1F
1 (r′′)
dr′′2

cos(θB1
s (r′′))dr′′

}
dr′

φB1
2 (r) =

∫ r

0

{∫ r′

0

d2φB1F
2 (r′′)
dr′′2

cos(θB1
s (r′′))dr′′

}
dr′

φB1
3 (r) =

∫ r

0

{∫ r′

0

d2φB1E
1 (r′′)
dr′′2

sin(θB1
s (r′′))dr′′

}
dr′

ψB1
1 (r) = −

∫ r

0

{∫ r′

0

d2φB1F
1 (r′′)
dr′′2

sin(θB1
s (r′′))dr′′

}
dr′

ψB1
2 (r) = −

∫ r

0

{∫ r′

0

d2φB1F
2 (r′′)
dr′′2

sin(θB1
s (r′′))dr′′

}
dr′

ψB1
3 (r) =

∫ r

0

{∫ r′

0

d2φB1E
1 (r′′)
dr′′2

cos(θB1
s (r′′))dr′′

}
dr′

Appendix F. Model Verification Results

The motion of the floating wind turbine platform is shown in Figure A1.
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Figure A1. Model verification: motion of the floating offshore wind turbine platform. (a) Platform surge; (b) Platform sway;
(c) Platform heave; (d) Platform roll; (e) Platform pitch; (f) Platform yaw.



Energies 2021, 14, 6635 41 of 43

References
1. Council, G. Global Wind Report 2006; Global Wind Energy Council: Brussels, Belgium, 2006.
2. Council, G. Global Wind Report 2021; Global Wind Energy Council: Brussels, Belgium, 2021.
3. Murtagh, P.; Basu, B.; Broderick, B. Along-wind response of a wind turbine tower with blade coupling subjected to rotationally

sampled wind loading. Eng. Struct. 2005, 27, 1209–1219. [CrossRef]
4. Lackner, M.A.; Rotea, M.A. Passive structural control of offshore wind turbines. Wind Energy 2011, 14, 373–388. [CrossRef]
5. Basu, B.; Zhang, Z.; Nielsen, S.R. Damping of edgewise vibration in wind turbine blades by means of circular liquid dampers.

Wind Energy 2016, 19, 213–226. [CrossRef]
6. Fitzgerald, B.; Basu, B.; Nielsen, S.R. Active tuned mass dampers for control of in-plane vibrations of wind turbine blades. Struct.

Control Health Monit. 2013, 20, 1377–1396. [CrossRef]
7. Fitzgerald, B.; Basu, B. Cable connected active tuned mass dampers for control of in-plane vibrations of wind turbine blades.

J. Sound Vib. 2014, 333, 5980–6004. [CrossRef]
8. Zhang, Z.; Basu, B.; Nielsen, S.R. Tuned liquid column dampers for mitigation of edgewise vibrations in rotating wind turbine

blades. Struct. Control Health Monit. 2015, 22, 500–517. [CrossRef]
9. Fitzgerald, B.; Sarkar, S.; Staino, A. Improved reliability of wind turbine towers with active tuned mass dampers (ATMDs).

J. Sound Vib. 2018, 419, 103–122. [CrossRef]
10. Zhang, Z.L.; Chen, J.B.; Li, J. Theoretical study and experimental verification of vibration control of offshore wind turbines by a

ball vibration absorber. Struct. Infrastruct. Eng. 2014, 10, 1087–1100. [CrossRef]
11. Fitzgerald, B.; Basu, B. A monitoring system for wind turbines subjected to combined seismic and turbulent aerodynamic loads.

Struct. Monit. Maint. 2017, 4, 175–194.
12. Cong, C. Stochastic Vibrations Control of Wind Turbine Blades Based on Wireless Sensor. Wirel. Pers. Commun. 2018,

102, 3503–3515. [CrossRef]
13. Fitzgerald, B.; Basu, B. Structural control of wind turbines with soil structure interaction included. Eng. Struct. 2016, 111, 131–151.

[CrossRef]
14. Harte, M.; Basu, B.; Nielsen, S.R. Dynamic analysis of wind turbines including soil-structure interaction. Eng. Struct. 2012,

45, 509–518. [CrossRef]
15. Buckley, T.; Watson, P.; Cahill, P.; Jaksic, V.; Pakrashi, V. Mitigating the structural vibrations of wind turbines using tuned liquid

column damper considering soil-structure interaction. Renew. Energy 2017, 120, 322–341. [CrossRef]
16. Achmus, M.; Kuo, Y.S.; Abdel-Rahman, K. Behavior of monopile foundations under cyclic lateral load. Comput. Geotech. 2009,

36, 725–735. [CrossRef]
17. Carswell, W.; Arwade, S.R.; DeGroot, D.J.; Lackner, M.A. Soil–structure reliability of offshore wind turbine monopile foundations.

