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Abstract: This paper proposes a new frequency decomposition-based hybrid reactive power fore-
casting algorithm, EEMD-LSTM-RFR (ELR), which adopts a strategy of frequency decomposition
prediction after ensemble empirical mode decomposition and then data reconstruction to improve the
prediction ability of reactive power. This decomposition process can compress the high frequency of
reactive power and benefits the following separate forecasting. Long short-term memory is proposed
for the high-frequency feature of reactive power to deal with the forecasting difficulty caused by
strong signal disturbance and randomness. In contrast, random forest regression is applied to the
low-frequency part in order to speed up the forecasting. Four classical algorithms and four hybrid
algorithms based on different signal decompositions are compared with the proposed algorithm, and
the results show that the proposed algorithm outperforms those algorithms. The predicting index
RMSE decreases to 0.687, while the fitting degree R2 gradually approaches 1 with a step-by-step
superposition of high-frequency signals, indicating that the proposed decomposition-predicting
reconstruction strategy is effective.

Keywords: reactive power; forecasting algorithm; ensemble empirical mode decomposition; long
short-term memory; random forest regression

1. Introduction

In the regular operation of power systems, various pieces of electrical equipment can
exert their best performance under the rated voltage. However, with the frequent changes
in the electrical load, the operating voltage also changes at the same time, and its quality
depends on the balance of reactive power, the output of various reactive power sources in
the system, which should be able to meet the requirements of the system load and network
loss under the rated voltage; otherwise, the operating voltage will deviate from the rated
value. Therefore, accurate forecasting of power load helps in maintaining the regular
operation of the power system and the optimal management of energy resources [1]. In
the last 40 years, short-term load forecasting has been widely studied. Many essential
operations in the power system are closely related to reactive power, such as voltage/var
optimization [2,3], power quality improvement [3], frequency control [4], and steady-state
power flow analysis [5,6]. Accurate forecasting of short-term reactive power helps in the
maintenance of the regular operation of the power system and the optimal management
of energy resources [7], and helps to reduce the power loss of the power grid [8–10].
Nevertheless, existing forecasting algorithms for short-term reactive power struggle to
reach the accuracy requirements in application due to the strong waveform randomness,
noise, and local disturbance of reactive power.

These forecasting algorithms can be divided into statistical mathematical algorithms,
machine learning-based algorithms, and hybrid forecasting algorithms. In the statistical
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mathematical field, Nie et al. [11] applied multiple linear regression algorithms to medium-
term and long-term power load forecasting. Wu et al. [12] introduced a random forest
regression (RFR) method to improve the short-term power load forecasting. However,
these algorithms based on mathematical statistics are poor in robustness with low ac-
curacy for complex nonlinear systems. The classical representative algorithm based on
machine learning is support vector machine (SVM) [13], which presents good results in
the short-term forecasting of power load with strong periodicity [14]. However, it has
a poor forecasting effect on power load data with significant random fluctuation. The
neural network is widely used in nonlinear system forecasting for its strong nonlinear
mapping ability. Gao et al. [15] applied the recurrent neural network (RNN) to power
load forecasting. However, RNN cannot establish the dependencies between long time
series data. Hochreiter et al. [16] designed the long short-term memory (LSTM) neural
network to solve this problem, which alleviates gradient attenuation and better captures
the dependencies between long time series data by controlling the flow of information.
Ma et al. [17] proposed a power load forecasting algorithm that combined isolated forest
(IForest) with LSTM neural network. However, the neural network has a slow convergence
speed, quickly falling into the local minimum value and overfitting. Because the algorithms
based on traditional mathematical and machine learning have their limitations, hybrid
forecasting algorithms have emerged. The first type of algorithm consists of multiple
forecasting algorithms, realizes the forecasting by means their weighted results, and ob-
tains higher forecasting accuracy. Meanwhile, the second kind of algorithm uses a signal
decomposition strategy. Fourier transform and wavelet transform are classical methods,
which can extract multi-scale local features of load information. Wen et al. [18] decomposed
the power signal by means of fast Fourier transform (FFT), which can accurately obtain
the frequency domain features of the signal. Sun et al. [19] decomposed the power load
into high-frequency and low-frequency by means of wavelet transform. This algorithm
has advantages including dynamic time-frequency resolution and the adaptability of a
wavelet basis. Huang et al. [20] proposed empirical mode decomposition (EMD), which
decomposed a complex signal into a series of intrinsic mode functions (IMFs) and the
remainder according to different time scales. This method has been widely used in sig-
nal processing. EMD does not need any pre-set basis functions except for the time scale
features of the signal. Meanwhile, Kurbatskii et al. [21] proposed the two-stage adaptive
approach for time series forecasting, which employed the EMD/HHT in feature extraction
for forecasting the active/reactive power. Since EMD lacks decomposing load information
with intermittent signals, Wu et al. [22] proposed ensemble empirical mode decomposi-
tion (EEMD). The noise-aided analysis is applied for promoting the anti-aliasing ability
and solves the defect of mode aliasing caused by intermittent signals in EMD. EEMD is
suitable for both stationary and non-stationary signals and does not need to pre-set the
basis function. He et al. [23] decomposed the data before making predictions. Wu et al. [24]
combined the EEMD algorithm and the LSTM algorithm. These prediction algorithms
perform better than conventional forecasting algorithm. However, these studies only se-
lected a suitable prediction algorithm for the signal as a whole. A single algorithm cannot
extract the features of all signal decompositions well. Yang et al. [25] chose the suitable
prediction algorithm for each signal decomposition. Although this method can further
improve the prediction accuracy, it requires a unique structure for each signal, which is
not universal. Compared with the conventional forecasting algorithm, the forecasting
accuracy of the hybrid forecasting algorithm is improved, but the forecasting performance
of reactive power with strong disturbance is still not good enough.

