
energies

Article

A Multi-Criteria Decision-Making Approach for Energy Storage
Technology Selection Based on Demand

Xiaotong Qie , Rui Zhang * , Yanyong Hu, Xialing Sun and Xue Chen

����������
�������

Citation: Qie, X.; Zhang, R.; Hu, Y.;

Sun, X.; Chen, X. A Multi-Criteria

Decision-Making Approach for

Energy Storage Technology Selection

Based on Demand. Energies 2021, 14,

6592. https://doi.org/10.3390/

en14206592

Academic Editor: Branislav Hredzak

Received: 28 July 2021

Accepted: 4 October 2021

Published: 13 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Management, China University of Mining and Technology, Beijing 100083, China;
qiext1008@163.com (X.Q.); 211713020004@home.hpu.edu.cn (Y.H.); sunxialing0328@163.com (X.S.);
xuechen_1120@163.com (X.C.)
* Correspondence: zrcumtb@163.com

Abstract: Energy storage technologies can reduce grid fluctuations through peak shaving and
valley filling and effectively solve the problems of renewable energy storage and consumption. The
application of energy storage technologies is aimed at storing energy and supplying energy when
needed according to the storage requirements. The existing research focuses on ranking technologies
and selecting the best technologies, while ignoring storage requirements. Here, we propose a multi-
criteria decision-making (MCDM) framework for selecting a suitable technology based on certain
storage requirements. Specifically, we consider nine criteria in four aspects: technological, economic,
environmental, and social. The interval number, crisp number, and linguist terms can be transformed
into a probabilistic dual hesitant fuzzy set (PDHFS) through the transformation and fusion method we
proposed, and a suitable technology can be selected through distance measurements. Subsequently,
the proposed method is applied in a representative case study for energy storage technology selection
in Shanxi Province, and a sensitivity analysis gives different scenarios for elaboration. The results
show that the optimal selection of energy storage technology is different under different storage
requirement scenarios. The decision-making model presented herein is considered to be versatile
and adjustable, and thus, it can help decision makers to select a suitable energy storage technology
based on the requirements of any given use case.

Keywords: energy storage technology; technology selection; multi-criteria decision making; proba-
bilistic dual hesitant fuzzy set; storage requirement

1. Introduction

Traditional fossil fuels such as coal, oil, and natural gas are the most prominent sources
of energy in the 21st century. The use of traditional fossil energy has promoted global
economic development; however, it has also caused serious environmental problems. For
example, the burning of fossil fuels produces a large amount of carbon dioxide, which is
the main cause of the greenhouse effect. Consequently, new energy and renewable energy
with abundant resources and low environmental pollution footprints have progressed
significantly. The development of renewable energy is fundamental to reduce carbon
dioxide emissions and solve environmental problems, and it is an important strategy
recognized by countries all over the world to deal with atmospheric pollution and resource
depletion. However, the development of renewable energy has faced challenges and
limitations. Renewable energy-based energy generation depends on the availability of
natural resources, which is volatile and intermittent. These characteristics make it difficult
to adjust and control power generation, and also affect the safe and stable operation of the
power grid. Therefore, nowadays, storage of energy is a key issue in the development of
renewable energy.

In more detail, large-scale energy storage technology, which can solve the problems
of randomness and the volatility of power generation, is an effective measure to solve
such problems encountered in the current development of renewable energy, with similar
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solutions being applied across the electricity chain, i.e., from the stage of power generation
to the distribution of electricity to end-users. It can be used as emergency energy and
can also be used for peak shaving and valley filling to reduce grid fluctuations. However,
different storage technologies show different characteristics in terms of technological, eco-
nomic, social, and environmental aspects, and can satisfy different storage requirements.
The development of new and renewable energy features different implications and re-
quirements for different geographical areas and contexts, and the selection of technology
needs to consider such requirements throughout the different development stages of such
transitions. Hence, the question of how to select a suitable energy storage technology on
the basis of the development of renewable energy is a key issue in energy planning, and it
is also a prerequisite for solving energy security problems [1].

Specifically, energy storage technology selection needs to achieve multiple goals and
consider many factors, including economic, technological, social, and environmental. Dif-
ferent approaches are used to optimize the selection of energy storage technologies, with
some of them using state of the art practices, e.g., machine learning techniques [2–6],
while other scholars use multi-objective optimization methods for technology selection [7].
However, various aspects often conflict with each other. For example, technologies that
introduce lower levels of pollution are usually more expensive. This makes it difficult
for decision makers to directly select a suitable storage technology. With this in mind,
the energy storage technology selection problem, involving numerous fuzzy factors, can
be formulated as an MCDM problem, with the pros and cons of decision variables often
requiring the use of interval numbers, crisp numbers, and linguistic terms expressed in
natural language. MCDM methods are commonly used in the field of energy research, such
as renewable energy siting [8], solar power plant location selection [9], photovoltaic system
selection [10], and selection of suitable locations for wind and solar farms [11,12]. T. Chen
et al. used the MCDM approach to select a suitable renewable energy source (RES) alterna-
tive [13], and Şengül et al. ranked renewable energy supply and selected priority renewable
energy [14]. Some scholars have combined MCDM methods with other methods such as
the analytic hierarchy process (AHP), the technique for order preference by similarity to
an ideal solution (TOPSIS), and geographic information systems (GIS) [11,12,15]. Actually,
it can be argued that most of the existing literature combines the MCDM method and
other methods for ranking the alternatives and selecting the best ranking energy storage
technology. However, an important factor for energy storage selection which is ignored in
the above literature is the requirements that storage technologies are used to fulfill. The
purpose of energy storage is to meet storage requirements; both excessive and insufficient
storage are unreasonable and may result in non-viable investments. Therefore, energy
storage requirements should be considered in the selection of energy storage technology.
Consequently, this paper proposes an MCDM energy storage approach for selecting a
suitable energy storage technology considering the power storage requirements.

The combination of the fuzzy method and MCDM is an effective way to solve the
problem recognized by many scholars. On the basis of the above analysis, the selection
of energy storage is in a fuzzy environment and needs to consider the energy storage
requirement, which is hard to concretely express. Therefore, combining the MCDM and
fuzzy method to solve the problem of energy storage technology selection is an effective
method. The methods commonly used by scholars in fuzzy areas are intuitionistic fuzzy
numbers, type-2 fuzzy sets [9], neutrosophic fuzzy numbers [16], dual hesitant fuzzy
sets [7], and triangular interval-valued fuzzy numbers [17]. Zhang et al. use dual hesitant
fuzzy sets to express the characteristics of storage technologies and generate the relevant
assessment [18]. A. Barin et al. and J. Ren proposed a method on the basis of AHP and
fuzzy sets for ranking and selecting storage technologies [19,20]. However, the number
of technologies and criteria in those studies is limited. What is more, the above body
of literature does not take into account probability in the decision, while the probability
information has an impact on the decision-making results. This study aims to construct an
MCDM approach based on probabilistic dual hesitant fuzzy sets (PDHFSs) and construct
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a framework for the selection of energy storage technology. This study comes with two
contributions: (1) the design of the transformation and fusion method for real (crisp)
numbers to probabilistic dual intuitionistic fuzzy numbers; (2) the proposal of a framework
for selecting the energy storage technology based on energy storage requirements and
provide an orientation for future research as well as suggestions and references for decision
makers to make decisions and policies.

This study is organized as follows: the background of energy storage technology
development and the problems in existing studies are introduced in Section 1. Section 2
describes the energy storage technologies and characteristics of these technologies. Section 3
discusses the evaluation criteria and gives the characteristics of energy storage technologies
based on the analysis of recent literature. The MCDM methodology and the decision-
making framework are explained in Section 4. In Section 5, the case study and scenarios
analysis are presented to illustrate the approach of this paper. Finally, the conclusions and
directions for further research are presented in Section 6.

2. Energy Storage Technologies

There are many classification standards for energy storage technology, such as the
storage method, storage duration, response time, etc. [21–23]. The most popular method
in the above classifications which has been recognized by many scholars is the form
of storage [23]. According to the form of storage, technologies can be classified into
mechanical, electrochemical, chemical, electrical, and thermochemical [18,21].

Mechanical storage is the most common storage technology, and the installed capac-
ity of mechanical energy storage accounts for more than 90% of the total capacity [20].
Technologies that belong to this category mainly include pumped hydro storage (PHS),
compressed air energy storage (CAES), and flywheel energy storage (FES). Electrochemical
storage includes lead–acid, lithium-ion (Li-ion), nickel–cadmium [24], etc. Among them,
Li-ion and lead–acid occupy the majority of market shares [25]. Chemical storage technolo-
gies include hydrogen and synthetic natural gas technology [26]. Of the two technologies,
hydrogen storage technology is the most important chemical storage technology. Electrical
storage includes capacitors and superconducting magnetic energy storage (SMES) [27].
Based on the above, this study considers nine technologies in five categories as follows:

• PHS, CAES and FES (mechanical storage);
• Li-ion and lead-acid (electrochemical storage);
• Hydrogen (chemical storage);
• Capacitors and SMES (electrical storage);
• Thermochemical.

3. Evaluation Criteria for Energy Storage Technologies

Some influencing factors should be considered when selecting the suitable technol-
ogy. These factors are divided into four categories: technological factors [7,18], economic
factors [20], environmental factors, and social factors, as shown in Table 1. From a tech-
nological perspective, indicators are used to express the characteristics of technologies,
which include storage capacity, response time, lifetime, energy and power density, risk and
safety, energy efficiency, and energy intensity. The references for these factors are shown in
Table 1. Among these indicators, some are difficult to express with a specific value, such
as storage capacity, which indicates the maximum amount of electricity that the energy
storage technology can store. Excluding these indicators, we select some representative
indicators, including energy efficiency, response time, lifetime, energy density, and self-
discharge losses as the technological factors in the MCDM. The energy efficiency was used
to measure the degree of energy utilization. Response time measures the time required for
the system to react and be able to supply electricity; it can usually be measured in minutes
and seconds. Lifetime is a period in which energy storage technology equipment can
operate. Energy density measures the amount of energy per unit of a size of the installation,
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and the unit of this index is Wh/kg which is the unit of weight. Self-discharge losses
indicate the energy lost during a period in which the system remains idle.

Table 1. Evaluation criteria for energy storage technologies and the literature source.

Aspects Factors References

Technological

Lifetime [7,18,28–31]
Storage capacity [7,16,29,30]
Response time [7,16,18]
Energy density [7,18,28–31]
Risk/safety [29,30]
Energy efficiency [28,30]
Energy intensity [28,30]
Self-discharge losses [3]

Economic

Input cost [1]
Investment costs [16,28,29,32]
Operation costs [16,18,28–32]
Economic benefits [7,30]
Power capital cost [22,33,34]
Energy capital cost [22,27,34–36]

Environmental

Emissions [7,29–31]
CO2 intensity [28–30]
Stress on ecosystem [1]
Protection of the environment [7]
Resource consumption [29]
Land use [4]

Social

Job creation [7,16,29]
Social acceptance [7,29]
Health and safety [29,31]
Government incentive [4]

Economic factors include input cost, investment costs, operation costs, economic
benefits, power capital cost and energy capital cost. These factors are mainly from the
perspective of economic cost to measure the economic characteristics of technology. This
paper selects two representative indicators among these factors: power capital cost and
energy capital cost, to represent the economic characteristics. Environmental factors include
emissions, CO2 intensity, stress on ecosystems, protection of the environment, resource
consumption, and land use. However, some indicators are difficult to measure because the
lifetime of energy storage technologies is difficult to determine; therefore, referring to [18],
we comprehensively consider the environmental impact to evaluate the energy storage
technology. Social factors include job creation, social acceptance, government incentives,
and health and safety. Taking these factors into consideration, we selected social acceptance
to express social characteristics.

Following the determination of parameters involved in the problem, in this paper,
storage is applied to power generation and distribution, with energy transformations also
included in the evaluation process. Subsequently, by considering the above, the respective
value ranges are shown in Table 2.
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Table 2. The characteristics and relevant value ranges of energy storage technologies.

Technologies
Energy

Efficiency
(%)

Response
Time

Lifetime
(years)

Energy
Density
(Wh/kg)

Self-
Discharge

Losses
(%/day)

Power
Capital Cost
(USD/kw)

Energy
Capital Cost
(USD/kwh)

Environmental
Dimension

Social
Acceptance

PHS (65, 75) [37],
(75, 80) [38]

Seconds–
minutes

[36]
(30, 60) [34] (0.5, 1.5)

[18,27]
(0.0001,

0.0001) [18]

(700, 2000)
[33], (600,
2000) [27],
(500, 4600)

[39]

(5, 100) [27],
(5, 430) [40]

Very high
[18]

Very high,
high

CAES (41, 75) [23] Minutes [36] (20, 40) [22] (30, 60) [18]
[27]

(0.0001,
0.0001) [18]

(400, 800)
[34]

(50, 150)
[35],

Very high
[18]

Very high,
high

FES 85 [41], (80, 90)
[23] Seconds [36] (15, 20) [34], (10, 30) [27],

(5, 130) [18] (20,100) [18] (250, 350)
[27]

(1000, 5000)
[35]

Very high
[18]

Very high,
high

Lead–acid (70, 80) [42],
(75, 80) [37]

<Seconds
[36] (3, 12) [43] (30, 50) [18] (0.1,0.3) [22] (300, 600)

[34]
(150, 500)

[44]
Very high

[18] Medium

Li-ion (65, 75) [23], 78
[45] Seconds [36] (5, 15) [23], (75, 200) [27],

(75, 250) [18] (0.1, 0.3) [22] (1200, 4000)
[23]

(600, 2500)
[44] Low [18] High,

Medium
Hydrogen (35, 40) [46] Minutes [44] (5, 20), (5, 15)

[22]
(800, 1000)

[18] (0.5, 2) [18] (500, 10,000)
[34] (2, 15) [47] High [18] Medium,

high
Super-

capacitors (85, 98) [48] Milliseconds
[49]

(10, 20) [34],
20+ [27]

(0.1, 15) [18],
(2.5, 15) [27] (20, 40) [22] (100, 300)

[22]
(300, 2000)

[36] Low [18] Medium

SMES (90, 95) [44], Milliseconds (20, 30) [34] (0.5, 5) [27]
[18] (10, 15) [22] (200, 300)

[22]
(1000,

10,000) [22]
Very high

[18] Medium

Thermal
(TES) (14, 18) [50] Not for

rapid [44] (5, 15) [22] (30, 60) [22],
<60 [51] (0.05, 1) [22] (100, 400)

[35] (3, 130) [52] Low [22] Medium

4. Methodology

Based on the above analysis, energy storage technology selection needs to achieve
multiple goals, whereas various goals often conflict with each other. There are some
criteria that should be considered in the process of selection [53]. In this section, an
MCDM is proposed to select energy storage technology. First, fuzzy sets and PDHFSs
are introduced to express the uncertain information. To compare the distance between
two probabilistic dual hesitant fuzzy numbers (PDHFNs), a distance measurement is
proposed. Subsequently, the transformation of the data is defined to transform certain
data into a probabilistic dual hesitant fuzzy number. Next, the criteria weights and expert
weights are calculated using the entropy method and maximizing deviation approach,
respectively. Finally, the framework and steps for energy storage technology decision
making are described.

4.1. Fuzzy Sets and Probabilistic Dual Hesitant Fuzzy Sets

The concept of fuzzy sets, which can avoid detailed uncertain information loss, was
first proposed by Atanassov, and it contains the three dimensions of uncertainty: mem-
bership degree, non-membership degree, and hesitancy degree [54]. In order to describe
the hesitation information more comprehensively, the hesitant fuzzy set (HFS) was pro-
posed. Compared with fuzzy numbers, the HFS contains information regarding hesitant
degree [55]. Moreover, to overcome the shortcomings of both the fuzzy set and HFS by
expressing the uncertain information more accurately, the dual hesitant fuzzy set (DHFS)
was proposed by Zhu et al. [56], which combines the characteristics of the fuzzy set and
HFS. The definition [57] of the DHFS is:

Definition 1. Let X = {x1, x2, · · · , xn} be a universe of discourse for each x ∈ X. The DHFS D
can be defined in Equation (1) as:

Du =
{〈

x, h̃(x), g̃(x)
〉∣∣∣ x ∈ X}, (1)

where h̃(x) is the membership degree function and g̃(x) is the non-membership degree func-
tion, and the degrees of these two value strictly satisfy 0 ≤ h̃(x) ≤ 1, 0 ≤ g̃(x) ≤ 1, and
0 ≤ h̃(x) + g̃(x) ≤ 1.

