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Abstract: Due to the internal dynamics of the modular multilevel converter (MMC), the coupling
between the positive and negative sequences in impedance, which is defined as frequency coupling,
inherently exists in MMC. Ignoring the frequency coupling of the MMC impedance model may
lead to inaccurate stability assessment, and thus the multi-input multi-output (MIMO) impedance
model has been developed to consider the frequency coupling effect. However, the generalized
Nyquist criterion (GNC), which is used for the stability analysis of an MIMO model, is more
complicated than the stability analysis method applied on single-input-single-output (SISO) models.
Meanwhile, it is not always the case that the SISO model fails in the stability assessment. Therefore,
the conditions when the MIMO impedance model needs to be considered in the stability analysis
of an MMC system should be analyzed. This paper quantitatively analyzes the effect of frequency
coupling on the stability analysis of grid-connected MMC, and clarifies the frequency range and grid
conditions that the coupling effect required to be considered in the stability analysis. Based on the
quantitative relations between the frequency coupling and the stability analysis of the grid-connected
MMC system, a simple and accurate stability analysis method for the grid-connected MMC system
is proposed, where the MIMO impedance model is applied when the frequency coupling has a
significant effect and the SISO impedance model is used if the frequency coupling is insignificant.

Keywords: modular multilevel converters (MMC); impedance; frequency coupling; stability

1. Introduction

Due to the modularity, scalability, high efficiency, and superior harmonic performance [1–3],
modular multilevel converters (MMCs) are increasingly used in high-voltage/high-power appli-
cations [4,5], e.g., high-voltage direct current (HVDC) transmission and static synchronous
compensation (STATCOM). However, the resonant interactions among the MMCs and
electrical systems may result in harmonic instability in these systems [6]. When MMC is
connected to a weak grid, the stability margin of the system is significantly reduced, which
can easily lead to resonance problems [7,8]. The instability issues in the MMC system have
been reported in [9,10]. It is essential that the stability of the grid-connected MMC system
is considered.

The impedance-based analysis method is an effective method for assessing the sys-
tem stability [11], and admittance/impedance modeling is a prerequisite to applying the
analysis [12,13]. Since the MMC has become the state-of-the-art technology for high-power
applications, the admittance/impedance modeling of MMC has attracted extensive re-
search. The impedance model of an MMC connected to a wind farm is developed in [14],
where the internal harmonics of an MMC are included based on the harmonic state-space
(HSS) modeling method. The impedance model of a grid-connected MMC is derived
in [15,16], where the impedance shaping effect produced by different control schemes was
fully elaborated. In the above studies, the admittance/impedance of MMC is seen as the
single-input single-output (SISO) form. When the symmetric control is adopted in the
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two-level voltage source converter (VSC), the decoupled SISO admittance/impedance is
considered reasonable in the VSC [17,18]. However, different from the VSC, the coupling
between the positive and negative sequences in impedance, i.e., frequency coupling, exists
in the MMC even under the symmetric control. As concluded in [19,20], the frequency
coupling has an impact on the stability assessment of grid-connected VSC at low frequency.
Thus, the frequency coupling of MMC admittance should be considered in the stability
assessment of a grid-connected MMC system.

Recently, the frequency coupling of MMC admittance/impedance has received con-
siderable attention [21–29]. Two-order MMC impedance matrixes are proposed in [21–26],
where the off-diagonal elements in the matrix capture the frequency coupling in MMC
impedance. A three-order impedance model of MMC is derived in [27], and the impedance
model includes the coupling among the positive-sequence system, the negative-sequence
system, and the DC system. The authors of [28,29] proposed an equivalent SISO impedance
model of grid-connected MMC considering its frequency coupling, and the model shows
that the frequency coupling makes the MMC impedance be coupled with the grid impedance.

Previous research has shown that ignoring the frequency coupling may lead to in-
accurate stability assessment of the interconnection systems [20,21]. Although the SISO
impedance model provides simplicity and convenience for the stability analysis, some cases
exist where the SISO impedance model leads to the wrong stability assessment [30]. To
include the frequency coupling effect, [21–27] apply the MIMO impedance model of MMC
in the stability analysis of MMC-HVDC, where the generalized Nyquist criterion (GNC) is
inevitably introduced in the stability assessment. However, the stability assessment applied
by the GNC is more complicated than the SISO analysis tool. Meanwhile, it is not always
the case that the SISO model fails in the stability assessment. Therefore, the condition that
the frequency coupling must be considered in the stability analysis of grid-connected MMC
deserves to be studied.

This paper quantitatively analyzes the effect of frequency coupling on the stability
analysis of grid-connected MMC. Based on the amplitude comparison between the sequence
impedance and coupling term of the MMC under different control schemes, the frequency
range that the coupling should be considered in the stability analysis is given. Furthermore,
following the stability assessment procedure of the grid-connected MMC system, the grid
conditions when the coupling effect needs to be considered in the stability analysis are defined.
Based on the quantitative relations between the frequency coupling and the stability analysis
of the grid-connected MMC system, a simple stability analysis method for the grid-connected
MMC is proposed without losing accuracy. Specifically, in the cases where the coupling needs
to be considered, the stability of MMC should be assessed by the GNC using the MIMO
model, while for the other cases, the SISO model can be used.