All in all, the difficulty of reactive power prediction lies in its strong randomness,
high levels of noise, and violent local disturbance [26]. This paper proposes a short-term
reactive power hybrid forecasting model based on EEMD-LSTM-RFR (ELR) to solve the
above problems. Compared to previous studies, ELR adopts the hierarchical clustering
algorithm, which can automatically classify signals without manually setting parameters.
Then, ELR can extract the fine features of each class of signal decomposition, achieving
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better prediction performance. Therefore, ELR has a certain versatility, which can be
applied to various short-term signals. First, EEMD decomposes the reactive power data
into several IMFs for deep mining data information, and the local features’ representation at
different time scales can remove the interference within different time scales. Subsequently,
the LSTM neural network and the RFR algorithm are applied to predict different frequency
components, respectively, and the prediction results are superimposed to reconstruct
reactive power. In this paper, the reactive power data are noisy, with solid disturbance.
The proposed algorithm realizes a better prediction and restoration of local details.

The reactive power forecasting algorithm based on ELR contributes to solving the
two shortcomings of the existing prediction algorithms and provides a novel strategy for
reactive power forecasting.

Aiming at combatting the difficulty in forecasting high-frequency components with
strong randomness, the ELR algorithm adopts LSTM with a solid nonlinear fitting ability
to improve the forecasting accuracy as much as possible. The local details of the reactive
power can be effectively restored; therefore, the entire prediction result is closer to the
actual value. To address the slow convergence and long training time of the neural
network, the ELR algorithm directly uses the RFR algorithm to predict the low-frequency
components. The case analysis proves that RFR accelerates the training speed and attains
more accurate prediction results, which improves the training and prediction accuracy of
the entire algorithm. For reactive power forecasting, the strategy of separately predicting
after EEMD and signal reconstruction is proposed. The EEMD of reactive power obtains
a high proportion of low frequency and a low proportion of high frequency, and this
high-frequency compression benefits the following reactive power forecasting.

The rest of this paper is arranged as follows. Section 2 introduces the used dataset and
proposes a reactive power multi-scale feature extraction algorithm. Section 3 introduces
the theoretical background of related forecasting algorithms and proposes the structure of
the hybrid reactive power forecasting framework. Section 4 presents the experiment and
result analysis, while the conclusion is given in Section 5.