On this basis, some scholars have further integrated the possibility of DHFS to express
some preference information. For example, if the probability of membership is 0.2, and
the probability of non-membership is 0.8. Thus, using preference information in the DHFS
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can describe uncertain information more comprehensively. For including probability
information in the DHFS, the PDHFS was proposed by Hao et al. [58], as defined in
the following:

Definition 2. For every x ∈ X, PDHFS PD is defined in Equation (2):

PD = {〈x, h̃p(x), g̃p(x)〉
∣∣∣x ∈ X}, (2)

where h̃p(x) is the membership function, and g̃p(x) is the non-membership function. Let γ
∣∣∣ph

and ϕ|pg be the elements in h̃p(x) and g̃p(x), respectively. For every x ∈ X, γ, ϕ ∈ [0, 1]. γ+

and ϕ+ are the maximum values in h̃p(x) and g̃p(x), respectively. Moreover, γ+ and ϕ+ satisfy
0 ≤ γ+ + ϕ+ ≤ 1. ph and pg are the probabilities of γ and ϕ, respectively, and satisfy 0 ≤ ph ≤ 1,
0 ≤ pg ≤ 1, ∑ ph ≤ 1 and ∑ pg ≤ 1. pd =

〈
h̃p(x), g̃p(x)〉 is the element of PDHFS, which is

called PDHFN and is expressed as pd =
〈

h̃p, g̃p
〉

.

Let pd1 =
〈

h̃p1, g̃p1

〉
and pd2 =

〈
h̃p2, g̃p2

〉
be two PDHFNs, and the operations of a

PDHFN are [58]:

(1) pd1 ⊕ pd2 = ∪
γ1|ph

1 ∈ h̃p1, ϕ1|p
g
1 ∈ g̃p1

γ2|ph
2 ∈ h̃p2, ϕ2|p

g
2 ∈ g̃p2

〈
(γ1 + γ2 − γ1γ2)

∣∣∣ph
1 ph

2, ϕ1 ϕ2

∣∣∣pg
1 pg

2

〉

(2) pd1 ⊗ pd2 = ∪
γ1|ph

1 ∈ h̃p1, ϕ1|p
g
1 ∈ g̃p1

γ2|ph
2 ∈ h̃p2, ϕ2|p

g
2 ∈ g̃p2

〈
γ1γ2

∣∣∣ph
1 ph

2, (ϕ1 + ϕ2 − ϕ1 ϕ2)
∣∣∣pg

1 pg
2

〉

(3) λpd1 = ∪
γ1|ph

1 ∈ h̃p1, ϕ1|p
g
1 ∈ g̃p1

λ > 0

〈
(1− (1− γ1))

λ
∣∣∣ph

1, ϕ1
λ
∣∣∣pg

1

〉

The weight of each PDHFN may be different, and each PDHFN should be weighted
using weighted averaging operators. Let (pd1, pd2, · · · , pdn) be the vector of n PDHFNs,
and use W = (w1, w2, · · · , wn) to represent the weight vector, where each weight satisfies

wj ≥ 0, and
n
∑

j=1
wj = 1, j = 1, 2, · · · n. The weighted averaging operator for the PDHFN is:

PDHFW(pd1, pd2, · · · , pdn) =
n
⊕

j=1
wj pdj

= ∪
γ1|ph

1 ∈ h̃p1, ϕ1|p
g
1 ∈ g̃p1

γ2|ph
2 ∈ h̃p2, ϕ2|p

g
2 ∈ g̃p2

{
(1−

n
Π

i=1
(1− γi)

wi )

∣∣∣∣ n
Π

i=1
ph

i ,
n
Π

i=1
ϕi

wi

∣∣∣∣ n
Π

i=1
pg

i

}
, j = 1, 2, · · · , n (3)

4.2. Distance Measurement for PDHFS

In the MCDM process, we should compare different alternatives and choose the one
that is closest to the ideal solution. The smaller the distance, the closer the two PDHFNs
are. To compare the alternatives which are expressed in a PDHFS, a distance measurement
is proposed based on [59].

It is assumed that MA = {1, 2, · · · , mA}, NA = {1, 2, · · · , nA}, NB = {1, 2, · · · , nB},
MB = {1, 2, · · · , mB}, where i ∈ MA, j ∈ NA, i′ ∈ MB, and j′ ∈ NB. Then, let
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A =
{(

x, h̃pAi (x), g̃pAj(x)
)∣∣∣x ∈ X

}
and B =

{(
x, h̃pBi′(x), g̃pBj′(x)

)∣∣∣x ∈ X
}

be two
PDHFNs; the distance between A and B is defined by Garg and Kaur as [59]:

d(A, B) =
n

∑
v=1

wv


n

∑
k=1

1
n


∣∣∣∣∣ 1

MA

MA
∑

i=1

(
γAi (xk)ph

Ai
(xk)

)
− 1

MB

MB
∑

i′=1

(
γB′ i

(xk)ph
B′ i

(xk)

)∣∣∣∣∣
λ

2

+

∣∣∣∣∣ 1
NA

NA
∑

j=1

(
ϕAj (xk)pg

Aj
(xk)

)
− 1

NB

NB
∑

j′=1

(
ϕB′ j

(xk)pg
B′ j

(xk)

)∣∣∣∣∣
λ

2




1
λ

(4)

where γAi ∈ hpAi , γBi′
∈ hpBi′

, ϕAj ∈ gpAj , ϕBj′
∈ gpBj′

. Parameter λ is a real number, and
the value of λ is usually assumed as 2 [60]. The distance, d, satisfies 0 ≤ d(A, B) ≤ 1 [59].

4.3. Data Transformation and Fusion

The data we collected are usually of three types: interval numbers, crisp numbers, and
linguistic terms, each of which needs to be converted. Decision makers should transform
a certain value into uncertain data before the distance measurement. On the basis of
the method proposed by Zhang et al. [18], the above three types of real numbers can be
transformed to fuzzy numbers. The transformation approach of the three types of data is:

(1) Transformation of interval numbers

The interval number comprises the upper and lower bounds of the variable. Let the
interval number be aij = (aL

ij, aU
ij ), where i represents the i-th alternative, and j represents

the j-th criteria. aU
ij is the upper bound and aL

ij is the lower bound of the variable. The unit
of the initial value of every alternative may differ; thus, the initial interval number needs
to be normalized first, as shown in Equation (5), before the transformation.

a∗ij =
(

aL
ij, aU

ij

)
aL

ij =
aL

ij√
m
∑

i=1

(
(aL

ij)
2
+(aU

ij )
2
) , aU

ij =
aU

ij√
m
∑

i=1

(
(aL

ij)
2
+(aU

ij )
2
) (5)

The transformation information was constructed by Guo [61], shown in Equation (6).
Membership and non-membership are determined by the average and spread of the
initial interval number. The greater the average, the greater the degree of membership,
and the greater the interval number’s spread, the greater the degree of non-membership.
Consequently, following Equation (6), a fuzzy number is constructed.

αij = (hij, gij), i = 1, 2, · · · , mj = 1, 2, · · · , n

hij = aL
ij, gij = 1− aU

ij
(6)

where αij = (hij, gij) is the fuzzy number, and aL
ij and aU

ij are the normalized values of aL
ij

and aU
ij , respectively.

(2) Transformation of crisp numbers

When the values of attributes are described in terms of crisp numbers,
Equations (7) and (8) can be used for transformation. Equation (7) is the normalized func-
tion, and a∗ij is the normalized value of aij. Following these two equations, we can transform
the crisp numbers to fuzzy numbers.

a∗ij =
aij√
m
∑

i=1
a2

ij

, (7)
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αij = (hij, gij), i = 1, 2, · · · , mj = 1, 2, · · · , n
hij = a∗ij, gij = 1− a∗ij

(8)

(3) Transformation of linguistic terms

Sometimes, the value of attribute can only be expressed in linguistic terms, such
as high/good, medium, and low/short; we should also consider the transformation of
linguistic terms. Based on Guo [61], the linguistic terms can be divided into five levels, and
each level has its corresponding fuzzy set, as shown in Table 3.

Table 3. The transformation for linguistic terms.

Linguistic Terms (hij,gij)

Very high, better, very long (0.90, 0.10)
High, good, long (0.75, 0.20)
Medium (0.50, 0.45)
Low, bad, short (0.35, 0.60)
Very low, worse, very short (0.10, 0.90)

After the above transformation, interval numbers, crisp numbers, and linguistic
terms can be transformed into fuzzy numbers. However, a PDHFS not only involves
fuzzy information but also includes probability information. The probability should
be added to the transformation process, and then, a PDHFS can be constructed based
on fuzzy numbers. Due to the fact that probability information is difficult to calculate
using a formula, probability information is usually given by an expert. Therefore, in the
transformation, every expert should give the probability based on their preference, and the
PDHFS can finally be formed.

4.4. Criteria Weights and Expert Weights Calculation
4.4.1. Criteria Weights Calculation

The importance of different criteria may be different, and the weight of criteria should
be distinguished accordingly. We used the entropy weight method to calculate the weight
of each criterion. The entropy value is used to judge the degree of dispersion of an index
based on the definition of information entropy in this method. For a certain criterion, the
smaller the value of the information entropy, the greater the degree of dispersion of the
criterion, and the greater the weight of the criterion. The core part of the calculation with
this method is to calculate the degree of difference between the criterion value and the
average value of criteria. Thus, the average value of each criterion should be obtained
before calculating the information entropy of each criterion. Based on the Equation (9), it
can be calculated [62].

p̃dj =
{(

γ̃j

∣∣∣ p̃h
j , ϕ̃j

∣∣∣ p̃g
j

)}
γ̃j =

1
m

m
∑

i=1
γij, ϕ̃j =

1
m

m
∑

i=1
ϕij, p̃h

j = 1
m

m
∑

i=1
ph

ij, p̃g
j = 1

m

m
∑

i=1
pg

ij
(9)

Then, the information entropy of each criterion can be calculated using Equation (10):

ej = −
1

ln(m)

m

∑
i=1

 D( p̃dj, pdij)
m
∑

i=1
D( p̃dj, pdij)

ln(
D( p̃dj, pdij)

m
∑

i=1
D( p̃dj, pdij)

)

, (10)

where D( p̃dj, pdij) is the Euclidean distance, and the calculated formula [63] is shown in
Equation (11):

D(pd1, pd2) =

√
(γ1 ph

1 − γ2 ph
2)

2
+ (ϕ1 pg

1 − ϕ2 pg
1)

2
, (11)
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Finally, based on Equation (12), the weight of each criterion can be calculated:

wij =
1− ej

m
∑

j=1
(1− ej)

, (12)

4.4.2. Expert’s Weights Calculation

In the process of MCDM, experts from various related fields are invited to contribute
to the evaluation. Because the experience and knowledge backgrounds of each expert are
different, the weights of evaluation from each expert are correspondingly different; for
example, the higher weight refers to the expert who has richer experience and knowledge.
Thus, it is essential to generate the weight vectors of the experts. This study used the
maximizing deviation measurement to calculate the experts’ weights, as proposed by Xu
and Cai [64]. The core of this approach is that the greater the deviation of the expert
decision values, the greater the given weight; conversely, the smaller the deviation, the
smaller the given weight. Therefore, the calculation formula is given by Equation (13):

ηk =
∑n

j=1 ∑m−1
i=1 ∑m

g=i+1 D(pdij,k, pdgj,k)

∑z
k=1 ∑n

j=1 ∑m−1
i=1 ∑m

g=i+1 D(pdij,k, pdgj,k)
, k = 1, 2, · · · , z, (13)

where ηk represents the kth expert weight, z is the number of experts, D(pdij,k, pdgj,k) is
the Euclidean distance, and the calculation formula is shown in Equation (11).

4.5. Decision Steps

The framework and steps of the decision-making model are presented in this sec-
tion. Before the process starts, the decision makers make a first, rough selection of en-
ergy storage technologies based on the use case examined. We use m to indicate the
number of energy storage technology alternatives, and A= {a1, a2, · · · ai, · · · , am} to in-
dicate the set of alternatives, where ai ∈ Ai is the i-th energy storage technology. We
let C= {c1, c2, · · · cj, · · · , cn

}
be a set of criteria, and cj present the j-th criteria, where

j = 1, 2, · · · , n. Let W= {w1, w2, · · ·wj, · · · , wn
}

denotes the weight of the criteria set, and
wj is the weight of cj. For ∀j ∈ n, 0 ≤ wj ≤ 1 and ∑n

j=1 wj = 1.
In addition, energy storage requirements need to be considered in the energy storage

technology selection model. If decision makers ignore the requirements and blindly choose
the energy storage technology, they may cause some issues which could not solve the
problems of new and renewable energy storage. Thus, in the process of MCDM, a suitable
energy storage technology should be selected based on the requirements information given
by experts. The decision-making framework is shown in Figure 1, and the decision-making
steps are:

Step 1: Establish the initial decision matrices based on the transformation and fusion
method for interval numbers, crisp numbers, and linguistic terms in Section 4.3; every
datum can be transformed into a PDHFN, and the decision matrices of each expert can
be established.

Step 2: Determine the initial target matrix based on the requirement information; the
initial target matrix can be established based on the transformation and fusion method in
Section 4.3. Tm represents the target matrix and it is shown in Equation (14). In the matrix,
tmkj is the PDHFN obtained by the transformation of the k-th expert under the j-th criteria.
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Figure 1. The decision-making framework for energy storage technology selection.

Dm =



dm11 dm12 · · · dm1j · · · dm1n
dm21 dm22 · · · dm2j · · · dm2n

...
dmk1

...

...
dmk2

...

· · ·
· · ·
· · ·

...
dmkj

...

· · ·
· · ·
· · ·

...
dmkn

...
dmz1 dmz2 · · · dmzj · · · dmzn


, (14)

Step 3: Calculate criteria weights. Based on Equations (9)–(12), the weights of the cri-
teria can be obtained, and the weight vector W= {w1, w2, · · ·wj, · · · , wn

}
can be obtained.

Step 4: Calculate the weight of each expert. Using the maximizing deviation ap-
proach based on Equation (13), the expert’s weight vector η= {η1, η2, · · · ηk, · · · , ηz} can
be obtained.
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Step 5: Calculate the weighted probabilistic dual hesitant fuzzy number (PDHFW).
Based on the weighted averaging operator shown in Equation (3) and the weights of the
criteria, a PDHFW for every alternative can be obtained.

Step 6: Distance calculation. Calculate the distance between the target matrix and the
PDHFW based on Equation (4). The ranking result of energy storage technologies based
on the distance calculation equation can be obtained, and the most suitable technology for
the given storage requirements can be selected.

5. Case Study

This section presents the implications of the proposed approach for energy storage
technology selection in Shanxi Province, China. China has put forward the goal of reducing
carbon dioxide emissions by 2030 and striving to achieve carbon neutrality by 2060. The use
of traditional fossil energy has caused air pollution, and thus the application of renewable
energy is an effective way to reduce carbon dioxide emissions and solve the current
problems. From the perspective of power structure, China’s renewable energy power
generation has been increasing since 2010, as shown in Figure 2. The 14th Five-Year
Plan formulated by China in 2020 pointed out that it is necessary to promote the clean,
low-carbon, safe, and efficient use of energy.

Figure 2. The composition of China’s power generation from 2010 to 2019.