Wind Energy 2015, 18, 483–498. [CrossRef]
18. Dinh, V.N.; Basu, B. Impact of spar-nacelle-blade coupling on the edgewise response of floating offshore wind turbines. Coupled

Syst. Mech. 2013, 2, 231–253. [CrossRef]
19. Lackner, M.A. Controlling platform motions and reducing blade loads for floating wind turbines. Wind. Eng. 2009, 33, 541–553.

[CrossRef]
20. Lackner, M.A. An investigation of variable power collective pitch control for load mitigation of floating offshore wind turbines.

Wind Energy 2013, 16, 519–528. [CrossRef]
21. Karimirad, M.; Moan, T. Wave-and wind-induced dynamic response of a spar-type offshore wind turbine. J. Waterw. Port Coast.

Ocean. Eng. 2011, 138, 9–20. [CrossRef]
22. Waris, M.B.; Ishihara, T. Dynamic response analysis of floating offshore wind turbine with different types of heave plates and

mooring systems by using a fully nonlinear model. Coupled Syst. Mech. 2012, 1, 247–268. [CrossRef]
23. Karimirad, M.; Moan, T. Stochastic dynamic response analysis of a tension leg spar-type offshore wind turbine. Wind Energy

2013, 16, 953–973. [CrossRef]
24. Wang, K.; Moan, T.; Hansen, M.O. Stochastic dynamic response analysis of a floating vertical-axis wind turbine with a semi-

submersible floater. Wind Energy 2016, 19, 1853–1870. [CrossRef]
25. Jonkman, J.M.; Buhl, M.L., Jr. Fast User’s Guide—Updated August 2005; Technical Report; National Renewable Energy Laboratory

(NREL): Golden, CO, USA, 2005.
26. Jonkman, J.M. Dynamics Modeling and Loads Analysis of an Offshore Floating Wind Turbine; University of Colorado Boulder: Boulder,

CO, USA, 2007.
27. Kane, T.R.; Levinson, D.A. Dynamics, Theory and Applications; McGraw Hill: New York, NY, USA, 1985.
28. Lee, D.; Hodges, D.H.; Patil, M.J. Multi-flexible-body Dynamic Analysis of Horizontal Axis Wind Turbines. Wind Energy 2002,

5, 281–300. [CrossRef]
29. Lee, D.; Hodges, D. Multi-Flexible-Body Analysis for Applications to Wind Turbine Control Design; School of Aerospace Engineering,

Georgia Institute of Technology: Atlanta, GA, USA, 2003.
30. Sarkar, S.; Chen, L.; Fitzgerald, B.; Basu, B. Multi-resolution wavelet pitch controller for spar-type floating offshore wind turbines

including wave-current interactions. J. Sound Vib. 2020, 470, 115170. [CrossRef]
31. Sarkar, S.; Fitzgerald, B. Vibration control of spar-type floating offshore wind turbine towers using a tuned mass-damper-inerter.

Struct. Control Health Monit. 2020, 27, e2471. [CrossRef]

http://doi.org/10.1016/j.engstruct.2005.03.004
http://dx.doi.org/10.1002/we.426
http://dx.doi.org/10.1002/we.1827
http://dx.doi.org/10.1002/stc.1524
http://dx.doi.org/10.1016/j.jsv.2014.05.031
http://dx.doi.org/10.1002/stc.1689
http://dx.doi.org/10.1016/j.jsv.2017.12.026
http://dx.doi.org/10.1080/15732479.2013.792098
http://dx.doi.org/10.1007/s11277-018-5387-0
http://dx.doi.org/10.1016/j.engstruct.2015.12.019
http://dx.doi.org/10.1016/j.engstruct.2012.06.041
http://dx.doi.org/10.1016/j.renene.2017.12.090
http://dx.doi.org/10.1016/j.compgeo.2008.12.003
http://dx.doi.org/10.1002/we.1710
http://dx.doi.org/10.12989/csm.2013.2.3.231
http://dx.doi.org/10.1260/0309-524X.33.6.541
http://dx.doi.org/10.1002/we.1500
http://dx.doi.org/10.1061/(ASCE)WW.1943-5460.0000087
http://dx.doi.org/10.12989/csm.2012.1.3.247
http://dx.doi.org/10.1002/we.1537
http://dx.doi.org/10.1002/we.1955
http://dx.doi.org/10.1002/we.66
http://dx.doi.org/10.1016/j.jsv.2020.115170
http://dx.doi.org/10.1002/stc.2471


Energies 2021, 14, 6635 42 of 43

32. Sarkar, S.; Fitzgerald, B.; Basu, B. Individual blade pitch control of floating offshore wind turbines for load mitigation and power
regulation. IEEE Trans. Control Syst. Technol. 2020, 29, 305–315. [CrossRef]