2. Analysis of Reactive Power and Feature Extraction Algorithm

Due to the weak periodicity and strong randomness of the reactive power data,
choosing a suitable decomposition method to obtain in-depth information with regard to
these data is meaningful. This paper analyzes the data features of the reactive power to
select the appropriate decomposition method, and verifies its effectiveness.

2.1. Analysis of Reactive Power Features

A group of prefecture-level reactive power data for a city in East China are selected.
The sampling interval is 15 min, and the total number of reactive power data is 10,340.
Some of the data are depicted in Figure 1.

As can be seen in Figure 1, based on a certain periodicity, the reactive power data
present strong local randomness in the red box, including a large number of disturbance
signals (specifically a mixture of some intermittent signals) and noises, which reflect feature
information under different time scales. Different scales information will be mixed, which
makes the prediction algorithm poor. Therefore, we need to decompose the signal to
extract multi-scale local features of the reactive power, making the prediction easier and
more precise.



Energies 2021, 14, 6606 4 of 18

Figure 1. Data display of reactive power (part of the prefecture-level reactive power data of a city in East China).

2.2. Multi-Scale Feature Extraction Algorithm

There are many algorithms for signal decomposition. EMD is currently the most
widely used algorithm, decomposing the complex signals into a linear combination of
many IMFs with different time scales [27]:

X(t) = ∑ IMFk(t) + r(t) (1)

where IMFk is the kth intrinsic mode functions and r is the residual. The decomposed
IMFs contain the local feature at different time scales, and the IMFs also need to meet the
following two conditions:

(1) The maximum difference between the number of extreme points and zero-crossing
points is 1;

(2) The average value of the local maximum and minimum is 0.

This algorithm decomposes the signal according to the time-scale characteristics of
the data themselves. It does not need any basis function to be pre-set, making it better than
Fourier decomposition and wavelet decomposition, which are based on the harmonic basis
function and the wavelet basis function, respectively.

However, the distribution of the local extremum between intermittent signals and
other signals is different, which causes the IMFs to fit the false envelopes. Since EMD is a
non-difference algorithm, the IMFs must cover the other decomposed signals, resulting in
mode mixing, and now these IMFs do not satisfy the uniqueness, which in turn brings about
the difficulty of prediction. Thus, we have to find a way to deal with these intermittent
signals, which is illustrated in Figure 2. It can be seen that IMF8 and IMF9 have similar
time-scale signals, which shows typical mode mixing.
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Figure 2. Empirical mode decomposition of reactive power.

EEMD enables EMD to decompose the reactive power with intermittent signals by
adding white noise to the signal. White noise causes the local extremum to have a uniform
distribution, which contributes to solving the mode mixing problem. From Figure 2, white
noise will increase the signal-to-noise ratio of the reactive power data. Because the average
value of white noise is 0, we use EMD to decompose the signal with white noise many times
and take the average value; then, the white noise will be eliminated, and the predictable
multi-scale local features of reactive power can be obtained in the end.

Therefore, EEMD is used to extract stable and effective multi-scale local features of
reactive power. In this paper, EEMD has the following steps:

(1) Add the white noise to the reactive power;
(2) Confirm the maximum and minimum values in the target signal, and use cubic splines

interpolation to fit the envelope. Moreover, record the mean of the maximum and
minimum values as m(t);

(3) Calculate the residual value r(t) = m(t)− x(t);
(4) Repeat the above steps until the convergence condition is met.

To verify the effectiveness of EEMD, this paper decomposes a signal of N = 300
samples consisting of a sinusoid with amplitude H= 3 and normalized frequency λ0= 100,
and a sinusoid with amplitude H = 2 and normalized frequency λ1= 300, mixed with
white Gaussian noise with a signal-to-noise ratio (SNR) equal to 20 dB [28]. EEMD obtains
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this result and an unsupervised clustering algorithm, hierarchical clustering [29], and the
number of classes is set to 2.

The quality of reconstruction factor (QRF) of an estimated component x̂ relative to
reference x is given by [29]:

QRF(x̂, x) = 20 log10

(
||x||
||x− x̂||

)
(2)

As shown in Figure 3, EEMD allows us to recover the basic components, despite the
presence of noise (the QRF of the component is higher or equal to the input SNR [20]).

Figure 3. Samples decomposed by EEMD.