The paper is organized as follows: The system model of the grid-connected MMC is
given in Section 2. Section 3 derives the admittance matrix of MMC considering the frequency
coupling, which is validated by experimental measurements. In Section 4, the coupling effect
on the stability analysis of grid-connected MMC is analyzed. Section 5 draws the conclusions.

2. System Model

The topology of a three-phase MMC is indicated in Figure 1. Each phase of MMC
includes an upper arm and a lower arm, and each arm consists of an N submodule (SM)
and arm inductor. Each SM constitutes an IGBT half-bridge and a capacitor CSM.

The MMC is modeled in one phase, for example, which makes the subscript denoting
the phase dropped when not needed. The phase current ig and circulating current ic are
defined as: {

ig(t) = iu(t)− il(t)
ic(t) = (iu(t) + il(t))/2

(1)

where iu(t) and il(t) are the upper and lower arm currents.
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Figure 1. Topology of the modular multilevel converter.

Applying Kirchhoff’s law, the current dynamics can be obtained as:

e(t) + Larm
diu(t)

dt
+ Rarmiu(t) + vu(t) = vdc/2 (2)

e(t)− Larm
diu(t)

dt
− Rarmiu(t)− vl(t) = −vdc/2 (3)

where vu(t) and vl(t) are the upper and lower arm voltage, e(t) is the point-of-common-
coupling (PCC) voltage, and vdc is the DC-bus voltage.

This paper adopts the time-averaged model of MMC, where the switching operations
of the SMs are neglected and the SM capacitor voltages are assumed to be balanced [31].
Thus, the individual SMs dynamics in the arm can be neglected. Based on the averaged
model, the arm voltages vu,l (t) and the sum capacitor voltages vΣ

Cu,l(t) are obtained as:

vu,l(t) = mu,l(t)vΣ
Cu,l(t) (4)

Carm
dvΣ

Cu,l(t)
dt

= mu,l(t)iu,l(t) (5)

where Carm = CSM/N is the arm equivalent capacitance, and mu,l(t) are the modulation
indices generated by the control scheme of MMC, expressed as:{

mu(t) = (vdc/2− vs(t)− vc(t))/vdc
ml(t) = (vdc/2 + vs(t)− vc(t))/vdc

(6)

where vs(t) and vc(t) are the voltages from the phase current controller and circulating
current controller, respectively.
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Substituting Equations (1) and (4) into Equations (2) and (3) yields:

2e(t) + Rarmig(t) + Larm
dig(t)

dt
+ mu(t)v∑

Cu(t)−ml(t)v
∑
Cl(t) = 0 (7)

2Rarmic(t) + 2Larm
dic(t)

dt
+ mu(t)v∑

Cu(t) + ml(t)v
∑
Cl(t) = vdc (8)

Equations (5), (7) and (8) represent the dynamic model of MMC.
Figure 2 shows the control scheme of the grid-connected MMC. The DC-bus voltage

controller adopts the proportional-integral (PI) compensator to keep the DC-bus voltage as
a constant and generate the reference current for the current control [32], which is shown
in Figure 2a; kpd and kid are the proportional and integral coefficients of the dc voltage
controller; the q-axis reference current is set to zero for unity power factor operation. The
phase current controller adopts the PI compensator to properly track the reference currents,
as illustrated in Figure 2b; kpi and kii are the proportional and integral coefficients of the
phase current controller. The circulating current suppression controller (CCSC) using the
proportional resonant (PR) controller is shown in Figure 2c, which suppresses the 2nd
harmonics in the circulating current [33]; kpc and krc are the proportional and resonant
coefficients of the CCSC. The phase-locked loop (PLL) synchronizes the MMC with the
grid, as shown in Figure 2d; the proportional and integral coefficients of the PLL are kppll
and kipll. The voltages driving the grid current and circulating current (us and uc) are used
for computing the modulation indices.
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3. Admittance Modeling of MMC Considering Frequency Coupling
3.1. Small-Signal Model of MMC

The AC-side admittance of MMC is obtained by injecting a perturbation voltage ep(t)
at an arbitrary perturbation frequency fp in the PCC voltages at a fundamental frequency
f 1, and calculating the corresponding current. The perturbation voltage is defined as:

ep(t) = Ep cos
(
2π fpt

)
(9)

where Ep is the magnitude of the perturbation voltage.
Based on the harmonic linearization, the small-signal equations of the MMC in the

time-domain are given as:

2ep(t) + Rarmigp(t) + Larm
digp(t)

dt + mup(t)v∑
Cu0(t)

+mu0(t)v∑
Cup(t)−mlp(t)v

∑
Cl0(t)−ml0(t)v

∑
Clp(t) = 0

(10)

2Rarmicp(t) + 2Larm
dicp(t)

dt + mup(t)v∑
Cu0(t)

+mu0(t)v∑
Cup(t) + mlp(t)v

∑
Cl0(t) + ml0(t)v

∑
Clp(t) = 0

(11)

Carm
dvΣ

Cup(t)

dt
= mup(t)iu0(t) + mu0(t)iup(t) (12)

Carm
dvΣ

Clp(t)

dt
= mlp(t)il0(t) + ml0(t)ilp(t) (13)

where the subscript “p” indicates the small-signal variable and the subscript “0” represents
the variable at the steady state.