Shanxi Province is located in the west of Taihang mountain. The total area of the
province is 156,000 km2 and the province’s permanent population was 37.292 million in
2020. Shanxi is the largest coal producing province in China, and its annual raw coal pro-
duction has long been in the at forefront of the country’s coal industry, accounting for more
than a quarter of the total production. As a traditional coal-producing province in China,
Shanxi Province actively implements energy structure transformation. Shanxi’s annual
electricity consumption was 4.98 × 107 MWh in 2020, and the proportion of renewable
energy power generation has continued to increase. Figure 3 shows the utilization and
development of some renewable energy sources. From Figure 3, we can see that the cumu-
lative installed capacity of photovoltaic power, wind power, and biomass power continues
to grow from 2015 to 2020. According to the data from the National Development and
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Reform Commission of China, the share of renewable energy power generation increased
from 11.21% in 2015 to 31.6% in 2020. In addition, the 14th Five-Year Renewable Energy
Plan of Shanxi Province suggests that during the 14th Five-Year Plan period, Shanxi’s in-
vestment in renewable energy will further increase, and by 2025, renewable energy power
generation will account for 40% of the total power generation. At the same time, some
renewable energy storage projects will be implemented with the development of renewable
energy. For a renewable energy storage project, a decision-making approach for energy
storage technology selection is necessary. This paper uses simulation to carry out model
verification and case analysis.

Figure 3. The cumulative installed capacity of photovoltaic power, wind power, and biomass power
in Shanxi Province from 2015 to 2020.

5.1. Decision-Making Process
5.1.1. Determination of Alternatives and Criteria

To initiate the decision-making process, energy storage technologies were first selected.
In this paper, we assumed that the selected alternative technologies are: PHS (A1), CAES
(A2), FES (A3), lead–acid (A4), Li-ion (A5), hydrogen (A6), supercapacitors (A7), SMES
(A8), and thermochemical storage (A9). Based on a previous study [7,18,22,34], the criteria
that needed to be considered were determined, including energy efficiency (C1), response
time (C2), lifetime (C3), energy density (C4), self-discharge losses (C5), power capital cost
(C6), energy capital cost (C7), environmental dimension (C8), and social acceptance (C9).
The characteristics of each criterion of the alternative technologies are shown in Table 2 in
Section 3. In addition, we invited ten experts to provide their opinions on energy storage
technology selection. These experts were from China University of Mining and Technology
(Beijing), North China Electric Power University, Shanxi International Energy Company,
and other units. Experts in the corresponding research fields have rich experience and
knowledge in energy storage. Hence, their evaluation is considered reliable.

5.1.2. Evaluation of Storage Requirements

In the approach proposed in this study, experts provided storage requirements in-
formation associated with the development of renewable energy for the given use case.
Assuming that the specific requirement information is shown in Table 4, then the initial
target matrix can be constructed according to the requirement information.
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Table 4. Demand evaluation information of experts.

Experts Energy
Efficiency (%)

Response
Time

Lifetime
(Years)

Energy
Density
(Wh/kg)

Self-Discharge
Losses (%/day)

Power
Capital Cost
(USD/kw)

Energy
Capital Cost
(USD/kwh)

Environmental
Dimension

Social
Acceptance

1 (50, 80) Short (10, 30) (40, 70) (1, 8) (100, 1000) (50, 300) Low High
2 (55, 75) Very short (15, 25) (10, 100) (0.5, 8) (300, 1000) (200, 450) Very low High
3 (48, 80) Very short (12, 30) (20, 80) (0.5, 10) (200, 500) (600, 5000) Very low Very high
4 (60, 80) Medium (15, 30) (15, 50) (0.1, 5) (150, 500) (150, 500) Low High
5 (70, 80) Medium (10, 40) (25, 120) (0.5, 15) (50, 300) (300, 450) Low Medium
6 (40, 85) Short (20, 50) (20, 50) (0.1, 30) (200, 400) (200, 1000) Low High
7 (50, 95) Short (15, 50) (12, 80) (0.1, 15) (200, 500) (1000, 10,000) Very low High
8 (60, 90) Medium (10, 35) (40, 80) (9, 18) (600, 1000) (150, 800) Medium Medium
9 (35, 75) Very short (5, 20) (35, 80) (0.5, 11) (400, 600) (350, 600) Medium High

10 (65, 80) Short (10, 30) (45, 60) (25, 55) (80, 500) (200, 800) Very low Very high

5.1.3. Data Transformation and Fusion

The initial decision matrices could be obtained based on the approach in Section 4.
However, the characteristics of each criterion of energy storage technologies are not only a
definite value; for example, the PHS’s energy efficiency may be 65–75 [37] or 75–80 [38],
meaning the numbers in this interval are likely to be taken and all of them were likely
to be selected as the basic data when experts constructed the initial matrices for decision
making. Hence, there could have been many situations in the initial decision matrices, and
every expert needed to determine the decision’s basic data value of the characteristics of
each criterion on the basis of data in Table 2. Subsequently, we transformed the data into
fuzzy numbers and added a probability evaluation following the rules in Section 4; thus,
the initial decision matrices could finally be obtained. The decision basic data and initial
decision matrix of Expert 1 are shown in Tables 5 and 6, and the other experts’ decision
basic data and matrices are given in Appendix A.

Table 5. Decision basic data of Expert 1.

Technologies Energy
Efficiency (%)

Response
Time

Lifetime
(Years)

Energy
Density
(Wh/kg)

Self-Discharge
Losses (%/day)

Power
Capital Cost
(USD/kw)

Energy
Capital Cost
(USD/kwh)

Environmental
Dimension

Social
Acceptance

PHS (65, 75) Medium (30, 60) (0.5, 1.5) (0.0001, 0.0001) (600, 2000) (5, 100) Very high Very high
CAES (41, 75) Long (20, 40) (30, 60) (0.0001, 0.0001) (400, 800) (50, 150) Very high Very high
FES (80, 90) Medium (15, 20) (10, 30) (20,100) (250, 350) (1000, 5000) Very high Very high

Lead–
Acid (75, 80) Very short (3, 12) (30, 50) (0.1,0.3) (300, 600) (150, 500) Very high Medium

Li-ion (65, 75) Very short (5, 15) (75, 250) (0.1, 0.3) (1200, 4000) (600, 2500) Low High
Hydrogen (35, 40) Medium (5, 15) (800, 1000) (0.5, 2) (500, 10,000) (2, 15) High Medium

Super-
capacitors (85, 98) Short (10, 20) (0.1, 15) (20, 40) (100, 300) (300, 2000) Low Medium

SMES (90, 95) Short (20, 30) (0.5, 5) (10, 15) (200, 300) (1000, 10,000) Very high Medium
Thermal

(TES) (14, 18) Long (5, 15) (30, 60) (0.05, 1) (100, 400) (3, 130) Low Medium

Table 6. Initial decision matrix of Expert 1.

Technologies
Energy

Efficiency
(%)

Response
Time

Lifetime
(Years)

Energy
Density
(Wh/kg)

Self-
Discharge

Losses
(%/Day)

Power
Capital Cost
(USD/kw)

Energy
Capital Cost
(USD/kwh)

Environmental
Dimension

Social
Acceptance

PHS (0.2157|0.6500,
0.7511|0.3500)

(0.5000|0.4400,
0.4500|0.5600)

(0.3026|0.8100,
0.3948|0.1900)

(0.0004|0.9000,
0.9989|0.1000)

(0.0000|0.7600,
1.0000|0.2400)

(0.0539|0.3900,
0.8203|0.6100)

(0.0004|0.7000,
0.9915|0.3000)

(0.9000|0.8820,
0.1000|0.1180)

(0.9000|0.4300,
0.1000|0.5700)

CAES (0.1360|0.5000,
0.7511|0.5000)

(0.7500|0.5140,
0.2000|0.4860)

(0.2017|0.5300,
0.5965|0.4700)

(0.0229|0.4670,
0.9543|0.5330)

(0.0000|0.4600,
1.0000|0.5400)

(0.0359|0.7800,
0.9281|0.2200)

(0.0043|0.5320,
0.9872|0.4680)

(0.9000|0.3050,
0.1000|0.6950)

(0.9000|0.6250,
0.1000|0.3750)

FES (0.2655|0.4930,
0.7014|0.5070)

(0.5000|0.8400,
0.4500|0.1600)

(0.1513|0.5490,
0.7983|0.4510)

(0.0076|0.7700,
0.9771|0.2300)

(0.1773|0.2360,
0.1137|0.7640)

(0.0225|0.4500,
0.9686|0.5500)

(0.0851|0.6930,
0.5744|0.3070)

(0.9000|0.4400,
0.1000|0.5600)

(0.9000|0.5420,
0.1000|0.4580)

Lead–acid (0.2489|0.8000,
0.7346|0.2000)

(0.1000|0.7810,
0.9000|0.2190)

(0.0303|0.7570,
0.8790|0.2430)

(0.0229|0.7110,
0.9619|0.2890)

(0.0009|0.7000,
0.9973|0.3000)

(0.0270|0.4900,
0.9461|0.5100)

(0.0128|0.2390,
0.9574|0.7610)

(0.9000|0.2000,
0.1000|0.8000)

(0.5000|0.4670,
0.4500|0.5330)

Li-ion (0.2157|0.3200,
0.7511|0.6800)

(0.1000|0.5920,
0.9000|0.4080)

(0.0504|0.6100,
0.8487|0.3900)

(0.0572|0.2400,
0.8095|0.7600)

(0.0009|0.4880,
0.9973|0.5120)

(0.1078|0.2700,
0.6406|0.7300)

(0.0511|0.6000,
0.7872|0.4000)

(0.3500|0.5600,
0.6000|0.4400)

(0.7500|0.6700,
0.2000|0.3300)

Hydrogen (0.1161|0.4800,
0.8673|0.5200)

(0.5000|0.3360,
0.4500|0.6640)

(0.0504|0.3900,
0.8487|0.6100)

(0.6097|0.3800,
0.2379|0.6200)

(0.0044|0.3300,
0.9823|0.6700)

(0.0449|0.7200,
0.1016|0.2800)

(0.0002|0.5490,
0.9987|0.4510)

(0.7500|0.5490,
0.2000|0.4510)

(0.5000|0.8700,
0.4500|0.1300)

Super-
capacitors

(0.2820|0.6600,
0.6748|0.3400)

(0.3500|0.2700,
0.6000|0.7300)

(0.1009|0.4830,
0.7983|0.5170)

(0.0001|0.7400,
0.9999|0.2600)

(0.1773|0.5550,
0.6455|0.4450)

(0.0090|0.3380,
0.9731|0.6620)

(0.0255|0.6820,
0.8298|0.3180)

(0.3500|0.8300,
0.6000|0.1700)

(0.5000|0.5400,
0.4500|0.4600)

SMES (0.2986|0.7250,
0.6848|0.2750)

(0.3500|0.1900,
0.6000|0.8100)

(0.2017|0.2160,
0.6974|0.7840)

(0.0004|0.5510,
0.9962|0.4490)

(0.0886|0.4900,
0.8671|0.5100)

(0.0180|0.8600,
0.9731|0.1400)

(0.0851|0.5850,
0.1488|0.4150)

(0.9000|0.8590,
0.1000|0.1410)

(0.5000|0.7340,
0.4500|0.2660)

Thermal
(TES)

(0.0465|0.2900,
0.9403|0.7100)

(0.7500|0.4180,
0.2000|0.5820)

(0.0504|0.1500,
0.8487|0.8500)

(0.0229|0.4590,
0.9543|0.5410)

(0.0004|0.3100,
0.9911|0.6900)

(0.0090|0.2590,
0.9641|0.7410)

(0.0003|0.7900,
0.9889|0.2100)

(0.3500|0.4300,
0.6000|0.5700)

(0.5000|0.3700,
0.4500|0.6300)



Energies 2021, 14, 6592 14 of 29

In addition, based on the method of transformation and fusion in Section 4, the initial
energy requirement information in Table 4 could be transformed into a PDHFS, and the
target matrix is shown as follows:

Dm =



(0.1605|0.5500,
0.7432|0.4500)
(0.1765|0.6500,
0.7593|0.3500)
(0.1541|0.6300,
0.7432|0.3700)
(0.2186|0.4500,
0.7501|0.5500)
(0.2030|0.6400,
0.6877|0.3600)
(0.2030|0.8000,
0.7033|0.2000)
(0.2343|0.4500,
0.7501|0.5500)
(0.2186|0.8000,
0.7564|0.2000)
(0.1874|0.4000,
0.7501|0.6000)
(0.2186|0.7000,
0.7189|0.3000)

(0.3500|0.3500,
0.6000|0.6500)
(0.1000|0.8000,
0.9000|0.2000)
(0.1000|0.3500,
0.9000|0.6500)
(0.5000|0.5500,
0.4500|0.4500)
(0.5000|0.7500,
0.4500|0.2500)
(0.3500|0.5000,
0.6000|0.5000)
(0.3500|0.3400,
0.6000|0.6600)
(0.5000|0.6800,
0.4500|0.3200)
(0.1000|0.4600,
0.9000|0.5500)
(0.3500|0.3500,
0.6000|0.6500)

(0.0847|0.6500,
0.8306|0.3500)
(0.1411|0.6400,
0.7742|0.3600)
(0.1411|0.3500,
0.8306|0.6500)
(0.1129|0.5500,
0.7742|0.4500)
(0.1694|0.7500,
0.7177|0.2500)
(0.2258|0.3500,
0.6613|0.6500)
(0.2258|0.5700,
0.4354|0.4300)
(0.1411|0.5800,
0.8024|0.4200)
(0.0847|0.4500,
0.8024|0.5500)
(0.0565|0.6000,
0.8306|0.4000)

(0.1458|0.5700,
0.7630|0.4300)
(0.0729|0.6500,
0.7995|0.3500)
(0.2005|0.5500,
0.7083|0.4400)
(0.0547|0.4500,
0.7083|0.5500)
(0.1094|0.3500,
0.6354|0.6500)
(0.1641|0.7500,
0.7812|0.2500)
(0.1276|0.6500,
0.7448|0.3500)
(0.1458|0.7500,
0.6901|0.2500)
(0.1641|0.8600,
0.7488|0.1400)
(0.1823|0.4500,
0.6536|0.5500)

(0.0221|0.4500,
0.7574|0.5500)
(0.0044|0.5500,
0.6031|0.4500)
(0.0022|0.2500,
0.7133|0.7500)
(0.0022|0.5000,
0.69127|0.5000)
(0.0110|0.5000,
0.7574|0.5000)
(0.0221|0.6500,
0.6427|0.3500)
(0.0044|0.5500,
0.6251|0.4500)
(0.0441|0.6000,
0.6692|0.4000)
(0.0004|0.8000,
0.7354|0.2000)
(0.0662|0.9000,
0.6913|0.1000)

(0.0645|0.6000,
0.8066|0.4000)
(0.0322|0.7500,
0.4198|0.2500)
(0.0645|0.5500,
0.6777|0.4500)
(0.0484|0.6000,
0.7099|0.4000)
(0.0322|0.3500,
0.8388|0.6500)
(0.0645|0.3600,
0.7421|0.6400)
(0.0484|0.8000,
0.7905|0.2000)
(0.0645|0.6500,
0.7421|0.3500)
(0.1289|0.3300,
0.6132|0.6700)
(0.0387|0.5500,
0.7905|0.4500)

(0.0430|0.8500,
0.9283|0.1500)
(0.0144|0.5000,
0.9319|0.5000)
(0.0430|0.4000,
0.9139|0.6000)
(0.0359|0.5400,
0.7848|0.4600)
(0.0215|0.3000,
0.7131|0.7000)
(0.0072|0.7500,
0.6414|0.2500)
(0.0574|0.4700,
0.2827|0.5300)
(0.0359|0.8000,
0.5696|0.2000)
(0.0251|0.2600,
0.9139|0.7400)
(0.0359|0.3000,
0.9211|0.7000)

(0.3500|0.5000,
0.6000|0.5000)
(0.1000|0.5600,
0.9000|0.4400)
(0.1000|0.4600,
0.9000|0.5400)
(0.3500|0.5300,
0.6000|0.4700)
(0.3500|0.7500,
0.6000|0.3500)
(0.3500|0.8000,
0.6000|0.2000)
(0.1000|0.6500,
0.9000|0.3500)
(0.5000|0.5000,
0.4500|0.5000)
(0.5000|0.7500,
0.4500|0.2500)
(0.1000|0.8000,
0.9000|0.2000)

(0.7500|0.2000,
0.2000|0.8000)
(0.7500|0.5500,
0.2000|0.4500)
(0.9000|0.4000,
0.1000|0.6000)
(0.7500|0.7500,
0.2000|0.2500)
(0.5000|0.7000,
0.4500|0.3000)
(0.7500|0.5500,
0.2000|0.4500)
(0.7500|0.8000,
0.2000|0.2000)
(0.5000|0.3500,
0.4500|0.6500)
(0.7500|0.4700,
0.2000|0.5300)
(0.9000|0.4200,
0.1000|0.5800)



Therefore, the initial decision matrices and initial target matrix were obtained through
the above transformation.