EEMD decomposes the reactive power data to obtain n IMFs with frequencies from
high to low and the remainder IMF13. Figure 4 shows the decomposition components of
reactive power data. The standard deviation of white noise is assigned as 0.2 times the
signal standard deviation [20], and the value N is 300 [20].

It can be seen from Figure 4 that there is no obvious mode mixing phenomenon in
each IMF component after EEMD, and each IMF has its unique feature at a specific stable
frequency and disposes of the interaction between different time scales, which provides
convenience for subsequent forecasts. Some IMFs reflect the overall trend of reactive
power stability, and the others reflect the local random features with strong reactive power
fluctuation. Therefore, this paper divides these IMFs into different categories according to
their features, and then uses suitable prediction algorithms for each one. Here, we can see
from Figure 4 that two categories are enough.

There are many algorithms for signal classification. Among them, some algorithms
always show poor performance without manual feature and regularity analysis of given
signals. Since the reactive power lacks regularity, we choose a hierarchical clustering
algorithm, which can automatically classify signals without manually setting parameters.
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Figure 4. Ensemble empirical mode decomposition of reactive power.

In this paper, this algorithm divides IMFs into n sets. It then permits their reduction to
n-1 mutually exclusive sets by considering the union of all possible n(n− 1)/2 pairs and
selecting a union with a maximal value for the functional relation or objective function [30].
By repeating this process until the number of categories we require is met, the complete
hierarchical structure and the value of the similarity between every two sets can be obtained.
The standard to evaluate the similarity between two IMFs is given by [28]:

d(x, y) = 1− |< x, y >|
||x||·||y|| (3)

With < x, y >= xTy and
∣∣∣∣x∣∣∣∣= √< x, x > (4)

where x and y represent a time series.
After hierarchical clustering, IMF1−5 are classified as the high-frequency part, while

IMF6−13 are classified as the low-frequency part. The high-frequency part presents reactive
power’s local randomness, disturbance, and noises, while the low-frequency part reflects
its inherent periodicity.

To verify the advantages of EEMD in reactive power decomposition, this paper uses
permutation entropy (PE) as a standard to evaluate the predictability of components
decomposed by EMD and EEMD. The smaller the value of PE, the higher the predictability
and the better effect of decomposition. We map the reactive power data into k sequences,
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and then arrange each sequence in ascending order. There are k! kinds of permutation
methods with k sequences. The probability of the ith sequence occurring is Pi. Then, the
value of PE can be calculated as [30]:

PE = −
k

∑
j=1

Pj ln(Pj) (5)

The PE values of the high-frequency component and low-frequency component de-
composed by EMD are 0.9824 and 0.7766, respectively, while those decomposed by EEMD
are 0.9734 and 0.5429, respectively. This suggests that components decomposed by EEMD
have better predictability. It can be concluded that using EEMD to decompose the reac-
tive power has a better effect, as shown in Figure 5. This result is obtained by means
of EMD/EEMD and hierarchical clustering, a kind of unsupervised clustering, with the
number of classes set to 2. Compared with EEMD, more high-frequency signals are mixed
in the low-frequency component of EMD, resulting in mode mixing. Because the mixed
high-frequency signal will increase the difficulty of prediction, the low-frequency com-
ponent of EMD has worse predictability. Therefore, we choose EEMD to decompose the
reactive power.

Figure 5. Components of the EMD/EEMD decomposition.

3. Hybrid Forecasting Algorithm of Reactive Power

EEMD decomposes one signal into dozens of IMFs, causing the data volume to in-
crease and making the calculation of training data more difficult. To improve the training
speed and forecasting accuracy, it is necessary to select the appropriate forecasting algo-
rithm according to the time-frequency features of each feature component. In this paper,
a hybrid forecasting algorithm of short-term reactive power based on multi-scale local
feature extraction is proposed. Firstly, EEMD is used to decompose the reactive power data.
Then, according to the different time-frequency features of each feature, the appropriate
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algorithm is selected for forecasting. Except for the forecasting accuracy, high training
speed is also a performance index of the algorithm. Finally, the forecasting results are
superimposed to reconstruct the reactive power.