3.2. Frequency Coupling Analysis of MMC Admittance

It is known that the positive-sequence perturbation voltage at fp will lead to the pertur-
bation current at the same frequency in the power converter. As for MMC, the perturbation
current at fp will generate perturbation capacitor fluctuation voltage v∑

Cp at f 1 ± fp due to
the multiplication between the modulation index m1 at f 1 and the perturbation current at fp,
as shown in Equations (12) and (13). Subsequently, the multiplication of v∑

Cp at f 1 ± fp with
m1 at f 1 leads to the perturbation arm voltages vp at fp and fp ± 2f 1. The perturbation arm
voltages finally result in the perturbation arm currents at fp and fp ± 2f 1. Similarly, the per-
turbation modulation index at fp caused by the perturbation current will also generate the
perturbation currents at fp and fp ± 2f 1. Considering the delay fundamental cycle caused by
perturbation voltage ep, the perturbation arm current at fp + 2f 1 is a zero-sequence current,
which will not appear in the three-phase three-line MMC system.

Based on the analysis above, it can be observed that the perturbation voltage at fp will
lead to the perturbation currents at fp and fp − 2f 1 for the MMC even under the symmetric
control. The response of a linear and decoupled system contains only one component with
the same frequency corresponding to the perturbation voltage. The additional component
indicates the frequency coupling inherently exists in the MMC admittance, where the
root cause is the capacitor voltage harmonics in MMC. The illustration of the frequency
coupling is shown in Figure 3.
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Figure 3. Illustration of the frequency coupling in MMC.

The sequence of the perturbation currents in MMC is shown in Figure 4. For the
positive-sequence perturbation voltage at fp, the corresponding current at fp is the positive-
sequence component. The perturbation current at fp − 2f 1 is yielded due to the capacitor
fluctuation voltage in MMC. As can be seen from Figure 4, when the frequency fp is above
2f 1, the perturbation current at fp − 2f 1 is the negative-sequence component. While, if fp
is below 2f 1, the perturbation currents at fp − 2f 1 is the negative-sequence component at
negative frequency, which is equal to the positive-sequence current at positive frequency.
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It should be noted that the perturbation voltage at fp will also interact with the state
variables at nf 1 (n ≥ 3) and generate the perturbation currents at fp ± nf 1. However, the
amplitude of the perturbation currents is gradually decreased as the frequency increases.
As shown in Figure 5, the amplitude of the harmonic currents at fp ± nf 1 (n ≥ 3) is much
smaller than that of the harmonic current at fp, which can be ignored.
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3.3. Admittance Modeling

Due to the MMC internal dynamics, the multiple harmonics must be considered in the
admittance modeling of MMC. There are several frequency-domain methods to derive the
MMC admittance model (e.g., multiple-harmonic linearization [16,34], HSS modeling [14],
harmonic transfer function [23], etc.). The essences of these methods are identical, which
can simultaneously represent multiple frequency responses. Similar to these methods, the
frequency-domain model of MMC which contains multiple perturbation components at
ωp, ωp ± ω1, ωp ± 2ω1,. . . , ωp ± nω1, is used in this paper.

The perturbation state variables in the time-domain can be expressed in the form of
Fourier series as below:

xp(t) = ∑
n∈Z

Xpnej(ωp+nω1)t (14)

where Xpn represents the Fourier coefficient corresponding to the frequency of ωp ± nω1.
Then, based on the Fourier series and harmonic balance theory [35], the time-domain

model of the MMC in Equations (10)–(13) can be transformed to the frequency-domain
model, which is expressed as:

sXp =
(
Ap −Np

)
Xp + BpUp (15)

where:
Xp =

[
Xp−n, · · · , Xp−1, Xp0, Xp1, · · · , Xpn

]T (16)

Xp±n =
[

Igp±n, Icp±n, VΣ
Cup±n, VΣ

Clp±n

]T
(17)

Up =
[
Up−n, · · · , Up−1, Up0, Up1, · · · , Upn

]T (18)

Up±n =
[

Mup±n, Mpl±n, Ep±n

]T
(19)

Ap and Bp are given in the Appendix A.
It should be noted that the perturbation modulation Mup±n and Mlp±n is related to

the control dynamics. Thus, the control model should be obtained to get the admittance
model. The detailed derivations of the control modeling are given in Appendix B.
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Based on the control modeling in Appendix B, the perturbation modulation indices
are expressed as: {

mup =
(
Hg + Q

)
igp + Hcicp + (P + T)ep

mlp = −
(
Hg + Q

)
igp + Hcicp − (P + T)ep

(20)

Substituting the control model under positive-sequence perturbation voltage into
the small-signal model in the frequency-domain, the perturbation state variables can be
calculated by:

Xp =
(
Ap −Np

)−1BpUp (21)

Extracting the perturbation currents at fp and fp − 2f 1 from the perturbation state
variables, the positive-sequence admittance and the coupling term of MMC can be calculated as:

Yp(s) = −Igp0/Ep, Cp−2(s− 2jω1) = −Igp−2/Ep (22)

Similarly, the negative-sequence admittance and the coupling term of MMC can be
calculated by substituting the control model under negative-sequence voltage perturbation
into the small-signal model, which is obtained as:

Yn(s− 2jω1) = −Igp−2/Ep−2, Cn+2(s) = −Igp0/Ep−2 (23)

where Ep−2 is the complex phasors of the negative-sequence perturbation voltage at fp −
2f 1, and Igp0 is the complex phasors of the perturbation current at fp.