5.1.4. Weight Calculation

The calculation of the criteria weight comprises three steps. First, calculate the av-
erage value of the criteria based on the Equation (9). The average value matrices for
each expert were obtained and detailed in Appendix B. Second, calculate the entropy
of each criterion based on Equation (10), and the entropy can be used in the third step
of the weight calculation based on Equation (11). The criteria weights could be calcu-
lated based on each expert’s decision matrix as shown in Table 7. After obtaining the
criteria weights of Expert 1 to Expert 10, we calculated the final weight vector of cri-
teria by averaging ten criteria weights, with the final weight vector of criteria being:
W= {0.0994, 0.1047, 0.1024, 0.1022, 0.1178, 0.1416, 0.1535, 0.0940, 0.0844}.

Table 7. Weights of the evaluation criteria.

Criteria Energy
Efficiency

Response
Time Lifetime Energy

Density
Discharge
Duration

Power
Capital Cost

Energy
Capital Cost

Environmental
Dimension

Social
Acceptance

Expert 1 0.1224 0.1683 0.0855 0.1276 0.0651 0.1425 0.1109 0.0888 0.0889
Expert 2 0.1152 0.0908 0.1654 0.0499 0.1022 0.0863 0.1782 0.1264 0.0855
Expert 3 0.0490 0.1260 0.0993 0.0999 0.1824 0.1238 0.1795 0.0692 0.0710
Expert 4 0.0864 0.0886 0.0780 0.1826 0.0972 0.1505 0.1309 0.0929 0.0929
Expert 5 0.0839 0.0778 0.1519 0.1239 0.0912 0.0964 0.1942 0.0628 0.1178
Expert 6 0.0999 0.0844 0.0810 0.1061 0.1625 0.2058 0.1075 0.0965 0.0563
Expert 7 0.1276 0.0844 0.0947 0.0596 0.1234 0.1622 0.1738 0.1113 0.0628
Expert 8 0.0405 0.1732 0.1463 0.0683 0.1287 0.0869 0.1404 0.1139 0.1017
Expert 9 0.2086 0.0732 0.0411 0.1148 0.1326 0.1132 0.1295 0.1078 0.0792
Expert 10 0.0604 0.0803 0.0811 0.0896 0.0921 0.2481 0.1902 0.0702 0.0880

Final weight 0.0994 0.1047 0.1024 0.1022 0.1178 0.1416 0.1535 0.0940 0.0844

Based on the initial target matrix, the weights of the experts could be calculated using
the maximizing deviation measurement and Euclidean distance in Equation (13). The calcu-
lation result of the expert weight vector was η= {0.1055, 0.0964, 0.0980, 0.1076, 0.0985, 0.0924,
0.1011, 0.0971, 0.1056, 0.0976}.

5.1.5. Distance Measurement and Energy Storage Technology Selection

Distance measurement should use a weighted matrix, and the initial decision matrix
and initial target matrix need to be weighted first using the weighted averaging opera-
tor. The weighted decision matrix and target matrix are shown in Appendix C. To that
end, we can calculate the distance between decision matrix and the target matrix. The
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distance between the decision matrix and target matrix can be obtained based on the
calculation following Equation (4). The value of distance and the ranking results are shown
in Figure 4. We can see in Figure 4 that the results for nine different storage technolo-
gies are different. The smaller the distance value, the closer the storage is to the target,
and the better it can meet the requirements set. Therefore, when choosing the energy
storage technology, we ranked distance values from the lowest to the highest, and the
ranking results are shown in Figure 4. The distances from low to high were ranked as
A6 > A2 > A1 > A7 > A3 > A5 > A4 > A9 > A8. This shows that according to the views of
experts, hydrogen is the most suitable energy storage technology based on the requirements
set for renewable energy storage.

Figure 4. Distance calculation and ranking results.

5.2. Sensitivity Analysis

A sensitivity analysis was conducted to show the application of the approach in
different scenarios. Suitable energy storage technologies for energy storage requirements
may be different when the storage requirements of new energy and renewable energy are
different. Thus, three scenarios are given to illustrate the different requirements of different
energy storage projects. In each scenario, every expert gives the requirement information
of each criterion, and the information in Scenarios 1 to 3 are shown in Appendix D.

Using the calculation of the model proposed herein, the results in each scenario can
be obtained. The distance calculation result and ranking result in Scenario 1 are shown in
Figure 5. It is indicated that in Scenario 1, the distances from low to high are ranked as:
A2 > A6 > A3 > A5 > A1 > A4 > A7 > A9 > A8. In this scenario, the most suitable
technology is compressed air energy storage. Regarding Scenario 2, the distance cal-
culation result and ranking result are shown in Figure 6. According to the distance
value and ranking of Figure 6., we can see that the ranking of storage technologies
is A6 > A2 > A1 > A3 > A7 > A5 > A4 > A9 > A8. In this scenario, the most suitable en-
ergy storage technology is hydrogen. Finally, in Scenario 3, the distance ranking is
A2 > A6 > A1 > A3 > A5 > A7 > A4 > A9 > A8, as shown in Figure 7, and the optimal en-
ergy storage technology is compressed air energy storage.



Energies 2021, 14, 6592 16 of 29

Figure 5. The distance calculation and ranking results in Scenario 1.

Figure 6. The distance calculation and ranking results in Scenario 2.
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Figure 7. The distance calculation and ranking results in Scenario 3.

5.3. Discussion

The results obtained indicate that in different requirement scenarios, the most suitable
storage technology selection is different (shown in Figure 8); for example, in Scenario 2,
the optimal energy storage technology is hydrogen, whereas in Scenario 1 and Scenario 3,
compressed air is the most suitable energy storage technology. Compared to the existing
reference, Zhang et al. [18] used the intuitionistic fuzzy MULTI-MOORA approach for
energy storage technology selection and ranked all technologies separately based on tech-
nology, economy, and environment, and then integrated the ranks of all aspects to obtain
comprehensive sorting, finally obtaining the best and worst energy storage technology.
L. Li et al. proposed a multi-objective optimization approach to obtain optimal energy
storage alternatives for applications [18], while Y. Liu and Du [16], Ren and Ren [28], and
Çolak and Kaya [29] ranked energy storage technologies and obtained an optimal energy
storage technology using MCDM methods. The above references only use a variety of
different methods to rank energy storage technologies, not capturing storage requirements
and relevant application scenarios. Albawab et al. [31] conducted a sensitivity analysis
and obtained different ranking results under different scenarios. However, the reference
only changes the weights of the criteria and does not consider the requirements. As shown
in the sensitivity analysis, the energy storage technologies selected in different storage
requirement scenarios are different, and energy storage requirements affect the choice of
energy storage technology. This also means that the energy storage technology selection
should be based on actual needs and requirements and that the energy storage technology
selection model proposed herein has practical significance.
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Figure 8. The ranking results in Scenario 1, Scenario 2, and Scenario 3.

6. Conclusions

This study develops a method for selecting suitable energy storage technology based
on energy storage requirements. In this work, we regard energy storage technology selec-
tion as an MCDM problem and construct a transformation and fusion method to express
the information in a PDHFS. Next, the entropy weight method and maximizing deviation
measurement are used to calculate the weights of the criteria and experts, respectively.
Based on this distance measurement, a suitable energy storage technology can be selected.
Finally, the developed framework is applied, using the Shanxi Province in China as a case
study in the phase of energy transition to an energy mix with high shares of renewables.
The strengths of this study are: (1) the method for data transformation and fusion con-
tains probability information transformation, in that the expert can give the probability
evaluation for each criterion. The background of energy storage technology selection is
complex, and some characteristics cannot be expressed in certain data. Consequently, a
PDHFS is required to describe uncertain information. (2) The framework for energy storage
technology selection proposed herein considers the energy storage requirements and can
thus be applied to actual renewable energy storage projects, capturing not only technology,
but also economic, social, and environmental criteria.
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Nomenclature

Nomenclature Tm The Target Matrix

Variable
Du Dual hesitant fuzzy sets Parameter
PD, MA, NA,
MB,NB

Probability dual hesitant fuzzy set γ+ Maximum values in h̃p(x)

pd Probability dual hesitant fuzzy number ϕ+ Maximum values in g̃p(x)
W The weight of PDHFNs ph Probabilities of γ
PDHFW The weighted PDHFNs pg Probabilities of ϕ

(aL
ij, aU

ij )
The lower bound and upper bound
of the Interval number aij

λ
Parameter in distance function,
usually assumed as 2.

d(A,B) Distance between PDHFS A and B z The number of experts
(aL

ij, aU
ij ) Normalized value of (aL

ij, aU
ij )

αij Fuzzy number Abbreviation
hij Membership degree of fuzzy number αij MCDM Multi-criteria decision-making
gij Non-membership degree of fuzzy number αij PHS Pumped hydro storage
h̃p(x) Membership degree function of PDHFS PD HFS Hesitant fuzzy set
g̃p(x) Non-membership function of PDHFS PD CAES Compressed air energy storage
γ
∣∣∣ph Elements in h̃p(x) FES Flywheel energy storage

ϕ|pg Elements in g̃p(x) Li-ion lithium-ion

D(pd1, pd2) Euclidean distance SMES
Superconducting magnetic
energy storage

η The expert weight vector DHFS Dual hesitant fuzzy set
A The set of energy storage technologies PDHFS Probability dual hesitant fuzzy set

C The set of criteria PDHFN
Probability dual hesitant
fuzzy number

Appendix A

The decision basic data and initial decision matric of experts are shown in Tables A1–A18 in Appendix A.

Table A1. Decision basic data of Expert 2.

Technologies
Energy

Efficiency
(%)

Response
Time

Lifetime
(Years)

Energy
Density
(Wh/kg)

Self-
Discharge

Losses
(%/day)

Power
Capital Cost
(USD/kw)

Energy
Capital Cost
(USD/kwh)

Environmental
Dimension

Social
Acceptance

PHS (65, 80) Medium (30, 60) (0.5, 1.5) (0.0001,
0.0001) (600, 4600) (5, 430) Very high Very high

CAES (41, 75) Long (20, 40) (30, 60) (0.0001,
0.0001) (400, 800) (50, 150) Very high Very high

FES (80, 85) Medium (15, 20) (10, 30) (20, 100) (250, 350) (1000, 5000) Very high Very high
Lead–acid (75, 80) Very short (3, 12) (30, 50) (0.1, 0.3) (300, 600) (150, 500) Very high Medium

Li-ion (65, 78) Very short (5, 15) (75, 250) (0.1, 0.3) (1200, 4000) (600, 2500) Low High
Hydrogen (35, 40) Medium (5, 20) (800, 1000) (0.5, 2) (500, 10,000) (2, 15) High Medium

Super-
capacitors (85, 98) Short (10, 20) (0.1, 15) (20, 40) (100, 300) (300, 2000) Low Medium

SMES (90, 95) Short (20, 30) (0.5, 5) (10, 15) (200, 300) (1000,
10,000) Very high Medium

Thermal
(TES) (14, 18) Long (5, 15) (30, 60) (0.05, 1) (100, 400) (3, 130) Low Medium
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Table A2. Initial decision matrix of Expert 2.

Technologies
Energy

Efficiency
(%)

Response
Time

Lifetime
(Years)

Energy
Density
(Wh/kg)

Self-
Discharge

Losses
(%/Day)

Power
Capital Cost
(USD/kw)

Energy
Capital Cost
(USD/kwh)

Environmental
Dimension

Social
Acceptance

PHS (0.2153|0.7520,
0.7315|0.2480)

(0.5000|0.6400,
0.4500|0.3600)

(0.3000|0.6000,
0.4001|0.4000)

(0.0004|0.6200,
0.9989|0.3800)

(0.0000|0.3600,
1.0000|0.6400)

(0.0505|0.7600,
0.6127|0.2400)

(0.0004|0.6000,
0.9634|0.4000)

(0.9000|0.4570,
0.1000|0.5430)

(0.9000|0.6580,
0.1000|0.3420)

CAES (0.1358|0.5400,
0.7516|0.4600)

(0.7500|0.7600,
0.2000|0.2400)

(0.2000|0.7600,
0.6001|0.2400)

(0.0229|0.6540,
0.9543|0.3460)

(0.0000|0.7400,
1.0000|0.2600)

(0.0337|0.8450,
0.9326|0.1550)

(0.0043|0.4200,
0.9872|0.5800)

(0.9000|0.7540,
0.1000|0.2460)

(0.9000|0.6250,
0.1000|0.3750)

FES (0.2649|0.8560,
0.7185|0.1440)

(0.5000|0.5400,
0.4500|0.4600)

(0.1500|0.6200,
0.8000|0.3800)

(0.0076|0.5420,
0.9771|0.4580)

(0.1773|0.4340,
0.1137|0.5660)

(0.0211|0.6350,
0.9705|0.3650)

(0.0851|0.6430,
0.5747|0.3570)

(0.9000|0.7350,
0.1000|0.6250)

(0.9000|0.5460,
0.1000|0.4540)

Lead–acid (0.2484|0.6200,
0.7351|0.3800)

(0.1000|0.6570,
0.9000|0.3430)

(0.0300|0.4340,
0.8800|0.5660)

(0.0229|0.2400,
0.9619|0.7600)

(0.0009|0.7530,
0.9973|0.2470)

(0.0253|0.7630,
0.9495|0.2370)

(0.0128|0.4260,
0.9575|0.5740)

(0.9000|0.5400,
0.1000|0.4600)

(0.5000|0.4670,
0.4500|0.5330)

Li-ion (0.2153|0.7000,
0.7417|0.3000)

(0.1000|0.3760,
0.9000|0.6240)

(0.0504|0.5400,
0.8487|0.4600)

(0.0572|0.3500,
0.8095|0.6500)

(0.0009|0.3460,
0.9973|0.6540)

(0.1010|0.5640,
0.6632|0.4360)

(0.0510|0.6600,
0.7873|0.3400)

(0.3500|0.8600,
0.6000|0.1400)

(0.7500|0.6700,
0.2000|0.3300)

Hydrogen (0.1159|0.7540,
0.8675|0.2460)

(0.5000|0.5600,
0.4500|0.4400)

(0.0500|0.4310,
0.8500|0.5690)

(0.6097|0.3700,
0.2379|0.6300)

(0.0044|0.7600,
0.9823|0.2400)

(0.0421|0.7630,
0.1580|0.2370)

(0.0002|0.6420,
0.9987|0.3580)

(0.7500|0.3560,
0.2000|0.6440)

(0.5000|0.6500,
0.4500|0.3500)

Super-
capacitors

(0.2815|0.8700,
0.6755|0.1300)

(0.3500|0.4860,
0.6000|0.5140)

(0.0500|0.7640,
0.8000|0.2360)

(0.0001|0.6400,
0.9886|0.3600)

(0.1773|0.7300,
0.6455|0.2700)

(0.0084|0.4760,
0.9747|0.5240)

(0.0255|0.7600,
0.8299|0.2400)

(0.3500|0.8300,
0.6000|0.1700)

(0.5000|0.3700,
0.4500|0.6300)

SMES (0.2980|0.2400,
0.6854|0.7600)

(0.3500|0.8000,
0.6000|0.2000)

(0.2000|0.4250,
0.7000|0.5750)

(0.0004|0.7400,
0.9962|0.2600)

(0.0886|0.8670,
0.8671|0.1330)

(0.0168|0.8600,
0.9747|0.1400)

(0.0851|0.4700,
0.1494|0.5300)

(0.9000|0.8590,
0.1000|0.1410)

(0.5000|0.7674,
0.4500|0.2326)

Thermal
(TES)

(0.0464|0.4200,
0.9404|0.5800)

(0.7500|0.3000,
0.2000|0.7000)

(0.0500|0.6250,
0.8500|0.3480)

(0.0229|0.7360,
0.9543|0.2640)

(0.0004|0.4860,
0.9911|0.5140)

(0.0084|0.2590,
0.9663|0.7410)

(0.0003|0.5700,
0.9889|0.4300)

(0.3500|0.5300,
0.6000|0.4700)

(0.5000|0.6540,
0.4500|0.3460)

Table A3. Decision basic data of Expert 3.