3.1. Research on the Different Time-Frequency Feature Forecasting Algorithm

This algorithm consists of RFR for the prediction of high-frequency signals and LSTM
for the prediction of low-frequency signals. The machine learning-based methods consider
fewer parameters, which have lower computational complexity and shorter training time.
The deep learning-based methods consider more parameters, which have higher computa-
tional complexity and longer training time. In this research, a 1.2 GHz GPU with 16 GB
memory and Windows10 system was used for all the experiments, and algorithms were
programmed by Python3.6.

For the strong periodicity and high linearity of the low-frequency components, com-
pared with deep learning algorithms, machine learning algorithms have higher training
speed and stronger interpretability, while the accuracy can also meet the requirements in
application [31].

Moreover, compared with mainstream machine learning algorithms such as support
vector regression (SVR) and logistic regression (LR), RFR can more easily obtain an accurate
forecasting value and avoids tedious parameter tuning [32]. It is an ensemble learning
algorithm that can improve forecasting accuracy by integrating the regression tree (RT),
showing a powerful generalization without overfitting phenomena usually occurring in
neural networks.

The RFR is obtained by integrating RTs based on the loss minimization [12]:

MSEmin = min

1
s

s

∑
i=1

(
1
n

n

∑
j=1

BRTj(xi)− yi

)2
 (6)

where BRTj(xi) is the IMF forecasting value of the jth RT, while xi and yi are the values of
the ith feature input vector and the actual IMF value, respectively. The forecasting results
of low-frequency features of reactive power are finally obtained by [12]:

Ypredict =
1
n

n

∑
p=1

C(p)BRTp(E) (7)

where the weight C(p) is the sum of the feature correlation coefficients of the pth RT;
BRTp(E) is the output value of the pth RT [33]. In this paper, the number of decision trees
is set to 100.

The high-frequency components present strong randomness and volatility; traditional
machine learning algorithms may not be able to accurately capture the intrinsic features,
while neural networks are robust for nonlinear function fitting, such as back propagation
neural network (BPNN), convolutional neural network (CNN), and RNN. RNN is the most
mainstream algorithm for time series forecasting by constructing connections between
adjacent neurons to capture time information [34].

Since the reactive power data length in practical applications can reach 40 or even
longer, some algorithms such as RNN cannot establish the dependencies between long
time series data. They will pass all the information to the adjacent neurons in forward
propagation. The redundant information will accumulate in the process of propagation,
which weakens the dependency information. However, the dependencies between long
time series data are established based on the dependency information mentioned before;
these algorithms are not suitable for predicting reactive power.

To solve this problem, LSTM adds a channel of cell state input and output and realizes
the memory and transmission of data information through three gating units: forget gate,
input gate and output gate, whose function is to control the flow of information in the
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network, such as filtering out the redundant information. The function of the gating unit is
presented as [35]:

gt(x) = σ(xtWx + ht−1Wh + b) (8)

Ct = Ft ⊗ Ct−1 + It ⊗ C̃t (9)

where Wx and Wh are the weights of the gating unit; x represents the input time series data;
σ denotes the sigmoid function, which aims to add the nonlinear expression and enhance
the fitting ability of the neural network; Ft and It represent the output of forget gate and
input gate; ⊗ means to perform an element-wise multiplication; while Ct and C̃t in the
formula are called the memory cell.

The forget gate controls the information in the memory cell of the previous time step,
and decides whether the information is sent to the current time step. Moreover, the input
gate decides whether input data will be used to train the network. If the value of the forget
gate is close to 0 and the value of the input gate is close to 1, memory cells will discard
invalid information of the previous time step. Then, the proportion of the dependency
information will increase. Using this structure, LSTM can alleviate the problem of gradient
attenuation and better capture the dependencies between long time series data.

The high-frequency component sequence of the reactive power is inputted into LSTM
neurons for the forwarding calculation. After the output of LSTM is obtained, the error of
each neuron can be calculated backward by the mean square error (MSE) equation as [35]:

VMSE =
1
n

m

∑
t=1

(Vactual −Vpredict)
2 (10)

where Vactual represents the actual value of the high-frequency component, Vpredict is its
prediction value outputted by LSTM, and m denotes the data number. We build a neural
network with two hidden layers of LSTM. The number of neurons in these two hidden
layers is 128 and 32, respectively, the number of neurons in the input layer is 48, and the
number of neurons in the output layer is 1.