Considering the frequency coupling, the admittance matrix of MMC can be defined as:

YMMC(s) =
[

Yp(s) Cn+2(s)
Cp−2(s− 2jω1) Yn(s− 2jω1)

]
(24)

where the diagonal elements represent the sequence admittance, whereas the off-diagonal
elements represent the coupling terms.

3.4. Experimental Verification

To validate the MMC admittance model, the admittance measurements are carried out
on a down-scaled MMC prototype. The main parameters of MMC are listed in Table 1. The
configuration and photograph of the experimental setup for measuring the MMC admit-
tance are shown in Figures 6 and 7. The grid simulator, acting as the grid voltage source and
the perturbation voltage injection source, injects the perturbation voltages ranging from 1
to 1000 Hz in one-phase (phase b) voltage. Moreover, in order to acquire the components
of the admittance matrix in Equation (24), two linearly independent perturbation voltages
at fp and fp − 2f 1 are required to gain enough information [36]. The perturbation voltage
ep1 = Ep cos

(
2π fp − 2π/3

)
is firstly injected while the perturbation voltage at fp − 2f 1 is

equal to zero. Similarly, a second perturbation sequence is implemented by injecting the
perturbation voltage ep2 = Ep cos

[
2π
(

fp − 2 f1
)
+ 2π/3

]
with the perturbation voltage at

fp being zero. Then, the perturbation voltage and resulting current are extracted from the
measured voltage and current by FFT. When the perturbation voltage at fp is superposed to
the voltage at f 1, the response currents at fp and fp − 2f 1 are only caused by ep1(fp) and the
admittance Yp and Cp−2 are identified as:

Yp(s) = −
igb
(

fp
)

eb
(

fp
) ∣∣∣∣∣

ep2( fp−2 f1)=0

, Cp−2(s) = −
igb
(

fp − 2 f1
)

eb
(

fp
) ∣∣∣∣∣

ep2( fp−2 f1)=0

(25)
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Table 1. Parameters of MMC in the downscaled prototype.

Symbol Description Value

Vs Line-to-line grid voltage (RMS) 380 V
Larm Arm inductance 5 mH
vdc DC-bus voltage of MMC 800 V
N Modules per arm 2

CSM Submodule capacitance 1 mF
f 1 Fundamental frequency 50 Hz

kpi/kii Phase current controller 0.5/5
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Similarly, when the perturbation voltage at fp − 2f 1 is injected, the admittance Yn,
Cn+2 can also be identified as:

Yn = −
igb
(

fp − 2 f1
)

eb
(

fp − 2 f1
) ∣∣∣∣∣

ep1( fp)=0

, Cn+2 = −
igb
(

fp
)

eb
(

fp − 2 f1
) ∣∣∣∣∣

ep1( fp)=0

(26)

Note that if fp is below 2f 1, the perturbation components at fp − 2f 1 is the component
at positive frequency with the opposite phase angle. The frequency and the phase angle of
the perturbation components should be revised; the detailed process of the revision has
been described in [37].
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Figure 8 shows the comparison between the analytical admittance model and the
experimental measurements of the MMC. The sequence analytical admittance models
of MMC are denoted by the blue line, and the red line denotes the coupling terms in
the MMC admittance matrix model. The measured values are denoted by the dots. The
comparison in Figure 8 shows a good agreement between the analytical admittance models
and the experimental measurements. This agreement validates the accuracy of the MMC
admittance model. It should be noted that the magnitude of coupling terms (blue line) is
close to that of sequence admittance (red line) at low frequency. Yet, the magnitudes of
coupling terms are much smaller than that of sequence admittance above 100 Hz, which
indicates the phenomenon of frequency coupling is not obvious at high frequency.
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4. Effect of Frequency Coupling on Stability Analysis of Grid-Connected MMC

Figure 9 shows the small-signal description of the grid-connected MMC system.
Assuming the grid is stable without the MMC, and the MMC is stable when connected
to an ideal grid, the stability of the grid-connected MMC system can be assessed by the
impedance ratio Zg(s)YMMC(s), which should satisfy the Nyquist stability criterion.
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Due to the frequency coupling in the MMC admittance, the generalized Nyquist
criterion (GNC) should be applied to evaluate the system stability [38]. The grid weakness
is distinguished by the short circuit ratio (SCR) as it is an inverse of the grid impedance.
In general, SCR ≥ 3 denotes a strong system; 2 ≤ SCR < 3 denotes a weak system; and
1 ≤ SCR < 2 indicates a very weak system [39,40]. Then, the stability can be examined by
checking the Nyquist plot of Zg(s)YMMC(s), i.e., λ1, λ2, which are obtained as:(

λ1
λ2

)
= det

(
sI − Zg(s)YMMC(s)

)
(27)

where:

Zg(s) =
[

Zg(s)
Zg(s− 2jω1)

]
(28)

Based on Equation (27), it can be concluded that if the coupling terms are ignored in
the stability analysis, a deviation will be generated in the stability assessment, which is
calculated as:

∆λ =
√

Zg(s)Zg(s− 2jω1)Cp(s)Cp−2(s− 2jω1) (29)

According to Equation (29), the deviation ∆λ is proportional to the coupling terms.
As can be seen from Figure 8, the magnitude of coupling terms is close to that of sequence
admittance below 100 Hz, which leads to the relatively high deviation in the stability
assessment. Thus, ignoring the frequency coupling has an influence on the stability
assessment of grid-connected MMC under low frequency.