33. Sarkar, S.; Fitzgerald, B.; Basu, B. Nonlinear model predictive control to reduce pitch actuation of floating offshore wind turbines.
IFAC-PapersOnLine 2020, 53, 12783–12788. [CrossRef]

34. Larsen, T.J.; Hansen, A.M. How 2 HAWC2, The User’S Manual; Risø National Laboratory: Roskilde, Denmark, 2007.
35. Stewart, G.; Muskulus, M. A review and comparison of floating offshore wind turbine model experiments. Energy Procedia 2016,

94, 227–231. [CrossRef]
36. Staino, A.; Basu, B.; Nielsen, S.R. Actuator control of edgewise vibrations in wind turbine blades. J. Sound Vib. 2012,

331, 1233–1256. [CrossRef]
37. Huang, N.E.; Chen, D.T.; Tung, C.C.; Smith, J.R. Interactions between steady won-uniform currents and gravity waves with

applications for current measurements. J. Phys. Oceanogr. 1972, 2, 420–431. [CrossRef]
38. Tung, C.C.; Huang, N.E. Influence of current on statistical properties of waves. J. Waterw. Harb. Coast. Eng. Div. 1974, 100, 267–278.

[CrossRef]
39. Thomas, G. Wave-current interactions: An experimental and numerical study. Part 1. Linear waves. J. Fluid Mech. 1981,

110, 457–474. [CrossRef]
40. Silva, M.; Vitola, M.; Esperança, P.; Sphaier, S.; Levi, C. Numerical simulations of wave–current flow in an ocean basin. Appl.

Ocean. Res. 2016, 61, 32–41. [CrossRef]
41. Ismail, N.M. Wave-current models for design of marine structures. J. Waterw. Port Coast. Ocean. Eng. 1984, 110, 432–447.

[CrossRef]
42. Hedges, T. Some effects of currents on wave spectra. In Proceedings of the First Indian Conference in Ocean Engineering, Madras,

India, 18–20 February 1981; Volume 1, pp. 30–35.
43. Hedges, T.S.; Anastasiou, K.; Gabriel, D. Interaction of random waves and currents. J. Waterw. Port Coast. Ocean. Eng. 1985,

111, 275–288. [CrossRef]
44. Phillips, O.M. The Dynamics of the Upper Ocean; CUP Archive: Cambridge, UK, 1966.
45. Azcona, J.; Palacio, D.; Munduate, X.; González, L.; Nygaard, T.A. Impact of mooring lines dynamics on the fatigue and ultimate

loads of three offshore floating wind turbines computed with IEC 61400-3 guideline. Wind Energy 2017, 20, 797–813. [CrossRef]
46. Jonkman, B.J. TurbSim User’S Guide: Version 1.50; Technical Report; National Renewable Energy Lab (NREL): Golden, CO,

USA, 2009.
47. Burton, T.; Jenkins, N.; Sharpe, D.; Bossanyi, E. Wind Energy Handbook; John Wiley & Sons: Hoboken, NJ, USA, 2011.
48. Moriarty, P.J.; Hansen, A.C. AeroDyn Theory Manual; Technical Report; National Renewable Energy Lab.: Golden, CO, USA, 2005.
49. Hansen, M.O. Aerodynamics of Wind Turbines; Routledge: Oxfordshire, UK, 2015.
50. Ning, S.A. A simple solution method for the blade element momentum equations with guaranteed convergence. Wind Energy

2014, 17, 1327–1345.
51. Ning, A.; Hayman, G.; Damiani, R.; Jonkman, J.M. Development and Validation of a New Blade Element Momentum Skewed-

Wake Model within AeroDyn. In Proceedings of the 33rd Wind Energy Symposium, Kissimmee, FL, USA, 5–9 January 2015;
p. 0215.

52. Chen, L.; Basu, B.; Nielsen, S.R. A coupled finite difference mooring dynamics model for floating offshore wind turbine analysis.
Ocean. Eng. 2018, 162, 304–315. [CrossRef]

53. Tjavaras, A.A. The Dynamics of Highly Extensible Cables. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA,
USA, 1996.

54. Tjavaras, A.; Zhu, Q.; Liu, Y.; Triantafyllou, M.; Yue, D. The mechanics of highly-extensible cables. J. Sound Vib. 1998, 213, 709–737.
[CrossRef]

55. Gobat, J.; Grosenbaugh, M. Time-domain numerical simulation of ocean cable structures. Ocean. Eng. 2006, 33, 1373–1400.
[CrossRef]

56. Fitzgerald, B.; Basu, B. Vibration control of wind turbines: recent advances and emerging trends. Int. J. Sustain. Mater. Struct.
Syst. 2020, 4, 347–372. [CrossRef]