After outputting the value of the neuron, the neuron weight is continuously optimized
by Adam optimization toward the decrease in the error VMSE. Through repeated iterations,
the forecasting value of LSTM gradually approaches the actual value of the training set.

3.2. Validation of the Forecasting Algorithms

In this paper, RFR, LSTM, BPNN, and SVR are used to forecast a group of smooth
time sequences and a group of strongly disturbed time sequences to verify the following
algorithms’ performance. The root mean square error (RMSE) and the determination of
coefficient (R2) are used to evaluate the forecasting accuracy. These two indexes show
the predictive performance of the algorithm. The smaller the value of the root mean
square error (RMSE) is, the more accurate the algorithm is in predicting the reactive power.
In contrast, the closer the value of R2 is to 1, the better the prediction model is.

RMSE is calculated as [36]:

RMSE =

√
1
N

N

∑
i=1

(Yactual −Ypredict)
2 (11)

Additionally, R2 is determined by [36]:

R2 = 1−

N
∑

i=1
(Yactual −Ypredict)

2

N
∑

i=1
(Ymean −Ypredict)

2
(12)

where Yactual and Ymean are the actual value and its average value, respectively. Ypredict is
the prediction value; N is the total number of the forecasting data.
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A portion of the forecasting results is shown in Figure 6. It can be seen that the
prediction curves of RFR, LSTM, and BPNN follow the actual curve with small biases,
while the prediction curve of SVR has a considerable bias.

Figure 6. Forecasting on smooth sequences.

Table 1 shows the forecasting performance indexes of the four algorithms. RFR has
an RMSE of only 0.024 and R2 of 0.998, which shows that RFR outperforms SVR, BPNN,
and LSTM. It has the highest forecasting accuracy and is very suitable for the forecasting of
low-frequency component data.

Table 1. Forecasting index of each algorithm on smooth time sequences.

Algorithm RFR SVR BPNN LSTM

RMSE 0.024 0.264 0.042 0.036
R2 0.998 0.780 0.994 0.996

In Table 2, LSTM has an RMSE of 0.762 and an R2 of 0.419, indicating that LSTM
is better than SVR, RFR, and BPNN, and the solid nonlinear fitting ability of LSTM can
improve the forecasting accuracy of high-frequency components as much as possible.

Table 2. Forecasting index of each algorithm on strongly disturbed time sequences.

Algorithm RFR SVR BPNN LSTM

RMSE 0.778 1.026 0.786 0.762
R2 0.396 −0.051 0.384 0.419

3.3. Research on the High-Frequency Feature Forecasting Algorithm Hybrid Reactive Power
Forecasting Algorithm Based on EEMD-LSTM-RFR

This paper presents a hybrid forecasting algorithm for short-term reactive power
based on EEMD-LSTM-RFR, which is illustrated in Figure 7.
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Figure 7. EEMD-LSTM-RFR hybrid forecasting framework.

EEMD is used to decompose a group of components with different time scales for the
historical reactive power data, and each component’s data are normalized to a range (0,1).
After hierarchical clustering, the IMFs are classified as the high-frequency part and the
low-frequency part. For the high-frequency component with strong randomness, LSTM is
applied for its forecasting. For the low-frequency component with strong periodicity, RFR
is used for rapid forecasting. The forecasting results are denormalized and superimposed
to obtain the forecasting results of reactive power.

4. Case Analysis

This paper uses the data of reactive power in one city in China for experiments
and analysis, recording 10,340 data in 29 days, which can be divided into three parts.
The first part is the training set, recording 6204 data. The second part is the test set,
recording 2068 data. The third part is the validation set, recording 2068 data. The pro-
posed EEMD-LSTM-RFR hybrid forecasting algorithm is compared with four conventional
prediction algorithms and four hybrid prediction algorithms based on signal decomposi-
tion. Finally, the effectiveness of the forecasting strategy and superposition reconstruction
is verified.