The effect of frequency coupling on the stability analysis of grid-connected MMCs
can be evaluated following the steps shown in Figure 10. As seen from Figure 10, the SCR
is initialized with 0.1. When the coupling is considered, the critical stability point SCR1
increases with a fixed step during every iteration. The critical stability point SCR2 with
frequency coupling ignored is obtained in a similar way. Thus, if SCR belongs to [SCR1,
SCR2], neglecting the frequency coupling leads to the incorrect stability analysis. If SCR
does not belong to [SCR1, SCR2], the same stability analysis can be obtained, even though the
frequency coupling is not considered. Based on the above analysis, the effect of frequency
coupling on the stability analysis under different grid conditions can be evaluated.
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Figure 10. Flow chart for significance evaluation of frequency coupling.

An example MMC in China is analyzed in this paper to account for the coupling effect
on the system stability analysis. The parameters of MMC are shown in Table 2. Due to the
high power and a large number of submodules in the MMC-HVDC system, the simulation
in MATLAB/Simulink is considered to be an acceptable method to verify the system-level
stability analysis. Starting from the MMC operated with the phase current controller, the
different controller elements are progressively added to analyze the frequency coupling
effect on the stability analysis of the MMCs under different control schemes.

Table 2. Parameters of the practical MMC project.

Symbol Description Value

Vs Line-to-line grid voltage (RMS) 500 kV
Larm Arm inductance 50 mH
vdc DC-bus voltage of MMC ±535 kV
N Modules per arm 250

CSM Submodule capacitance 15 mF
f 1 Fundamental frequency 50 Hz

kpdc/kidc DC voltage controller 0.01/0.3
kpi/kii Phase current controller 0.1/1

kpc/krc
Circulating current suppression

controller 1/10

kppll/kipll PLL 1.2 × 10−4/7 × 10−3

4.1. Case of MMC with Phase Current Controller

The Bode diagrams of the sequence admittance and coupling term of the MMC with
the phase current controller are shown in Figure 11, where only the magnitude of Yp and
Cp−2 are shown. It can be seen that the magnitude of the coupling term is close to that of
the sequence admittance under 20 Hz, which indicates that the frequency coupling of MMC
has a significant influence on the stability analysis of the grid-connected MMC system
under 20 Hz.
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Figure 11. Bode diagrams of MMC admittance with the phase current controller.

With the iteration shown in Figure 10, the condition for considering the coupling is
obtained as 1.9 < SCR < 2.6. Figure 12 shows the Nyquist plot of Zg(s)YMMC(s) considering
or ignoring the frequency coupling, where only the dominant eigenvalue (λ1) is shown for
simplicity. It can be seen when the coupling is considered, the Nyquist plot encircles the
point (−1, j0) under SCR < 2.6, meaning that the system is unstable if SCR < 2.6. However,
the Nyquist plot ignoring the coupling does not encircle the point (−1, j0) until SCR is
less than 1.9, indicating the system is predicted to be unstable when SCR < 1.9. Therefore,
ignoring the coupling will lead to a wrong stability assessment if 1.9 < SCR < 2.6.
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Figure 13 shows the time-domain simulation results of the MMC under a step change
of the grid condition, where only the phase current controller is adopted. The parameters
in the simulation are the same as those in Table 2. It can be seen that the system is
stable when SCR = 2.7. However, the grid-connected MMC loses stability as SCR = 2.5,
which is consistent with the theoretical analysis in Figure 12. The dominant oscillation
frequency is around 18 and 82 Hz. It is the coupling effect that causes both the sub- and
super-synchronous frequency in the oscillation.
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4.2. Case of MMC with CCSC

For this case, only the phase current controller and CCSC are applied in the control
scheme. The Bode diagrams of the sequence admittances and coupling terms of MMC
with and without the CCSC are shown in Figure 14 (only magnitude plots are shown). It
can be seen that the CCSC can suppress the low-frequency resonance characteristics of
both the sequence admittance and the coupling terms of MMC. Yet, the frequency coupling
still exists in the MMC admittance, which indicates that the CCSC cannot eliminate the
frequency coupling of the MMC system.
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Figure 15 shows the Nyquist plot of Zg(s)YMMC(s) with CCSC, where the SCR = 1.5.
As shown in Figure 15, both the stability assessments considering or ignoring the fre-
quency coupling indicate that the system is stable even under the ultra-weak grid. The
phenomenon can be explained as follows: As for the MMC with CCSC, the capacitive
behavior of MMC impedance caused by its internal dynamics has been suppressed, which
makes the stability margin of grid-connected MMCs sufficient even under a very weak grid.
For the system with a sufficient stability margin, ignoring the coupling will not lead to a
wrong stability assessment. Therefore, for the MMC only with the phase current controller
and CCSC, ignoring the frequency coupling will not affect the stability analysis of the
grid-connected MMC.