Technologies
Energy

Efficiency
(%)

Response
Time

Lifetime
(Years)

Energy
Density
(Wh/kg)

Self-
Discharge

Losses
(%/Day)

Power
Capital Cost
(USD/kw)

Energy
Capital Cost
(USD/kwh)

Environmental
Dimension

Social
Acceptance

PHS (70, 75) Medium (30, 60) (0.5, 1.5) (0.0001,
0.0001) (700, 2000) (5, 100) Very high Very high

CAES (41, 75) Long (20, 40) (30, 60) (0.0001,
0.0001) (400, 800) (50, 150) Very high Very high

FES (80, 90) Medium (15, 20) (10, 30) (20, 100) (250, 350) (1000, 5000) Very high Very high
Lead–acid (75, 80) Very short (3, 12) (30, 50) (0.1, 0.3) (300, 600) (150, 500) Very high Medium

Li-ion (65, 78) Very short (5, 15) (75, 250) (0.1, 0.3) (1200, 4000) (600, 2500) Low High
Hydrogen (35, 40) Medium (5, 20) (800, 1000) (0.5, 2) (500, 10,000) (2, 15) High Medium

Super-
capacitors (85, 98) Short (10, 25) (0.1, 15) (20, 40) (100, 300) (300, 2000) Low Medium

SMES (90, 95) Short (20, 30) (0.5, 5) (10, 15) (200, 300) (1000,
10,000) Very high Medium

Thermal
(TES) (14, 18) Long (5, 15) (30, 60) (0.05, 1) (100, 400) (3, 130) Low Medium

Table A4. Initial decision matrix of Expert 3.

Technologies
Energy

Efficiency
(%)

Response
Time

Lifetime
(Years)

Energy
Density
(Wh/kg)

Self-
Discharge

Losses
(%/Day)

Power
Capital Cost
(USD/kw)

Energy
Capital Cost
(USD/kwh)

Environmental
Dimension

Social
Acceptance

PHS (0.2308|0.3760,
0.7527|0.6240)

(0.5000|0.3600,
0.4500|0.6400)

(0.2966|0.8100,
0.4067|0.1900)

(0.0004|0.4250,
0.9989|0.5750)

(0.0000|0.4310,
1.0000|0.5690)

(0.0629|0.7600,
0.8204|0.2400)

(0.0004|0.7600,
0.9915|0.2400)

(0.9000|0.2600,
0.1000|0.7400)

(0.9000|0.3430,
0.1000|0.6570)

CAES (0.1352|0.5600,
0.7527|0.4400)

(0.7500|0.7400,
0.2000|0.2600)

(0.1978|0.5300,
0.6045|0.4700)

(0.0229|0.6520,
0.9543|0.3480)

(0.0000|0.7640,
1.0000|0.2360)

(0.0359|0.2390,
0.9282|0.7610)

(0.0043|0.4860,
0.9872|0.5140)

(0.9000|0.5660,
0.1000|0.4340)

(0.9000|0.6240,
0.1000|0.3760)

FES (0.2638|0.3500,
0.7032|0.6500)

(0.5000|0.4340,
0.4500|0.5660)

(0.1483|0.4260,
0.8022|0.5740)

(0.0076|0.2390,
0.9771|0.7610)

(0.1773|0.6400,
0.1137|0.3600)

(0.0224|0.6000,
0.9686|0.4000)

(0.0851|0.8000,
0.5744|0.2000)

(0.9000|0.2470,
0.1000|0.7530)

(0.9000|0.4400,
0.1000|0.5600)

Lead–acid (0.2473|0.3700,
0.7362|0.6300)

(0.1000|0.7530,
0.9000|0.2470)

(0.0297|0.6600,
0.8813|0.3400)

(0.0229|0.6000,
0.9619|0.4000)

(0.0009|0.6000,
0.9973|0.4000)

(0.0269|0.7520,
0.9461|0.2480)

(0.0128|0.7630,
0.9574|0.2370)

(0.9000|0.6540,
0.1000|0.3460)

(0.5000|0.5140,
0.4500|0.4860)

Li-ion (0.2143|0.6400,
0.7428|0.3600)

(0.1000|0.5920,
0.9000|0.4080)

(0.0494|0.6820,
0.8517|0.3180)

(0.0572|0.2400,
0.8095|0.7600)

(0.0009|0.2400,
0.9973|0.7600)

(0.1078|0.5400,
0.6408|0.4600)

(0.0511|0.6000,
0.7872|0.4000)

(0.3500|0.2400,
0.6000|0.7600)

(0.7500|0.2000,
0.2000|0.8000)

Hydrogen (0.1154|0.3800,
0.8681|0.6200)

(0.5000|0.3800,
0.4500|0.6200)

(0.0494|0.5850,
0.8022|0.4150)

(0.6097|0.3800,
0.2379|0.6200)

(0.0044|0.6400,
0.9823|0.3600)

(0.0449|0.4260,
0.1020|0.5740)

(0.0002|0.6600,
0.9987|0.3400)

(0.7500|0.5490,
0.2000|0.4510)

(0.5000|0.8700,
0.4500|0.1300)

Super-
capacitors

(0.2803|0.7400,
0.6768|0.2600)

(0.3500|0.7400,
0.6000|0.2600)

(0.0989|0.8450,
0.7528|0.1550)

(0.0001|0.7400,
0.9886|0.2600)

(0.1773|0.3800,
0.6455|0.6200)

(0.0090|0.5850,
0.9731|0.4150)

(0.0255|0.6420,
0.8298|0.3580)

(0.3500|0.5850,
0.6000|0.4150)

(0.5000|0.6420,
0.4500|0.3580)

SMES (0.2968|0.5510,
0.6867|0.4490)

(0.3500|0.2390,
0.6000|0.7610)

(0.1978|0.6350,
0.7034|0.3650)

(0.0004|0.5510,
0.9962|0.4490)

(0.0886|0.7400,
0.8671|0.2600)

(0.0180|0.8450,
0.9731|0.1550)

(0.0851|0.8600,
0.1488|0.1400)

(0.9000|0.8450,
0.1000|0.1550)

(0.5000|0.7600,
0.4500|0.2400)

Thermal
(TES)

(0.0462|0.4590,
0.9406|0.5410)

(0.7500|0.6000,
0.2000|0.4000)

(0.0494|0.7630,
0.8517|0.2370)

(0.0229|0.4590,
0.9543|0.5410)

(0.0004|0.6200,
0.9911|0.3800)

(0.0090|0.2400,
0.9641|0.7600)

(0.0003|0.3560,
0.9889|0.6440)

(0.3500|0.6350,
0.6000|0.3650)

(0.5000|0.4700,
0.4500|0.5300)
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Table A5. Decision basic data of Expert 4.

Technologies
Energy

Efficiency
(%)

Response
Time

Lifetime
(Years)

Energy
Density
(Wh/kg)

Self-
Discharge

Losses
(%/Day)

Power
Capital Cost
(USD/kw)

Energy
Capital Cost
(USD/kwh)

Environmental
Dimension

Social
Acceptance

PHS (65, 75) Medium (30, 60) (0.5, 1.5) (0.0001,
0.0001) (600, 2000) (5, 100) Very high Very high

CAES (41, 75) Long (20, 40) (30, 60) (0.0001,
0.0001) (400, 800) (50, 150) Very high Very high

FES (80, 90) Medium (15, 20) (5, 50) (20, 100) (250, 350) (1000, 5000) Very high Very high
Lead–acid (75, 80) Very short (3, 12) (30, 50) (0.1, 0.3) (300, 600) (150, 500) Very high Medium

Li-ion (65, 75) Very short (5, 15) (75, 250) (0.1, 0.3) (1200, 4000) (600, 2500) Low High
Hydrogen (35, 40) Medium (5, 20) (800, 1000) (0.5, 2) (500, 10,000) (2, 15) High Medium

Super-
capacitors (85, 98) Short (10, 20) (0.1, 15) (20, 40) (100, 300) (300, 2000) Low Medium

SMES (90, 95) Short (20, 30) (0.5, 5) (10, 15) (200, 300) (1000,
10,000) Very high Medium

Thermal
(TES) (14, 18) Long (5, 15) (30, 60) (0.05, 1) (100, 400) (3, 130) Low Medium

Table A6. Initial decision matric of Expert 4.

Technologies
Energy

Efficiency
(%)

Response
Time

Lifetime
(Years)

Energy
Density
(Wh/kg)

Self-
Discharge

Losses
(%/Day)

Power
Capital Cost
(USD/kw)

Energy
Capital Cost
(USD/kwh)

Environmental
Dimension

Social
Acceptance

PHS (0.2157|0.7400,
0.7511|0.2600)

(0.5000|0.5600,
0.4500|0.4400)

(0.3000|0.5600,
0.4001|0.4400)

(0.0004|0.5920,
0.9989|0.4080)

(0.0000|0.7600,
1.0000|0.2400)

(0.0539|0.3900,
0.8203|0.6100)

(0.0004|0.7000,
0.9915|0.3000)

(0.9000|0.8820,
0.1000|0.1180)

(0.9000|0.4300,
0.1000|0.5700)

CAES (0.1360|0.5510,
0.7511|0.4490)

(0.7500|0.5490,
0.2000|0.4510)

(0.2000|0.5490,
0.6001|0.4510)

(0.0229|0.5490,
0.9543|0.4510)

(0.0000|0.4600,
1.0000|0.5400)

(0.0359|0.7800,
0.9281|0.2200)

(0.0043|0.5320,
0.9872|0.4680)

(0.9000|0.3050,
0.1000|0.6950)

(0.9000|0.6250,
0.1000|0.3750)

FES (0.2654|0.7600,
0.7014|0.2400)

(0.5000|0.2390,
0.4500|0.7610)

(0.15000|0.2390,
0.8000|0.7610)

(0.0038|0.2390,
0.9619|0.7610)

(0.1773|0.6520,
0.1137|0.3480)

(0.0225|0.4500,
0.9686|0.5500)

(0.0851|0.6930,
0.5744|0.3070)

(0.9000|0.4400,
0.1000|0.5600)

(0.9000|0.6520,
0.1000|0.3480)

Lead–acid (0.2489|0.2390,
0.7346|0.7610)

(0.1000|0.6000,
0.9000|0.4000)

(0.0300|0.6000,
0.8800|0.4000)

(0.0229|0.6000,
0.9619|0.4000)

(0.0009|0.2390,
0.9973|0.7610)

(0.0270|0.4900,
0.9461|0.5100)

(0.0128|0.2390,
0.9574|0.7610)

(0.9000|0.2000,
0.1000|0.8000)

(0.5000|0.2390,
0.4500|0.7610)

Li-ion (0.2157|0.6000,
0.7511|0.4000)

(0.1000|0.3900,
0.9000|0.6100)

(0.0500|0.5920,
0.8500|0.4080)

(0.0571|0.5920,
0.8096|0.4080)

(0.0009|0.6000,
0.9973|0.4000)

(0.1078|0.2700,
0.6406|0.7300)

(0.0511|0.6000,
0.7872|0.4000)

(0.3500|0.5600,
0.6000|0.4400)

(0.7500|0.6000,
0.2000|0.4000)

Hydrogen (0.1161|0.2700,
0.8673|0.7300)

(0.5000|0.7800,
0.4500|0.2200)

(0.0500|0.7800,
0.8000|0.2200)

(0.6094|0.5920,
0.2382|0.4080)

(0.0044|0.2400,
0.9823|0.7600)

(0.0449|0.7200,
0.1016|0.2800)

(0.0002|0.5490,
0.9987|0.4510)

(0.7500|0.5490,
0.2000|0.4510)

(0.5000|0.5490,
0.4500|0.4510)

Super-
capacitors

(0.2820|0.7200,
0.6748|0.2800)

(0.3500|0.4500,
0.6000|0.5500)

(0.1000|0.4500,
0.8000|0.5500)

(0.0001|0.4500,
0.9886|0.5500)

(0.1773|0.5550,
0.6455|0.4450)

(0.0090|0.3380,
0.9730|0.5850)

(0.0255|0.6820,
0.8298|0.3180)

(0.3500|0.8300,
0.6000|0.1700)

(0.5000|0.8300,
0.4500|0.1700)

SMES (0.2986|0.5490,
0.6848|0.4510)

(0.3500|0.5850,
0.6000|0.4150)

(0.2000|0.5850,
0.7000|0.4150)

(0.0004|0.5850,
0.9962|0.4150)

(0.0886|0.4900,
0.8671|0.5100)

(0.0180|0.8600,
0.9730|0.8450)

(0.0851|0.5850,
0.1488|0.4150)

(0.9000|0.8590,
0.1000|0.1410)

(0.5000|0.7340,
0.4500|0.2660)

Thermal
(TES)

(0.0465|0.5850,
0.9403|0.4150)

(0.7500|0.8450,
0.2000|0.1550)

(0.0500|0.8450,
0.8500|0.1550)

(0.0229|0.4590,
0.9543|0.5410)

(0.0004|0.3100,
0.9911|0.6900)

(0.0090|0.2590,
0.9641|0.6350)

(0.0003|0.7900,
0.9889|0.2100)

(0.3500|0.4300,
0.6000|0.5700)

(0.5000|0.3700,
0.4500|0.6300)

Table A7. Decision basic data of Expert 5.

Technologies
Energy

Efficiency
(%)

Response
Time

Lifetime
(Years)

Energy
Density
(Wh/kg)

Self-
Discharge

Losses
(%/Day)

Power
Capital Cost
(USD/kw)

Energy
Capital Cost
(USD/kwh)

Environmental
Dimension

Social
Acceptance

PHS (65, 75) Medium (30, 60) (0.5, 1.5) (0.0001,
0.0001) (600, 4600) (5, 100) Very high Very high

CAES (41, 75) Long (20, 40) (30, 60) (0.0001,
0.0001) (400, 800) (50, 150) Very high Very high

FES (80, 90) Medium (15, 20) (10, 30) (20, 100) (250, 350) (1000, 5000) Very high Very high
Lead–acid (70, 80) Very short (3, 12) (30, 50) (0.1, 0.3) (300, 600) (150, 500) Very high Medium

Li-ion (65, 75) Very short (5, 15) (75, 250) (0.1, 0.3) (1200, 4000) (600, 2500) Low High
Hydrogen (35, 40) Medium (5, 20) (800, 1000) (0.5, 2) (500, 10,000) (2, 15) High Medium

Super-
capacitors (85, 98) Short (10, 20) (0.1, 15) (20, 40) (100, 300) (300, 2000) Low Medium

SMES (90, 95) Short (20, 30) (0.5, 5) (10, 15) (200, 300) (1000,
10,000) Very high Medium

Thermal
(TES) (14, 18) Long (5, 15) (30, 60) (0.05, 1) (100, 400) (3, 130) Low Medium



Energies 2021, 14, 6592 22 of 29

Table A8. Initial decision matric of Expert 5.