4.1. EEMD-LSTM-RFR Hybrid Forecasting Results and Analysis

Figures 8 and 9 show the forecasting results of the EEMD-LSTM-RFR algorithm on this
dataset. Figure 9 presents an enlarged view of the data in the black box of Figure 8. It can
be seen that most of the forecasting points fit the real value better, and the forecasting effect
at the peak decreases compared with that at the flat area, indicating that the forecasting of
high-frequency signals with strong randomness is more difficult. The forecasting index
R2 reaches 0.943, and the RMSE error is 0.687, which indicates that the EEMD-LSTM-RFR
algorithm can accurately predict reactive power.
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Figure 8. Forecasting results of EEMD-LSTM-RFR.

Figure 9. Partial enlarged drawing.

4.2. The Comparative Experiment of the Forecasting Algorithm

To verify the advantages of EEMD-LSTM-RFR in reactive power forecasting, four
groups of mainstream conventional forecasting algorithms and four groups of hybrid
forecasting algorithms are used, and 12 h of data are predicted—the results are shown in
Figures 10a,b and 11a,b. For short, EEMD-LSTM-RFR is denoted as ELR.

4.2.1. Contrast Experiment with a Conventional Forecasting Algorithm

The conventional forecasting algorithms are compared with BPNN, LSTM, SVR,
and RFR.

As shown in Figure 10a, the forecasting curve of the ELR algorithm proposed in this
paper always follows the trend of the actual data curve, and the forecasting result is far
better than the other four conventional forecasting algorithms. Figure 10b shows that the
forecasting RMSE and R2 of this algorithm are less than 0.7 and close to 1, respectively,
while other algorithms are higher than 2 and less than 0.5, respectively, which shows the
highest forecasting accuracy of the ELR method. The proposed algorithm experiences the
lowest RMSE and the highest R2, maintaining its best forecasting performance.
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Figure 10. Results of four groups of conventional forecasting algorithms.

Figure 11. Results of four groups of hybrids forecasting algorithms.

4.2.2. Comparison with Hybrid Forecasting Algorithm Based on Signal Decomposition

The comparative hybrid forecasting algorithms based on signal decomposition are
as follows:
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(1) After using EEMD to decompose the reactive power data, SVR is used for the
low-frequency part and BPNN is used for the high-frequency part, abbreviated as
EEMD-BPNN-SVR (EBS).

(2) After using EEMD to decompose the reactive power data, SVR is used for the
low-frequency part and LSTM is used for the high-frequency part, abbreviated as
EEMD-LSTM-SVR (ELS).

(3) After using discrete wavelet transform (DWT) to decompose the reactive power data,
SVR is used to predict the result, abbreviated as DWT-SVR (DS).

(4) After using DWT to decompose reactive power data, the result of forecasting using
the RFR algorithm is abbreviated as DWT-RFR (DR).

Figure 11a,b show the forecasting curves, RMSE error, and determination coefficient
R2 of the five hybrid forecasting algorithms.

Figure 11a shows that the RMSE and R2 of the ELR algorithm are still significantly
better than those of EBS, ELS, DS, and DR. Figure 11b shows that ELR has the lowest RMSE
and the highest R2, indicating that compared with other hybrid forecasting algorithms, ELR
still has the best forecasting performance, which confirms that the signal decomposition
and prediction method selected in this paper has better quality. The average RMSE of the
four hybrid forecasting algorithms is 1.589, and the average R2 is 0.662, which is much
better than the average RMSE (2.337) and the average R2 (0.335) of the four conventional
forecasting algorithms, which indicates that the hybrid forecasting algorithm performs
better in reactive power forecasting. The RMSE of the forecasting algorithm based on EEMD
is lower than 1.3, while R2 is higher than 0.8. Comparison with the DWT-based forecasting
algorithm (where the RMSE is higher than 1.8 and R2 is lower than 0.7) indicates that
EEMD has a better effect on improving forecasting accuracy for the reactive power.