Energies 2021, 14, 6580 15 of 23
Energies 2021, 14, x FOR PEER REVIEW 15 of 23 
 

 

 
Figure 15. Nyquist plot of the impedance ratio Zg(s)YMMC(s) with CCSC, SCR = 1.5. 

4.3. Case of MMC Considering PLL Dynamics 
For this case, the phase current controller, CCSC, and PLL are adopted in MMC. Fig-

ure 16 shows the PLL effect on the sequence admittances and coupling terms of MMC. It 
can be observed that the PLL mostly affects the sequence admittances and coupling terms 
around the fundamental frequency. Furthermore, it is noted that except for the fundamen-
tal frequency, the coupling term at another frequency is barely affected by PLL. 

 
Figure 16. Bode diagrams of the MMC admittances with ideal PLL and PLL dynamics. 

Substituting the MMC admittance model considering PLL dynamics into the iterative 
procedure in Figure 10, the conditions for considering the frequency coupling can be ob-
tained. The results show that when SCR < 2.2, the stability assessments are unstable re-
gardless of whether the coupling is ignored or considered. In addition, when SCR > 2.8, 
the system is always stable regardless of whether the coupling is ignored or considered. 
However, if the frequency coupling is ignored at 2.2 < SCR < 2.8, an inaccurate stability 
analysis will be obtained. Figure 17 shows the characteristic loci of Zg(s)YMMC(s) with PLL 
dynamics. The grid condition of 2.2 < SCR < 2.8 is the condition that ignoring the coupling 
will result in a wrong stability estimation. 

Figure 15. Nyquist plot of the impedance ratio Zg(s)YMMC(s) with CCSC, SCR = 1.5.

4.3. Case of MMC Considering PLL Dynamics

For this case, the phase current controller, CCSC, and PLL are adopted in MMC.
Figure 16 shows the PLL effect on the sequence admittances and coupling terms of MMC.
It can be observed that the PLL mostly affects the sequence admittances and coupling
terms around the fundamental frequency. Furthermore, it is noted that except for the
fundamental frequency, the coupling term at another frequency is barely affected by PLL.
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Figure 16. Bode diagrams of the MMC admittances with ideal PLL and PLL dynamics.

Substituting the MMC admittance model considering PLL dynamics into the iterative
procedure in Figure 10, the conditions for considering the frequency coupling can be
obtained. The results show that when SCR < 2.2, the stability assessments are unstable
regardless of whether the coupling is ignored or considered. In addition, when SCR > 2.8,
the system is always stable regardless of whether the coupling is ignored or considered.
However, if the frequency coupling is ignored at 2.2 < SCR < 2.8, an inaccurate stability
analysis will be obtained. Figure 17 shows the characteristic loci of Zg(s)YMMC(s) with PLL
dynamics. The grid condition of 2.2 < SCR < 2.8 is the condition that ignoring the coupling
will result in a wrong stability estimation.
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of the grid condition, where the PLL bandwidth is set as 40 Hz. It can be seen the system
loses stability when SCR = 2.7.
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For this case, the DC-voltage control is added in the case of MMC considering PLL
dynamics. Figure 19 shows the effect of DC-bus voltage control on the MMC admittance.
It can be seen that the DC-bus voltage control mainly affects the admittance responses
of MMC below 10 Hz. Considering that adding DC voltage control hardly changes the
MMC admittance characteristics, the stability analysis considering voltage control is almost
the same as the stability analysis considering PLL dynamics. Therefore, the condition for
considering the coupling is the same as that of MMC considering the PLL dynamics, which
is not analyzed in detail.
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4.4. Discussion

Based on the above analysis, it can be observed that ignoring the frequency coupling
of MMC admittance leads to the inaccurate stability conclusion under certain grid con-
ditions. However, it is not always the case that ignoring coupling fails in the stability
assessment. The conditions for considering the coupling effect are quantitatively defined
in Section 4 (1–4). Table 3 summarizes the conditions for different cases of MMC.

Table 3. Significance evaluation of frequency coupling.

Significance of Coupling Significant Insignificant

Phase current controller 1.9 < SCR < 2.6 SCR < 1.9, SCR > 2.6
Phase current controller+ CCSC none none

Phase current controller+ CCSC +PLL 2.2 < SCR < 2.8 SCR < 2.2, SCR > 2.8
Phase current controller+ CCSC +PLL

+ DC-bus voltage controller 2.2 < SCR < 2.8 SCR < 2.2, SCR > 2.8

Previous studies have analyzed the stability of an MMC system using the SISO
impedance model [14,15]. Yet, the SISO model cannot include the impact of frequency
coupling on the stability, which may lead to inaccurate results in some cases. Afterward,
the MIMO modeling method, which considers the frequency coupling effect, is proposed.
Compared with the SISO model, the MIMO model can guarantee the accuracy of stability
analysis results under any circumstances. However, the stability analysis method applying
MIMO (e.g., GNC) is more complicated than the stability analysis method applying on
the SISO model (e.g., Bode plot). Meanwhile, it is not always the case that the SISO model
fails in the stability assessment of the grid-connected MMC. Thus, different models can be
applied to the stability of MMCs under different grid conditions, as shown in Figure 20.
According to the significance evaluation of frequency coupling and the practical grid
condition, it can be determined whether the MIMO model of MMC impedance needs to be
applied in the stability assessment. In the cases where the coupling needs to be considered,
the stability of MMC should be assessed by the GNC using the MIMO model, while for the
other cases, the SISO model can be used. Compared to the stability analysis method that
always applies the MIMO model, the proposed method is simpler without losing accuracy.
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5. Conclusions