Technologies
Energy

Efficiency
(%)

Response
Time

Lifetime
(Years)

Energy
Density
(Wh/kg)

Self-
Discharge

Losses
(%/Day)

Power
Capital Cost
(USD/kw)

Energy
Capital Cost
(USD/kwh)

Environmental
Dimension

Social
Acceptance

PHS (0.2156|0.6750,
0.7513|0.3250)

(0.5000|0.3750,
0.4500|0.6250)

(0.3026|0.6850,
0.3948|0.3150)

(0.0004|0.5400,
0.9989|0.4600)

(0.0000|0.5430,
1.0000|0.4570)

(0.0539|0.3590,
0.8203|0.6410)

(0.0004|0.4570,
0.9915|0.5430)

(0.9000|0.7820,
0.1000|0.2180)

(0.9000|0.6430,
0.1000|0.3570)

CAES (0.1360|0.5450,
0.7513|0.4550)

(0.7500|0.5650,
0.2000|0.4350)

(0.2017|0.4670,
0.5965|0.5330)

(0.0229|0.4320,
0.9543|0.5680)

(0.0000|0.3460,
1.0000|0.6540)

(0.0359|0.6780,
0.9281|0.3220)

(0.0043|0.6720,
0.9872|0.3280)

(0.9000|0.3000,
0.1000|0.7000)

(0.9000|0.4500,
0.1000|0.5500)

FES (0.2819|0.6500,
0.7015|0.3500)

(0.5000|0.7240,
0.4500|0.2760)

(0.1513|0.5400,
0.7983|0.4600)

(0.0076|0.7970,
0.9771|0.2030)

(0.1773|0.6560,
0.1137|0.3440)

(0.0225|0.4500,
0.9686|0.5500)

(0.0851|0.6930,
0.5744|0.3070)

(0.9000|0.5400,
0.1000|0.4600)

(0.9000|0.4200,
0.1000|0.5800)

Lead–acid (0.2321|0.7420,
0.7347|0.2580)

(0.1000|0.4570,
0.9000|0.5430)

(0.0303|0.3500,
0.8790|0.6500)

(0.0229|0.7160,
0.9619|0.2840)

(0.0009|0.7400,
0.9973|0.2600)

(0.0270|0.6850,
0.9461|0.3150)

(0.0128|0.2400,
0.9574|0.7600)

(0.9000|0.2900,
0.1000|0.7100)

(0.5000|0.4670,
0.4500|0.5330)

Li-ion (0.2156|0.7240,
0.7513|0.2760)

(0.1000|0.6720,
0.9000|0.3280)

(0.0504|0.5400,
0.8487|0.4600)

(0.0572|0.2400,
0.8095|0.7600)

(0.0009|0.4800,
0.9973|0.5200)

(0.1078|0.4670,
0.6406|0.5330)

(0.0511|0.5400,
0.7872|0.4600)

(0.3500|0.4600,
0.6000|0.5400)

(0.7500|0.3700,
0.2000|0.6300)

Hydrogen (0.1161|0.5400,
0.8674|0.4600)

(0.5000|0.5600,
0.4500|0.4400)

(0.0504|0.3940,
0.8487|0.6060)

(0.6097|0.6430,
0.2379|0.3570)

(0.0044|0.3430,
0.9823|0.6570)

(0.0449|0.5400,
0.1016|0.4600)

(0.0002|0.5400,
0.9987|0.4600)

(0.7500|0.5490,
0.2000|0.4510)

(0.5000|0.6420,
0.4500|0.3580)

Super-
capacitors

(0.2819|0.6520,
0.6750|0.3480)

(0.3500|0.8700,
0.6000|0.1300)

(0.1009|0.4830,
0.7983|0.5170)

(0.0001|0.5400,
0.9886|0.4600)

(0.1773|0.7550,
0.6455|0.2450)

(0.0090|0.7550,
0.9730|0.2450)

(0.0255|0.6200,
0.8298|0.3800)

(0.3500|0.4300,
0.6000|0.5700)

(0.5000|0.4800,
0.4500|0.5200)

SMES (0.2985|0.7520,
0.6850|0.2480)

(0.3500|0.1900,
0.6000|0.8100)

(0.2017|0.2100,
0.6974|0.7900)

(0.0004|0.5540,
0.9962|0.4460)

(0.0886|0.4900,
0.8671|0.5100)

(0.0180|0.4900,
0.9730|0.5100)

(0.0851|0.8500,
0.1488|0.1500)

(0.9000|0.5900,
0.1000|0.4100)

(0.5000|0.7970,
0.4500|0.2030)

Thermal
(TES)

(0.0464|0.4730,
0.9403|0.5270)

(0.7500|0.7120,
0.2000|0.2880)

(0.0504|0.1750,
0.8487|0.8250)

(0.0229|0.3400,
0.9543|0.6600)

(0.0004|0.5310,
0.9911|0.4690)

(0.0090|0.5310,
0.9641|0.4690)

(0.0003|0.8900,
0.9889|0.1100)

(0.3500|0.3430,
0.6000|0.6570)

(0.5000|0.7160,
0.4500|0.2840)

Table A9. Decision basic data of Expert 6.

Technologies
Energy

Efficiency
(%)

Response
Time

Lifetime
(Years)

Energy
Density
(Wh/kg)

Self-
Discharge

Losses
(%/Day)

Power
Capital Cost
(USD/kw)

Energy
Capital Cost
(USD/kwh)

Environmental
Dimension

Social
Acceptance

PHS (65, 75) Medium (30, 60) (0.5, 1.5) (0.0001,
0.0001) (600, 2000) (5, 100) Very high Very high

CAES (41, 75) Long (20, 40) (30, 60) (0.0001,
0.0001) (400, 800) (50, 150) Very high Very high

FES (80, 90) Medium (15, 20) (10, 30) (20, 100) (250, 350) (1000, 5000) Very high Very high
Lead–acid (75, 80) Very short (3, 12) (30, 50) (0.1, 0.3) (300, 600) (150, 500) Very high Medium

Li-ion (65, 75) Very short (5, 15) (75, 250) (0.1, 0.3) (1200, 4000) (600, 2500) Low High
Hydrogen (35, 40) Medium (5, 15) (800, 1000) (0.5, 2) (500, 10,000) (2, 15) High Medium

Super-
capacitors (85, 98) Short (10, 20) (0.1, 15) (20, 40) (100, 300) (300, 2000) Low Medium

SMES (90, 95) Short (20, 30) (0.5, 5) (10, 15) (200, 300) (1000,
10,000) Very high Medium

Thermal
(TES) (14, 18) Long (5, 15) (30, 60) (0.05, 1) (100, 400) (3, 130) Low Medium

Table A10. Initial decision matrix of Expert 6.

Technologies
Energy

Efficiency
(%)

Response
Time

Lifetime
(Years)

Energy
Density
(Wh/kg)

Self-
Discharge

Losses
(%/Day)

Power
Capital Cost
(USD/kw)

Energy
Capital Cost
(USD/kwh)

Environmental
Dimension

Social
Acceptance

PHS (0.2157|0.4450,
0.7511|0.5550)

(0.5000|0.4040,
0.4500|0.5960)

(0.3026|0.6570,
0.3948|0.3430)

(0.0004|0.4000,
0.9989|0.6000)

(0.0000|0.5420,
1.0000|0.4580)

(0.0539|0.5640,
0.8203|0.4360)

(0.0004|0.7400,
0.9915|0.2600)

(0.9000|0.4460,
0.1000|0.5540)

(0.9000|0.4030,
0.1000|0.5970)

CAES (0.1360|0.5300,
0.7511|0.4700)

(0.7500|0.5560,
0.2000|0.4440)

(0.2017|0.3760,
0.5965|0.6240)

(0.0229|0.6100,
0.9543|0.3900)

(0.0000|0.7500,
1.0000|0.2500)

(0.0359|0.6500,
0.9281|0.3500)

(0.0043|0.5320,
0.9872|0.4680)

(0.9000|0.5400,
0.1000|0.4600)

(0.9000|0.6470,
0.1000|0.3530)

FES (0.2654|0.4300,
0.7014|0.5700)

(0.5000|0.8630,
0.4500|0.1370)

(0.1513|0.4600,
0.7983|0.5400)

(0.0076|0.2200,
0.9771|0.7800)

(0.1773|0.3660,
0.1137|0.6340)

(0.0225|0.4500,
0.9686|0.5500)

(0.0851|0.4600,
0.5744|0.5400)

(0.9000|0.6440,
0.1000|0.3560)

(0.9000|0.4110,
0.1000|0.5890)

Lead–acid (0.2489|0.7700,
0.7346|0.2300)

(0.1000|0.7520,
0.9000|0.2480)

(0.0303|0.4600,
0.8790|0.5400)

(0.0229|0.4110,
0.9619|0.5890)

(0.0009|0.6340,
0.9973|0.3660)

(0.0270|0.4900,
0.9461|0.5100)

(0.0128|0.4600,
0.9574|0.5400)

(0.9000|0.2420,
0.1000|0.7580)

(0.5000|0.4670,
0.4500|0.5330)

Li-ion (0.2157|0.3240,
0.7511|0.6760)

(0.1000|0.5750,
0.9000|0.4250)

(0.0504|0.6340,
0.8487|0.3660)

(0.0572|0.2640,
0.8095|0.7360)

(0.0009|0.6600,
0.9973|0.3400)

(0.1078|0.4270,
0.6406|0.5730)

(0.0511|0.6340,
0.7872|0.3660)

(0.3500|0.5600,
0.6000|0.4400)

(0.7500|0.6700,
0.2000|0.3300)

Hydrogen (0.1161|0.3980,
0.8673|0.6020)

(0.5000|0.3460,
0.4500|0.6540)

(0.0504|0.3980,
0.8487|0.6020)

(0.6097|0.5800,
0.2379|0.4200)

(0.0044|0.6410,
0.9823|0.3590)

(0.0449|0.6470,
0.1016|0.3530)

(0.0002|0.4400,
0.9987|0.5600)

(0.7500|0.5400,
0.2000|0.4600)

(0.5000|0.8070,
0.4500|0.1930)

Super-
capacitors

(0.2820|0.6000,
0.6748|0.4000)

(0.3500|0.2400,
0.6000|0.7600)

(0.1009|0.4600,
0.7983|0.5400)

(0.0001|0.4270,
0.9886|0.5730)

(0.1773|0.4500,
0.6455|0.5500)

(0.0090|0.6800,
0.9730|0.3200)

(0.0255|0.5600,
0.8298|0.4400)

(0.3500|0.8300,
0.6000|0.1700)

(0.5000|0.4260,
0.4500|0.5740)

SMES (0.2986|0.7100,
0.6848|0.2900)

(0.3500|0.1940,
0.6000|0.8060)

(0.2017|0.6340,
0.6974|0.3660)

(0.0004|0.2420,
0.9962|0.7580)

(0.0886|0.4900,
0.8671|0.5100)

(0.0180|0.8640,
0.9730|0.1360)

(0.0851|0.5400,
0.1488|0.4600)

(0.9000|0.8900,
0.1000|0.1100)

(0.5000|0.6400,
0.4500|0.3600)

Thermal
(TES)

(0.0465|0.3200,
0.9403|0.6800)

(0.7500|0.4400,
0.2000|0.5600)

(0.0504|0.6600,
0.8487|0.3400)

(0.0229|0.6470,
0.9543|0.3530)

(0.0004|0.2310,
0.9911|0.7690)

(0.0090|0.6530,
0.9641|0.3470)

(0.0003|0.7200,
0.9889|0.2800)

(0.3500|0.4300,
0.6000|0.5700)

(0.5000|0.4100,
0.4500|0.5900)



Energies 2021, 14, 6592 23 of 29

Table A11. Decision basic data of Expert 7.

Technologies
Energy

Efficiency
(%)

Response
Time

Lifetime
(Years)

Energy
Density
(Wh/kg)

Self-
Discharge

Losses
(%/Day)

Power
Capital Cost
(USD/kw)

Energy
Capital Cost
(USD/kwh)

Environmental
Dimension

Social
Acceptance

PHS (75, 80) Medium (30, 60) (0.5, 1.5) (0.0001,
0.0001) (600, 2000) (5, 100) Very high Very high

CAES (41, 75) Long (20, 40) (30, 60) (0.0001,
0.0001) (400, 800) (50, 150) Very high Very high

FES (88, 90) Medium (15, 20) (5, 130) (20, 100) (250, 350) (1000, 5000) Very high Very high
Lead–acid (75, 80) Very short (3, 12) (30, 50) (0.1, 0.3) (300, 600) (150, 500) Very high Medium

Li-ion (65, 75) Very short (5, 15) (75, 250) (0.1, 0.3) (1200, 4000) (600, 2500) Low High
Hydrogen (35, 40) Medium (5, 15) (800, 1000) (0.5, 2) (500, 10,000) (2, 15) High Medium

Super-
capacitors (85, 98) Short (10, 20) (0.1, 15) (20, 40) (100, 300) (300, 2000) Low Medium

SMES (90, 95) Short (20, 30) (0.5, 5) (10, 15) (200, 300) (1000,
10,000) Very high Medium

Thermal
(TES) (14, 18) Long (5, 15) (30, 60) (0.05, 1) (100, 400) (3, 130) Low Medium

Table A12. Initial decision matrix of Expert 7.

Technologies
Energy

Efficiency
(%)

Response
Time

Lifetime
(Years)

Energy
Density
(Wh/kg)

Self-
Discharge

Losses
(%/Day)

Power
Capital Cost
(USD/kw)

Energy
Capital Cost
(USD/kwh)

Environmental
Dimension

Social
Acceptance

PHS (0.2442|0.7610,
0.7396|0.2390)

(0.5000|0.5500,
0.4500|0.4500)

(0.3026|0.5250,
0.3948|0.4750)

(0.0004|0.8790,
0.9989|0.1210)

(0.0000|0.6250,
1.0000|0.3750)

(0.0539|0.4300,
0.8203|0.5700)

(0.0004|0.6200,
0.9915|0.3800)

(0.9000|0.8800,
0.1000|0.1200)

(0.9000|0.5420,
0.1000|0.4580)

CAES (0.1335|0.4000,
0.7558|0.6000)

(0.7500|0.5100,
0.2000|0.4900)

(0.2017|0.6520,
0.5965|0.3480)

(0.0228|0.4670,
0.9545|0.5330)

(0.0000|0.5420,
1.0000|0.4580)

(0.0359|0.6250,
0.9281|0.3750)

(0.0043|0.4800,
0.9872|0.5200)

(0.9000|0.3050,
0.1000|0.6950)

(0.9000|0.6020,
0.1000|0.3980)

FES (0.2865|0.4510,
0.7070|0.5490)

(0.5000|0.5320,
0.4500|0.4680)

(0.1513|0.2390,
0.7983|0.7610)

(0.0038|0.7700,
0.9014|0.2300)

(0.1773|0.2360,
0.1137|0.7640)

(0.0225|0.2390,
0.9686|0.7610)

(0.0851|0.6600,
0.5744|0.3400)

(0.9000|0.4400,
0.1000|0.5600)

(0.9000|0.5400,
0.1000|0.4600)

Lead–acid (0.2442|0.6100,
0.7396|0.3900)

(0.1000|0.6930,
0.9000|0.3070)

(0.0303|0.6000,
0.8790|0.4000)

(0.0228|0.4400,
0.9621|0.5600)

(0.0009|0.7000,
0.9973|0.3000)

(0.0270|0.6000,
0.9461|0.4000)

(0.0128|0.2390,
0.9574|0.7610)

(0.9000|0.6100,
0.1000|0.3900)

(0.5000|0.4670,
0.4500|0.5330)

Li-ion (0.2116|0.3900,
0.7558|0.6100)

(0.1000|0.5920,
0.9000|0.4080)

(0.0504|0.6100,
0.8487|0.3900)

(0.0569|0.6100,
0.8104|0.3900)

(0.0009|0.3180,
0.9973|0.6820)

(0.1078|0.6100,
0.6406|0.3900)

(0.0511|0.6000,
0.7872|0.4000)

(0.3500|0.3900,
0.6000|0.6100)

(0.7500|0.3900,
0.2000|0.6100)

Hydrogen (0.1139|0.6020,
0.8698|0.3980)

(0.5000|0.3360,
0.4500|0.6640)

(0.0504|0.3900,
0.8487|0.6100)

(0.6069|0.3800,
0.2414|0.6200)

(0.0044|0.4150,
0.9823|0.5850)

(0.0449|0.7200,
0.1016|0.2800)

(0.0002|0.6000,
0.9987|0.4000)

(0.7500|0.4830,
0.2000|0.5170)

(0.5000|0.4830,
0.4500|0.5170)

Super-
capacitors

(0.2767|0.5400,
0.6810|0.4600)

(0.3500|0.2700,
0.6000|0.7300)

(0.1009|0.4830,
0.7983|0.5170)

(0.0001|0.7400,
0.9886|0.2600)

(0.1773|0.2100,
0.6455|0.4400)

(0.0090|0.3380,
0.9730|0.5400)

(0.0255|0.6100,
0.8298|0.3900)

(0.3500|0.8300,
0.6000|0.1700)

(0.5000|0.8300,
0.4500|0.1700)

SMES (0.2930|0.7110,
0.6907|0.2890)

(0.3500|0.5550,
0.6000|0.4450)

(0.2017|0.2160,
0.6974|0.7840)

(0.0004|0.2160,
0.9962|0.7840)

(0.0886|0.4900,
0.8671|0.5100)

(0.0180|0.8600,
0.9730|0.7340)

(0.0851|0.5850,
0.1488|0.4150)

(0.9000|0.5320,
0.1000|0.4680)

(0.5000|0.7340,
0.4500|0.2660)

Thermal
(TES)

(0.0456|0.2400,
0.9414|0.7600)

(0.7500|0.4900,
0.2000|0.5100)

(0.0504|0.1500,
0.8487|0.8500)

(0.0228|0.1500,
0.9545|0.8500)

(0.0004|0.3100,
0.9911|0.6900)

(0.0090|0.2590,
0.9641|0.3700)

(0.0003|0.7900,
0.9889|0.2100)

(0.3500|0.6930,
0.6000|0.3070)

(0.5000|0.4600,
0.4500|0.5400)

Table A13. Decision basic data of Expert 8.