4.3. Verification of Superposition Reconstruction Effect

To further demonstrate and analyze the forecasting process of the ELR algorithm,
the partial superposition reconstruction process of forecasting results is given as follows.
In this paper, the high-frequency components IMF5, IMF4, IMF3, IMF2, and IMF1 are
gradually superimposed on the low-frequency components IMF6−13, as shown in Figure 12.
Figure 13 shows the RMSE error and the coefficient of determination R2 after step-by-step
superposition, where IMF5−13 = IMF6−13 + IMF5, IMF4−13 = IMF5−13 + IMF4 and
so on.

Figure 12. Process of reactive power signal reconstruction by feature superposition (IMF5−13 =

IMF6−13 + IMF5, IMF4−13 = IMF5−13 + IMF4 and so on.).
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Figure 13. Forecasting index of the reactive power signal.

Figure 12 shows that the local forecasting details are gradually enriched with the
increase in superimposed high-frequency signals. As shown in Figure 13, the value of
RMSE decreases from 2.182 of IMF5−13 to 0.687 of IMF1−13. IMF5−13 mainly includes the
overall trend, while IMF1−13 includes more local details. With the continuous enhancement
of high-frequency signals, the value of RMSE is on the decline. Additionally, the coefficient
of determination R2 gradually increases to 1 from 0.425, indicating that the forecasting curve
is gradually approaching the actual value. The strategy of forecasting separately after the
EEMD decomposition and then superimposing is effective for reactive power forecasting.

5. Conclusions

This paper proposes a hybrid forecasting algorithm based on EEMD-LSTM-RFR to
analyze the forecasting of reactive power. Firstly, the reactive power data are decomposed
into several IMFs by EEMD, which improves the subsequent reactive power forecasting.
After hierarchical clustering, the IMFs are classified as the high-frequency part and the
low-frequency part. Secondly, different algorithms are used to predict the IMFs of the
high-frequency and low-frequency parts, respectively. Finally, the forecasting results are
superimposed to reconstruct the predicted value of reactive power. The forecasting results
of the proposed algorithm show that the hybrid forecasting index R2 is 0.943, the RMSE is
0.687, and in total, the forecasting curve matches with the real value well.

Compared with four conventional forecasting algorithms, the results show that the
RMSE of the proposed algorithm is lower than that of the others, with its R2 closer to
1, indicating the highest forecasting accuracy. Compared with four hybrid forecasting
algorithms based on signal decomposition, the results show that the proposed algorithm
has the lowest RMSE and the highest R2, and still has the best forecasting performance.

Finally, the signal reconstruction results show that the RMSE decreases from 2.182 of
IMF5−13to 0.687 of IMF1−13 with the step-by-step superimposed high-frequency signals.
At the same time, the fitting degree R2 gradually increases to 1 from 0.425, which indicates
that the forecasting curve gradually approaches the actual value. It can be concluded that
the strategy of separately predicting after EEMD and signal reconstruction is effective for
reactive power forecasting.

The accurate forecasting of reactive power can optimize the power flow calculation of
smart grids and microgrids, assist the power market to test the technical feasibility of the
energy path from the power plant to the load, realize the optimal management of energy
resources, and effectively improve the operation performance of the power grid. However,
the algorithm cannot be widely applied to the prediction of long-term data. In our future
work, we will focus on improving the ability of the algorithm to transfer learning and its
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forecast accuracy regarding long-term data. We will also use cross-validation in the next
step to test its generalization and universality.
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Nomenclature

BPNN Back Propagation Neural Network
CNN Convolutional Neural Networks
DR DWT-RFR
DS DWT-SVR
DWT Discrete Wavelet Transform
EBS EEMD-BPNN-SVR
EEMD Ensemble Empirical Mode Decomposition
ELR EEMD-LSTM-RFR
ELS EEMD-LSTM-SVR
EMD Empirical Mode Decomposition
FFT Fast Fourier Transform
IMF Intrinsic Mode Function
LR Logistic Regression
LSTM Long Short-Term Memory
MSE Mean Square Error
PE Permutation Entropy
QRF Quality of Reconstruction Factor
R2 determination of coefficient
RFR Random Forest Regression
RMSE Root Mean Square Error
RT Regression Tree
SNR Signal-to-Noise Ratio
SVM Support Vector Machine
SVR Support Vector Regression
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