Ignoring the frequency coupling will lead to inaccuracy in stability analysis for the
grid-connected MMC under a certain short circuit ratio of the grid. However, it is not
always the case that ignoring coupling fails in the stability assessment. In order to clarify
the case that the coupling must be considered, the effect of frequency coupling of MMC
impedance on the stability analysis of grid-connected MMC was quantitatively analyzed
in this paper. On this basis, a stability analysis method was proposed, where GNC is
applied when the frequency coupling has a significant effect and the SISO analysis tool
(e.g., Bode plot) is used if the coupling is insignificant. Compared to the stability assessment
always applying the MIMO model, the proposed method is more simplified without losing
accuracy. The grid impedance is different for the grids under different active power. Thus,
the grid conditions that the coupling effect needs to be considered in the stability analysis
are different for the grids under different active power. The proposed method can be only
applied for a grid with a fixed power. The method suitable for the grids under different
active power will be studied in the future.
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Appendix A

The expression of Ap and Bp:

Ap = Γ
(

Ap
)
=



Ap0 Ap−1 · · · Ap−n

Ap1
. . . . . . . . . . . .

...
. . . Ap0 Ap−1

. . . . . .

Apn
. . . Ap1 Ap0 Ap−1

. . . Ap−n
. . . . . . Ap1 Ap0

. . .
...

. . . . . . . . . . . . Ap−1
Apn · · · Ap1 Ap0


(A1)

Ap =


− Rarm

Larm
0 −mu0(t)

Larm

ml0(t)
Larm

0 − Rarm
Larm

−mu0(t)
2Larm

−ml0(t)
2Larm

mu0(t)
2Carm

mu0(t)
Carm

0 0

−ml0(t)
2Carm

ml0(t)
Carm

0 0

 (A2)

Bp = Γ
(

Bp
)

(A3)
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Bp =


− v∑

Cu0(t)
Larm

v∑
Cl0(t)
Larm

− 2
Larm

− v∑
Cu0(t)
2Larm

− v∑
Cl0(t)

2Larm
0

− 0.5ig0(t)+ic0(t)
Carm

0 0

0
−0.5ig0(t)+ic0(t)

Carm
0

 (A4)

Np = diag
[
−j
(
ωp − nω1

)
I, · · · , O, · · · , j

(
ωp + nω1

)
I
]

(A5)

where I is the identity matrix and O denotes the zero matrix. A and B are the Toeplitz (Γ)
matrixes using as an alternative of the convolution. The steady-state values in (A1)~(A4) can
be obtained by solving MMC nonlinear equations, or the simulation of the converter circuit.

Appendix B

The basic MMC control functions (e.g., phase current controller, circulating current
suppression controller, and PLL) have been modeled in [16], which are expressed as follows.

(1) Phase current controller:

The phase current controller model is:

mup = Hgigp, mlp = −Hgigp; Hg = diag
[
{qk}|k=−n,··· ,0,··· ,n

]
qk = 1+(−1)k

2 |mod(k + 1, 3)| ·
[
−mod(k + 1, 3)jKd + Hi

(
j
(
ωp + kω1

)
−mod(k + 1, 3)jω1

)] (A6)

where:
mup =

[
Mup−n, · · · , Mup−1, Mup0, Mup1, · · · , Mupn

]T (A7)

mlp follows a similar expression. Hi is the transfer function of the current controller in
dq-frame, the jKd term indicates the effect of the decoupling gain. The term mod(k + 1, 3) is
the modulo-3 function, which gives the sequence of the small-signal perturbation current.

Under a negative-sequence perturbation voltage, Hg can be expressed as:

Hg = diag[{qk}|k = −n, · · · , 0, · · · , n]

qk =
1+(−1)k

2 |mod(k− 1, 3)| ·
[
−mod(k− 1, 3)jKd + Hi

(
j
(
ωp + kω1

)
−mod(k− 1, 3)jω1

)] (A8)

(2) Circulating current suppression controller

The model of CCSC is expressed as:

mup = Hcicp, mlp = Hcicp; Hc = diag
[
{qk}|k=−n,··· ,0,··· ,n

]
qk =

1−(−1)k

2 Hc
(

j
(
ωp + kω1

)) (A9)

where Hc is the transfer function of PR compensator.