Technologies
Energy

Efficiency
(%)

Response
Time

Lifetime
(Years)

Energy
Density
Wh/kg

Self-
Discharge

Losses
(%/Day)

Power
Capital Cost
(USD/kw)

Energy
Capital Cost
(USD/kwh)

Environmental
Dimension

Social
Acceptance

PHS (65, 75) Medium (30, 60) (0.5, 1.5) (0.0001,
0.0001) (600, 2000) (5, 100) Very high Very high

CAES (41, 75) Long (20, 40) (30, 60) (0.0001,
0.0001) (400, 800) (50, 150) Very high Very high

FES (80, 90) Medium (15, 20) (5, 130) (20, 100) (250, 350) (1000, 5000) Very high Very high
Lead–acid (75, 80) Very short (3, 12) (30, 50) (0.1, 0.3) (300, 600) (150, 500) Very high Medium

Li-ion (65, 78) Very short (5, 15) (75, 250) (0.1, 0.3) (1200, 4000) (600, 2500) Low High
Hydrogen (35, 40) Medium (5, 15) (800, 1000) (0.5, 2) (500, 10,000) (2, 15) High Medium

Super-
capacitors (85, 98) Short (10, 20) (0.1, 15) (20, 40) (100, 300) (300, 2000) Low Medium

SMES (90, 95) Short (20, 30) (0.5, 5) (10, 15) (200, 300) (1000,
10,000) Very high Medium

Thermal
(TES) (14, 18) Long (5, 15) (30, 60) (0.05, 1) (100, 400) (3, 130) Low Medium
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Table A14. Initial decision matrix of Expert 8.

Technologies
Energy

Efficiency
(%)

Response
Time

Lifetime
(Years)

Energy
Density
(Wh/kg)

Self-
Discharge

Losses
(%/Day)

Power
Capital Cost
(USD/kw)

Energy
Capital Cost
(USD/kwh)

Environmental
Dimension

Social
Acceptance

PHS (0.2151|0.6100,
0.7518|0.3900)

(0.5000|0.4600,
0.4500|0.5400)

(0.3026|0.7800,
0.3948|0.2200)

(0.0004|0.7160,
0.9989|0.2840)

(0.0000|0.6400,
1.0000|0.3600)

(0.0539|0.5460,
0.8203|0.4540)

(0.0004|0.7540,
0.9915|0.2460)

(0.9000|0.8000,
0.1000|0.2000)

(0.9000|0.5430,
0.1000|0.4570)

CAES (0.1357|0.3900,
0.7518|0.6100)

(0.7500|0.6340,
0.2000|0.3660)

(0.2017|0.4500,
0.5965|0.5500)

(0.0228|0.2400,
0.9545|0.7600)

(0.0000|0.5630,
1.0000|0.4370)

(0.0359|0.7540,
0.9281|0.2460)

(0.0043|0.5320,
0.9872|0.4680)

(0.9000|0.3800,
0.1000|0.6200)

(0.9000|0.7250,
0.1000|0.2750)

FES (0.2648|0.5400,
0.7021|0.4600)

(0.5000|0.5400,
0.4500|0.4600)

(0.1513|0.4900,
0.7983|0.5100)

(0.0038|0.6430,
0.9014|0.3570)

(0.1773|0.3460,
0.1137|0.6540)

(0.0225|0.4500,
0.9686|0.5500)

(0.0851|0.6930,
0.5744|0.3070)

(0.9000|0.4320,
0.1000|0.5680)

(0.9000|0.5400,
0.1000|0.4600)

Lead–acid (0.2482|0.3940,
0.7352|0.6060)

(0.1000|0.5510,
0.9000|0.4490)

(0.0303|0.7200,
0.8790|0.2800)

(0.0228|0.7110,
0.9621|0.2890)

(0.0009|0.6400,
0.9973|0.3600)

(0.0270|0.4120,
0.9461|0.5880)

(0.0128|0.2300,
0.9574|0.7700)

(0.9000|0.2800,
0.1000|0.7200)

(0.5000|0.4700,
0.4500|0.5300)

Li-ion (0.2151|0.3200,
0.7418|0.6800)

(0.1000|0.7800,
0.9000|0.2200)

(0.0504|0.6930,
0.8487|0.3070)

(0.0569|0.6930,
0.8104|0.3070)

(0.0009|0.4880,
0.9973|0.5120)

(0.1078|0.2700,
0.6406|0.7300)

(0.0511|0.6000,
0.7872|0.4000)

(0.3500|0.5110,
0.6000|0.4890)

(0.7500|0.5670,
0.2000|0.4330)

Hydrogen (0.1158|0.4800,
0.8676|0.5200)

(0.5000|0.4500,
0.4500|0.5500)

(0.0504|0.2390,
0.8487|0.7610)

(0.6069|0.2700,
0.2414|0.7300)

(0.0044|0.3300,
0.9823|0.6700)

(0.0449|0.7200,
0.1016|0.2800)

(0.0002|0.5490,
0.9987|0.4510)

(0.7500|0.5490,
0.2000|0.4510)

(0.5000|0.8700,
0.4500|0.1300)

Super-
capacitors

(0.2813|0.4880,
0.6756|0.5120)

(0.3500|0.4900,
0.6000|0.5100)

(0.1009|0.4830,
0.7983|0.5170)

(0.0001|0.7200,
0.9886|0.2800)

(0.1773|0.5470,
0.6455|0.4530)

(0.0090|0.3550,
0.9730|0.6450)

(0.0255|0.6800,
0.8298|0.3200)

(0.3500|0.7530,
0.6000|0.2470)

(0.5000|0.5400,
0.4500|0.4600)

SMES (0.2979|0.3300,
0.6856|0.6700)

(0.3500|0.2700,
0.6000|0.7300)

(0.2017|0.1700,
0.6974|0.8300)

(0.0004|0.5510,
0.9962|0.4490)

(0.0886|0.4230,
0.8671|0.5770)

(0.0180|0.8600,
0.9730|0.1400)

(0.0851|0.5850,
0.1488|0.4150)

(0.9000|0.8000,
0.1000|0.2000)

(0.5000|0.7300,
0.4500|0.2700)

Thermal
(TES)

(0.0463|0.5550,
0.9404|0.4450)

(0.7500|0.5550,
0.2000|0.4450)

(0.0504|0.1410,
0.8487|0.8590)

(0.0228|0.4590,
0.9545|0.5410)

(0.0004|0.3300,
0.9911|0.6700)

(0.0090|0.2750,
0.9641|0.7250)

(0.0003|0.7800,
0.9889|0.2200)

(0.3500|0.3430,
0.6000|0.6570)

(0.5000|0.3070,
0.4500|0.6930)

Table A15. Decision basic data of Expert 9.

Technologies
Energy

Efficiency
(%)

Response
Time

Lifetime
(Years)

Energy
Density
Wh/kg

Self-
Discharge

Losses
(%/Day)

Power
Capital Cost
(USD/kw)

Energy
Capital Cost
(USD/kwh)

Environmental
Dimension

Social
Acceptance

PHS (65, 80) Medium (30, 60) (0.5, 1.5) (0.0001,
0.0001) (600, 2000) (5, 100) Very high Very high

CAES (41, 75) Long (20, 40) (30, 60) (0.0001,
0.0001) (400, 800) (50, 150) Very high Very high

FES (85, 90) Medium (15, 20) (10, 30) (20, 100) (250, 350) (1000, 5000) Very high Very high
Lead–acid (75, 80) Very short (3, 12) (30, 50) (0.1, 0.3) (300, 600) (150, 500) Very high Medium

Li-ion (65, 78) Very short (5, 15) (75, 250) (0.1, 0.3) (1200, 4000) (600, 2500) Low High
Hydrogen (35, 40) Medium (5, 20) (800, 1000) (0.5, 2) (500, 10,000) (2, 15) High Medium

Super-
capacitors (85, 98) Short (10, 20) (0.1, 15) (20, 40) (100, 300) (300, 2000) Low Medium

SMES (90, 95) Short (20, 30) (0.5, 5) (10, 15) (200, 300) (1000,
10,000) Very high Medium

Thermal
(TES) (14, 18) Long (5, 15) (30, 60) (0.05, 1) (100, 400) (3, 130) Low Medium

Table A16. Initial decision matrix of Expert 9.

Technologies
Energy

Efficiency
(%)

Response
Time

Lifetime
(Years)

Energy
Density
(Wh/kg)

Self-
Discharge

Losses
(%/Day)

Power
Capital Cost
(USD/kw)

Energy
Capital Cost
(USD/kwh)

Environmental
Dimension

Social
Acceptance

PHS (0.2133|0.5000,
0.7375|0.5000)

(0.5000|0.4670,
0.4500|0.5330)

(0.3000|0.5510,
0.4001|0.4490)

(0.0004|0.6700,
0.9989|0.3300)

(0.0000|0.7000,
1.0000|0.3000)

(0.0539|0.4300,
0.8203|0.5700)

(0.0004|0.7570,
0.9915|0.2430)

(0.9000|0.6670,
0.1000|0.3330)

(0.9000|0.4500,
0.1000|0.5500)

CAES (0.1345|0.6500,
0.7539|0.3500)

(0.7500|0.6700,
0.2000|0.3300)

(0.2000|0.6700,
0.6001|0.3300)

(0.0229|0.4880,
0.9543|0.5120)

(0.0000|0.5320,
1.0000|0.4680)

(0.0359|0.6250,
0.9281|0.3750)

(0.0043|0.6100,
0.9872|0.3900)

(0.9000|0.4610,
0.1000|0.5390)

(0.9000|0.6400,
0.1000|0.3600)

FES (0.2789|0.4300,
0.7047|0.5700)

(0.5000|0.8700,
0.4500|0.1300)

(0.1500|0.8700,
0.8000|0.1300)

(0.0076|0.7300,
0.9771|0.2700)

(0.1773|0.6930,
0.1137|0.3070)

(0.0225|0.5420,
0.9686|0.4580)

(0.0851|0.6930,
0.5744|0.3070)

(0.9000|0.5440,
0.1000|0.4560)

(0.9000|0.4200,
0.1000|0.5800)

Lead–acid (0.2461|0.7820,
0.7375|0.2180)

(0.1000|0.5400,
0.9000|0.4600)

(0.0300|0.7570,
0.8800|0.2430)

(0.0229|0.2800,
0.9619|0.7200)

(0.0009|0.2390,
0.9973|0.7610)

(0.0270|0.4670,
0.9461|0.5330)

(0.0128|0.2390,
0.9574|0.7610)

(0.9000|0.2100,
0.1000|0.7900)

(0.5000|0.4670,
0.4500|0.5330)

Li-ion (0.2133|0.4520,
0.7441|0.5480)

(0.1000|0.6930,
0.9000|0.3070)

(0.0500|0.6100,
0.8500|0.3900)

(0.0572|0.6100,
0.8095|0.3900)

(0.0009|0.5600,
0.9973|0.4400)

(0.1078|0.5600,
0.6406|0.4400)

(0.0511|0.6000,
0.7872|0.4000)

(0.3500|0.4670,
0.6000|0.5330)

(0.7500|0.6670,
0.2000|0.3330)

Hydrogen (0.1148|0.4560,
0.8688|0.5440)

(0.5000|0.2390,
0.4500|0.7610)

(0.0500|0.3100,
0.8000|0.6900)

(0.6097|0.5600,
0.2379|0.4400)

(0.0044|0.5440,
0.9823|0.4560)

(0.0449|0.5490,
0.1016|0.4510)

(0.0002|0.5030,
0.9987|0.4970)

(0.7500|0.4900,
0.2000|0.5100)

(0.5000|0.8700,
0.4500|0.1300)

Super-
capacitors

(0.2789|0.6460,
0.6785|0.3540)

(0.3500|0.3180,
0.6000|0.6820)

(0.1000|0.2700,
0.8000|0.7300)

(0.0001|0.5490,
0.9886|0.4510)

(0.1773|0.8400,
0.6455|0.1600)

(0.0090|0.8300,
0.9730|0.1700)

(0.0255|0.8200,
0.8298|0.1800)

(0.3500|0.8300,
0.6000|0.1700)

(0.5000|0.5400,
0.4500|0.4600)

SMES (0.2953|0.5000,
0.6883|0.5000)

(0.3500|0.4150,
0.6000|0.5850)

(0.2000|0.2400,
0.7000|0.7600)

(0.0004|0.8300,
0.9962|0.1700)

(0.0886|0.5420,
0.8671|0.4580)

(0.0180|0.8820,
0.9730|0.1180)

(0.0851|0.4220,
0.1488|0.5780)

(0.9000|0.8500,
0.1000|0.1500)

(0.5000|0.7000,
0.4500|0.3000)

Thermal
(TES)

(0.0459|0.2190,
0.9409|0.7810)

(0.7500|0.4500,
0.2000|0.5500)

(0.0500|0.1700,
0.8500|0.8300)

(0.0229|0.5000,
0.9543|0.5000)

(0.0004|0.4670,
0.9911|0.5330)

(0.0090|0.3050,
0.9641|0.6950)

(0.0003|0.5990,
0.9889|0.4010)

(0.3500|0.3400,
0.6000|0.6600)

(0.5000|0.3450,
0.4500|0.6550)
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Table A17. Decision basic data of Expert 10.

Technologies
Energy

Efficiency
(%)

Response
Time

Lifetime
(Years)

Energy
Density
Wh/kg

Self-
Discharge

Losses
(%/Day)

Power
Capital Cost
(USD/kw)

Energy
Capital Cost
(USD/kwh)

Environmental
Dimension

Social
Acceptance

PHS (65, 75) Medium (30, 60) (0.5, 1.5) (0.0001,
0.0001) (600, 2000) (5, 100) Very high Very high

CAES (41, 75) Long (20, 40) (30, 60) (0.0001,
0.0001) (400, 800) (50, 150) Very high Very high

FES (80, 90) Medium (15, 20) (5, 130) (20, 100) (250, 350) (1000, 5000) Very high Very high
Lead–acid (75, 80) Very short (3, 12) (30, 50) (0.1, 0.3) (300, 600) (150, 500) Very high Medium

Li-ion (65, 75) Very short (5, 15) (75, 200) (0.1, 0.3) (1200, 4000) (600, 2500) Low High
Hydrogen (35, 40) Medium (5, 20) (800, 1000) (0.5, 2) (500, 10,000) (2, 15) High Medium

Super-
capacitors (85, 98) Short (10, 20) (0.1, 15) (20, 40) (100, 300) (300, 2000) Low Medium

SMES (90, 95) Short (20, 30) (0.5, 5) (10, 15) (200, 300) (1000,
10,000) Very high Medium

Thermal
(TES) (14, 18) Long (5, 15) (30, 60) (0.05, 1) (100, 400) (3, 130) Low Medium

Table A18. Initial decision matrix of Expert 10.