57. Zhang, Z.; Fitzgerald, B. Tuned mass-damper-inerter (TMDI) for suppressing edgewise vibrations of wind turbine blades.
Eng. Struct. 2020, 221, 110928. [CrossRef]

58. Marian, L.; Giaralis, A. Optimal design of a novel tuned mass-damper–inerter (TMDI) passive vibration control configuration for
stochastically support-excited structural systems. Probabilistic Eng. Mech. 2014, 38, 156–164. [CrossRef]

59. Giaralis, A.; Petrini, F. Wind-induced vibration mitigation in tall buildings using the tuned mass-damper-inerter. J. Struct. Eng.
2017, 143, 04017127. [CrossRef]

60. Jonkman, J.M.; Butterfield, S.; Musial, W.; Scott, G. Definition of a 5-MW Reference Wind Turbine for Offshore System Development;
National Renewable Energy Laboratory: Golden, CO, USA, 2009.

61. Das, S.; Mohamed Sajeer, M.; Chakraborty, A.; Sarkar, S. Shape memory alloy-based centrifugal stiffening for response reduction
of horizontal axis wind turbine blade. Struct. Control Health Monit. 2021, 28, e2669. [CrossRef]

62. Mitra, A.; Sarkar, S.; Chakraborty, A.; Das, S. Sway vibration control of floating horizontal axis wind turbine by modified
spar-torus combination. Ocean Eng. 2021, 219, 108232. [CrossRef]

http://dx.doi.org/10.1109/TCST.2020.2975148
http://dx.doi.org/10.1016/j.ifacol.2020.12.1936
http://dx.doi.org/10.1016/j.egypro.2016.09.228
http://dx.doi.org/10.1016/j.jsv.2011.11.003
http://dx.doi.org/10.1175/1520-0485(1972)002<0420:IBSWUC>2.0.CO;2
http://dx.doi.org/10.1061/AWHCAR.0000250
http://dx.doi.org/10.1017/S0022112081000839
http://dx.doi.org/10.1016/j.apor.2016.10.005
http://dx.doi.org/10.1061/(ASCE)0733-950X(1984)110:4(432)
http://dx.doi.org/10.1061/(ASCE)0733-950X(1985)111:2(275)
http://dx.doi.org/10.1002/we.2064
http://dx.doi.org/10.1016/j.oceaneng.2018.05.001
http://dx.doi.org/10.1006/jsvi.1998.1526
http://dx.doi.org/10.1016/j.oceaneng.2005.07.012
http://dx.doi.org/10.1504/IJSMSS.2020.109090
http://dx.doi.org/10.1016/j.engstruct.2020.110928
http://dx.doi.org/10.1016/j.probengmech.2014.03.007
http://dx.doi.org/10.1061/(ASCE)ST.1943-541X.0001863
http://dx.doi.org/10.1002/stc.2669
http://dx.doi.org/10.1016/j.oceaneng.2020.108232


Energies 2021, 14, 6635 43 of 43

63. Fitzgerald, B.; Igoe, D.; Sarkar, S. A Comparison of Soil Structure Interaction Models for Dynamic Analysis of Offshore Wind
Turbines. J. Phys. Conf. Ser. 2020, 1618, 052043. [CrossRef]

64. Kane, T.; Ryan, R.; Banerjee, A. Dynamics of a cantilever beam attached to a moving base. J. Guid. Control Dyn. 1987, 10, 139–151.
[CrossRef]

65. Jonkman, J.M. Modeling of the UAE Wind Turbine for Refinement of FAST_AD; Technical Report; Citeseer: University Park, PA, USA,
2003.

http://dx.doi.org/10.1088/1742-6596/1618/5/052043
http://dx.doi.org/10.2514/3.20195

	Introduction
	Methodology
	Assumptions
	Coordinate Systems
	Kinematics
	Kinetics and Kane's Equation of Motion
	Wave–Current Interaction Model
	Regular Wave on Current
	Irregular Waves on Current

	Aerodynamic Loads
	Hydrodynamic Loads
	Mooring Dynamics Model
	Structural Control—Passive TMDI Installed on Tower-Top
	TMDI Parameter Optimization Using a Simplified Model


	Results and Discussion
	Benchmarking against FAST v8
	Performance of the Passive TMDI

	Conclusions
	Symbols
	Kinematics
	Coordinate Systems
	Position Vectors
	Angular Velocities
	Linear Velocities
	Partial Angular Velocities
	Partial Linear Velocities
	Angular Accelerations
	Linear Accelerations

	Kinetics
	Platform
	Tower
	Yaw Bearing
	Nacelle
	Hub
	Blades
	Drivetrain

	Coupling TMDI to FOWT
	Position Vector
	Linear Velocity Vector
	Partial Linear Velocities
	Linear Accelerations
	Kinetics and Kane's Equations of Motion

	Blade and Tower Deflection Shapes
	Model Verification Results
	References