(3) PLL

The PLL model is expressed as:

mup = Pep, mlp = −Pep (A10)

where P is a (2n + 1) × (2n + 1) matrix, (n + 1, n + 1)th element is:

Gθ

(
j
(
ωp −ω1

))
·
([

Hi
(

j
(
ωp −ω1

))
+ jKd

]
Ig −M1

)
(A11)

and the (n + 1,n − 1)th element is:

− Gθ

(
j
(
ωp −ω1

))
·
([

Hi
(

j
(
ωp −ω1

))
− jKd

]
Ig
∗ −M1

∗) (A12)



Energies 2021, 14, 6580 20 of 23

where Ig and M1 represent the Fourier series of the phase current and the modulation index
at steady state. Ig

* and M1
* are the complex conjugates of Ig and M1. Gθ is the transfer

function expressing PLL dynamics, which is given as:

Gθ

(
j
(
ωp −ω1

))
= Tθ

(
j
(
ωp −ω1

))
/
(
1 + E1Tθ

(
j
(
ωp −ω1

)))
,

Tθ

(
j
(
ωp −ω1

))
= HPI

(
j
(
ωp −ω1

))
/j
(
ωp −ω1

) (A13)

where E1 is the steady-state grid voltage and HPI is the transfer function of the PI compen-
sator in PLL.

For a negative-sequence perturbation, P is a (2n + 1) × (2n + 1) matrix with (n + 1,
n + 1)th element and (n + 1, n + 3)th element. The elements are obtained by replacing fp in
(A11) and (A12) by −fp and taking the complex conjugate of each expression.

(4) DC-bus voltage controller

The instantaneous active power flowing into the MMC can be obtained as:

P = 1.5
(

edigd + eqigq

)
(A14)

where ed and eq are the grid voltages in dq-frame and igd and igq are the grid currents in
dq-frame.

Since the grid current in the q-axis is set to zero for the unity power factor, the small-
signal model of active power can be simplified as:

Pp = 1.5
(

ed0igdp + edpigd0

)
(A15)

Expressed in the energy Cdc(vdc)2/2 stored in the dc capacitor, the dc-link dynamics is
given by:

0.5Ceq
dv2

dc
dt

= P− PL (A16)

where PL is the load power, expressed as PL =vdcIload. Ceq represents the equivalent dc
capacitance of MMC containing the cable capacitance in dc-bus CDC and equivalent SM
capacitance, which is defined as:

Ceq = CDC + 6CSM/N (A17)

The small-signal model of dc-link voltage is given as:

Ceqvdc0
dvdcp

dt
= Pp − PLp (A18)

Substituting (A15) into (A18), we obtain:

Ceqvdc0svdcp = 1.5
(

E1idp + Igudp

)
− vdcp Iload

⇒ vdcp(s) =
1.5(E1 Igp0+IgEp0)

Iload+Ceqvdc0s
= Gdc1(s)Igp0 + Gdc2(s)Ep0, f = fp − f1

(A19)

where:

Gdc1(s) =
1.5E1

Iload + Ceqvdc0s
, Gdc2(s) =

1.5Ig

Iload + Ceqvdc0s
(A20)

The dc-link voltage controller is given as:

idre f = Hdc(s)
[
vdcre f − vdc

]
(A21)

where Hdc(s) is the transfer function of the dc-link voltage controller.
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Considering the dc-link voltage dynamics, the small-signal reference current in the
d-axis is expressed as:

idre f p(s) = −Hdc(s)vdcp
= −Hdc(s)Gdc1(s)Igp0 − Hdc(s)Gdc2(s)Ep0, f = fp − f1

(A22)

Then, the perturbation modulation index in the d-axis caused by the dc-link voltage
dynamics is obtained as:

mdp(s) = Hi(s)idre f p
= −Hi(s)Hdc(s)Gdc1(s)Igp0 − Hi(s)Hdc(s)Gdc2(s)Ep0, f = fp − f1

(A23)

After transformation back to the abc frame, the perturbation modulation voltage at fp
− f 1 creates a component at fp and another at fp − 2f 1, given as:

mp =


−0.5Hi(s− jω1)Hdc(s− jω1)Gdc1(s− jω1)Igp0
−0.5Hi(s− jω1)Hdc(s− jω1)Gdc2(s− jω1)Ep0,

f = fp

−0.5Hi(s + jω1)Hdc(s + jω1)Gdc1(s + jω1)Igp0
−0.5Hi(s + jω1)Hdc(s + jω1)Gdc2(s + jω1)Ep0,

f = fp − 2 f1

(A24)

Based on the above analysis, the dc-link voltage controller model can be obtained as:

mup = Tep + Qigp, mlp = −Tep −Qigp (A25)

where T is a (2n + 1) × (2n + 1) zero matrix except for the (n + 1, n + 1)th element and the
(n + 1, n − 1)th element. The (n + 1, n + 1)th element and the (n + 1, n − 1)th element are
the same, denoted as:

− 0.5Hi
[
j
(
ωp −ω1

)]
Hdc
[
j
(
ωp −ω1

)]
Gdc2

[
j
(
ωp −ω1

)]
(A26)

Similarly, the (n + 1, n + 1)th element and the (n + 1, n-1)th element in Q are expressed as:

− 0.5Hi
[
j
(
ωp −ω1

)]
Hdc
[
j
(
ωp −ω1

)]
Gdc1

[
j
(
ωp −ω1

)]
(A27)

For the dc-link voltage controller model under negative-sequence perturbation voltage,
the T and Q are the (2n + 1) × (2n + 1) zero matrix except for the (n + 1, n + 1)th element
and(n + 1, n + 3)th element. The elements can be obtained by replacing fp in (A26) and
(A27) by −fp and taking the complex conjugate.
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