Technologies
Energy

Efficiency
(%)

Response
Time

Lifetime
(Years)

Energy
Density
(Wh/kg)

Self-
Discharge

Losses
(%/Day)

Power
Capital Cost
(USD/kw)

Energy
Capital Cost
(USD/kwh)

Environmental
Dimension

Social
Acceptance

PHS (0.2157|0.5400,
0.7511|0.4600)

(0.5000|0.4500,
0.4500|0.5500)

(0.3000|0.6930,
0.4001|0.3070)

(0.0004|0.4880,
0.9989|0.5120)

(0.0000|0.8700,
1.0000|0.1300)

(0.0539|0.6400,
0.8203|0.3600)

(0.0004|0.6400,
0.9915|0.3600)

(0.9000|0.7200,
0.1000|0.2800)

(0.9000|0.3200,
0.1000|0.6800)

CAES (0.1360|0.3940,
0.7511|0.6060)

(0.7500|0.4900,
0.2000|0.5100)

(0.2000|0.2700,
0.6001|0.7300)

(0.0229|0.3300,
0.9542|0.6700)

(0.0000|0.5400,
1.0000|0.4600)

(0.0359|0.3300,
0.9281|0.6700)

(0.0043|0.5630,
0.9872|0.4370)

(0.9000|0.5630,
0.1000|0.4370)

(0.9000|0.4800,
0.1000|0.5200)

FES (0.2654|0.3200,
0.7014|0.6800)

(0.5000|0.7200,
0.4500|0.2800)

(0.1500|0.7200,
0.8000|0.2800)

(0.0038|0.5470,
0.9007|0.4530)

(0.1773|0.7340,
0.1137|0.2660)

(0.0225|0.5470,
0.9686|0.4530)

(0.0851|0.3460,
0.5744|0.6540)

(0.9000|0.2390,
0.1000|0.7610)

(0.9000|0.6250,
0.1000|0.3750)

Lead–acid (0.2489|0.4800,
0.7346|0.5200)

(0.1000|0.4800,
0.9000|0.5200)

(0.0300|0.5510,
0.8800|0.4490)

(0.0229|0.5510,
0.9618|0.4490)

(0.0009|0.7200,
0.9973|0.2800)

(0.0270|0.4230,
0.9461|0.5770)

(0.0128|0.6400,
0.9574|0.3600)

(0.9000|0.6400,
0.1000|0.3600)

(0.5000|0.4700,
0.4500|0.5300)

Li-ion (0.2157|0.2700,
0.7511|0.7300)

(0.1000|0.2390,
0.9000|0.7610)

(0.0500|0.3200,
0.8500|0.6800)

(0.0573|0.7800,
0.8473|0.2200)

(0.0009|0.6930,
0.9973|0.3070)

(0.1078|0.3300,
0.6406|0.6700)

(0.0511|0.4880,
0.7872|0.5120)

(0.3500|0.5600,
0.6000|0.4400)

(0.7500|0.6700,
0.2000|0.3300)

Hydrogen (0.1161|0.3460,
0.8673|0.6540)

(0.5000|0.3460,
0.4500|0.6540)

(0.0500|0.4800,
0.8000|0.5200)

(0.6108|0.4500,
0.2364|0.5500)

(0.0044|0.2390,
0.9823|0.7610)

(0.0449|0.2000,
0.1016|0.8000)

(0.0002|0.3300,
0.9987|0.6700)

(0.7500|0.5490,
0.2000|0.4510)

(0.5000|0.6930,
0.4500|0.3070)

Super-
capacitors

(0.2820|0.6400,
0.6748|0.3600)

(0.3500|0.3200,
0.6000|0.6800)

(0.1000|0.6250,
0.8000|0.3750)

(0.0001|0.3570,
0.9885|0.6430)

(0.1773|0.3570,
0.6455|0.6430)

(0.0090|0.5600,
0.9730|0.4400)

(0.0255|0.5400,
0.8298|0.4600)

(0.3500|0.8300,
0.6000|0.1700)

(0.5000|0.5700,
0.4500|0.4300)

SMES (0.2986|0.4600,
0.6848|0.5400)

(0.3500|0.1900,
0.6000|0.8100)

(0.2000|0.5420,
0.7000|0.4580)

(0.0004|0.2890,
0.9962|0.7110)

(0.0886|0.2890,
0.8671|0.7110)

(0.0180|0.5490,
0.9730|0.4510)

(0.0851|0.4230,
0.1488|0.5770)

(0.9000|0.8590,
0.1000|0.1410)

(0.5000|0.6420,
0.4500|0.3580)

Thermal
(TES)

(0.0465|0.6340,
0.9403|0.3660)

(0.7500|0.4600,
0.2000|0.5400)

(0.0500|0.4670,
0.8500|0.5330)

(0.0229|0.3070,
0.9542|0.6930)

(0.0004|0.2310,
0.9911|0.7690)

(0.0090|0.4900,
0.9641|0.5100)

(0.0003|0.3300,
0.9889|0.6700)

(0.3500|0.4300,
0.6000|0.5700)

(0.5000|0.3700,
0.4500|0.6300)

Appendix B

The average value matrices for each expert are detailed in Table A19 in Appendix B.

Table A19. The average value matrices for each expert.

Experts
Energy

Efficiency
(%)

Response
Time

Lifetime
(Years)

Energy
Density
Wh/kg

Self-
Discharge

Losses
(%/Day)

Power
Capital Cost
(USD/kw)

Energy
Capital Cost
(USD/kwh)

Environmental
Dimension

Social
Acceptance

Expert 1 7.96590 9.27802 8.99335 8.73240 9.00472 9.94291 8.26127 11.55204 6.98992
Expert 2 7.88640 9.19959 6.41355 7.90159 9.69595 8.88834 7.26663 9.10935 7.42257
Expert 3 5.94775 9.32811 5.94226 8.78331 8.94545 9.94798 8.04049 11.67451 6.41061
Expert 4 7.68124 11.05909 6.97667 8.13294 10.96102 9.33751 8.26127 11.55204 8.37422
Expert 5 5.34921 10.67288 7.62917 9.38572 9.30615 6.78349 9.58478 11.08139 5.63756
Expert 6 7.46296 9.65876 5.83586 9.77153 7.59372 6.46601 6.49173 10.43268 7.03724
Expert 7 7.41159 7.36556 8.28056 11.98176 8.53986 9.47546 8.26805 9.58418 6.50334
Expert 8 3.69444 8.48522 9.58655 7.36255 8.07166 9.96647 8.32638 10.94746 7.88742
Expert 9 7.27922 9.41622 9.91031 9.09937 9.50954 8.92427 8.50127 11.27877 7.04607

Expert 10 5.47968 10.61353 6.43756 9.57527 11.49334 6.19716 7.00807 11.09520 6.82443
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Appendix C

The weighted initial decision matrix is shown in Table A20 in Appendix C.

Table A20. The weighted initial decision matrix.

Technologies
Energy

Efficiency
(%)

Response
Time

Lifetime
(Years)

Energy
Density
(Wh/kg)

Self-
Discharge

Losses
(%/Day)

Power
Capital Cost
(USD/kw)

Energy
Capital Cost
(USD/kwh)

Environmental
Dimension

Social
Acceptance

PHS (0.2197|0.0051,
0.7472|0.0001)

(0.5000|0.0005,
0.4500|0.0015)

(0.3010|0.0155,
0.3981|0.0000)

(0.0004|0.0064,
0.9989|0.0000)

(0.0000|0.0064,
1.0000|0.0000)

(0.0545|0.0012,
0.7976|0.0003)

(0.0004|0.0171,
0.9888|0.0000)

(0.9000|0.0109,
0.1000|0.0000)

(0.9000|0.0005,
0.1000|0.0012)

CAES (0.1355|0.0010,
0.7522|0.0008)

(0.7500|0.0053,
0.2000|0.0001)

(0.2006|0.0011,
0.5987|0.0004)

(0.0229|0.0005,
0.9543|0.0009)

(0.0000|0.0027,
1.0000|0.0001)

(0.0357|0.0053,
0.9286|0.0000)

(0.0043|0.0018,
0.9872|0.0004)

(0.9000|0.0002,
0.1000|0.0017)

(0.9000|0.0060,
0.1000|0.0001)

FES (0.2704|0.0011,
0.7042|0.0002)

(0.5000|0.0053,
0.4500|0.0000)

(0.1505|0.0006,
0.7994|0.0003)

(0.0061|0.0008,
0.9524|0.0001)

(0.1773|0.0004,
0.1137|0.0005)

(0.0223|0.0005,
0.9688|0.0012)

(0.0851|0.0086,
0.5744|0.0000)

(0.9000|0.0002,
0.1000|0.0027)

(0.9000|0.0011,
0.1000|0.0006)

Lead–acid (0.2462|0.0023,
0.7357|0.0001)

(0.1000|0.0079,
0.9000|0.0000)

(0.0301|0.0038,
0.8796|0.0001)

(0.0229|0.0009,
0.9619|0.0003)

(0.0009|0.0027,
0.9973|0.0001)

(0.0268|0.0023,
0.9464|0.0002)

(0.0128|0.0000,
0.9574|0.0052)

(0.9000|0.0000,
0.1000|0.0044)

(0.5000|0.0003,
0.4500|0.0024)

Li-ion (0.2148|0.0003,
0.7482|0.0009)

(0.1000|0.0015,
0.9000|0.0002)

(0.0502|0.0038,
0.8495|0.0001)

(0.0571|0.0002,
0.8133|0.0009)

(0.0009|0.0005,
0.9973|0.0009)

(0.1072|0.0001,
0.6428|0.0027)

(0.0511|0.0051,
0.7872|0.0001)

(0.3500|0.0009,
0.6000|0.0003)

(0.7500|0.0013,
0.2000|0.0002)

Hydrogen (0.1157|0.0004,
0.8679|0.0012)

(0.5000|0.0001,
0.4500|0.0021)

(0.0502|0.0002,
0.8240|0.0019)

(0.6092|0.0003,
0.2385|0.0016)

(0.0044|0.0002,
0.9823|0.0014)

(0.0447|0.0034,
0.1060|0.0001)

(0.0002|0.0017,
0.9987|0.0004)

(0.7500|0.0013,
0.2000|0.0007)

(0.5000|0.0355,
0.4500|0.0000)

Super-
capacitors

(0.2809|0.0130,
0.6762|0.0000)

(0.3500|0.0001,
0.6000|0.0009)

(0.1003|0.0012,
0.7944|0.0002)

(0.0001|0.0038,
0.9886|0.0001)

(0.1773|0.0010,
0.6455|0.0001)

(0.0089|0.0009,
0.9732|0.0002)

(0.0255|0.0145,
0.8298|0.0000)

(0.3500|0.0514,
0.6000|0.0000)

(0.5000|0.0030,
0.4500|0.0001)

SMES (0.2974|0.0015,
0.6861|0.0002)

(0.3500|0.0000,
0.6000|0.0051)

(0.2006|0.0000,
0.6991|0.0045)

(0.0004|0.0005,
0.9962|0.0003)

(0.0886|0.0012,
0.8671|0.0002)

(0.0179|0.0815,
0.9732|0.0000)

(0.0851|0.0039,
0.1489|0.0001)

(0.9000|0.0874,
0.1000|0.0000)

(0.5000|0.0386,
0.4500|0.0000)

Thermal
(TES)

(0.0463|0.0001,
0.9405|0.0032)

(0.7500|0.0011,
0.2000|0.0003)

(0.0502|0.0000,
0.8495|0.0010)

(0.0229|0.0002,
0.9543|0.0016)

(0.0004|0.0000,
0.9911|0.0064)

(0.0089|0.0000,
0.9643|0.0041)

(0.0003|0.0099,
0.9889|0.0000)

(0.3500|0.0003,
0.6000|0.0016)

(0.5000|0.0002,
0.4500|0.0019)

Appendix D

The expert’s evaluation information in Scenario 1 to Scenario 3 are shown in Table A21 to Table A23 in Appendix D.

Table A21. The expert’s evaluation information in Scenario 1.

Experts
Energy

Efficiency
(%)

Response
Time

Lifetime
(Years)

Energy
Density
(Wh/kg)

Self-
Discharge

Losses
(%/Day)

Power
Capital Cost
(USD/kw)

Energy
Capital Cost
(USD/kwh)

Environmental
Dimension

Social
Acceptance

Expert 1 (55, 80) Short (12, 35) (40, 70) (5, 15) (100, 700) (100, 300) Low Very high
Expert 2 (55, 75) Short (20, 40) (20, 105) (1, 10) (300, 1000) (200, 650) Low Medium
Expert 3 (50, 85) Very short (15, 30) (30, 80) (0.5, 12) (300, 600) (600, 5000) Medium Very high
Expert 4 (60, 80) Medium (20, 30) (15, 60) (0.2, 5) (150, 600) (250, 1000) Low High
Expert 5 (75, 82) Very short (10, 50) (25, 120) (2, 25) (100, 500) (300, 550) Very low High
Expert 6 (44, 85) Short (20, 60) (25, 60) (2, 50) (200, 600) (400, 1000) Low Medium

Expert 7 (55, 90) Very short (40, 50) (15, 80) (0.1, 15) (250, 500) (1000,
10,000) Very low High

Expert 8 (62, 90) Short (20, 35) (40, 85) (10, 25) (600, 1000) (250, 1000) Medium High
Expert 9 (40, 80) Very short (10, 30) (35, 80) (0.5, 20) (500, 800) (350, 1000) Medium High
Expert 10 (70, 80) Short (10, 30) (45, 65) (55, 85) (120, 650) (500, 800) Very low Very high

Table A22. The expert’s evaluation information in Scenario 2.

Experts
Energy

Efficiency
(%)

Response
Time

Lifetime
(Years)

Energy
Density
(Wh/kg)

Self-
Discharge

Losses
(%/Day)

Power
Capital Cost
(USD/kw)

Energy
Capital Cost
(USD/kwh)

Environmental
Dimension

Social
Acceptance

Expert 1 (65, 80) Very short (15, 36) (50, 80) (5, 15) (300, 700) (150, 300) Low Very high
Expert 2 (65, 75) Short (25, 40) (40, 105) (2, 10) (400, 1000) (250, 650) Low Medium
Expert 3 (60, 85) Very short (18, 30) (50, 80) (0.5, 20) (350, 650) (800, 5000) Medium Very high
Expert 4 (70, 80) Medium (20, 30) (35, 60) (0.2, 10) (250, 700) (250, 1000) Low High
Expert 5 (75, 90) Very short (20, 50) (45, 120) (5, 25) (150, 600) (400, 550) Very low High
Expert 6 (60, 85) Short (35, 60) (35, 60) (8, 55) (300, 600) (400, 1000) Low Medium

Expert 7 (70, 90) Very short (40, 55) (55, 88) (0.1, 20) (350, 550) (1000,
10,000) Very low High

Expert 8 (66, 90) Short (20, 45) (40, 95) (10, 25) (650, 1100) (350, 1100) Medium Medium
Expert 9 (60, 80) Very short (10, 30) (40, 82) (0.5, 25) (500, 850) (450, 1100) Medium High
Expert 10 (77, 80) Short (25, 30) (50, 70) (60, 85) (120, 750) (500, 850) Very low Very high
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Table A23. The expert’s evaluation information in Scenario 3.

Experts
Energy

Efficiency
(%)

Response
Time

Lifetime
(Years)

Energy
Density
(Wh/kg)

Self-
Discharge

Losses
(%/day)

Power
Capital Cost
(USD/kw)

Energy
Capital Cost
(USD/kwh)

Environmental
Dimension

Social
Acceptance

Expert 1 (50, 70) Short (8, 30) (40, 65) (1, 5) (100, 300) (50, 200) Low Very high
Expert 2 (50, 70) Medium (15, 20) (10, 100) (0.5, 5) (300, 800) (200, 350) Very low High
Expert 3 (45, 80) Very short (12, 30) (15, 75) (0.1, 8) (100, 500) (500, 3000) Very low Very high
Expert 4 (60, 80) Medium (12, 35) (15, 45) (0.1, 5) (150, 450) (150, 400) Low High
Expert 5 (70, 75) Medium (12, 40) (25, 110) (0.5, 10) (50, 250) (300, 400) Very low Medium
Expert 6 (40, 75) Short (25, 50) (20, 30) (0.1, 25) (200, 300) (100, 1000) Low High
Expert 7 (50, 85) Medium (15, 50) (10, 50) (0.1, 10) (200, 400) (1000, 5000) Very low High
Expert 8 (55, 80) Medium (10, 30) (45, 80) (9, 15) (500, 1000) (150, 600) Low Medium
Expert 9 (35, 65) Very short (5, 15) (30, 80) (0.5, 10) (400, 600) (350, 600) Medium High
Expert 10 (60, 70) Short (10, 35) (45, 65) (25, 45) (80, 300) (200, 600) Very low Very high
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