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Abstract: According to the engineering phenomenon of the galloping of ice-coated transmission lines
at certain wind speeds, this paper proposes a novel type of energy harvester based on the galloping
of a flexible structure. It uses the tension generated by the galloping structure to cause periodic
strain on the piezoelectric cantilever beam, which is highly efficient for converting wind energy
into electricity. On this basis, a physical model of fluid–structure interaction is established, and the
Reynolds-averaged Navier–Stokes equation and SST K -ω turbulent model based on ANSYS Fluent
are used to carry out a two-dimensional steady computational fluid dynamics (CFD) numerical
simulation. First, the CFD technology under different grid densities and time steps is verified. CFD
numerical simulation technology is used to simulate the physical model of the energy harvester, and
the effect of wind speed on the lateral displacement and aerodynamic force of the flexible structure
is analyzed. In addition, this paper also carries out a parameterized study on the influence of the
harvester’s behavior, through the wind tunnel test, focusing on the voltage and electric power output
efficiency. The harvester has a maximum output power of 119.7 µW/mm3 at the optimal resistance
value of 200 KΩ at a wind speed of 10 m/s. The research results provide certain guidance for the
design of a high-efficiency harvester with a square aerodynamic shape and a flexible bluff body.

Keywords: galloping; energy harvester; computational fluid dynamics (CFD); numerical simulation

1. Introduction

In recent years, the environmental problems caused by the burning of fossil fuels
such as petroleum and coal have become more and more serious, and fossil energy is
increasingly depleted. It is an important research focus to obtain clean and renewable
energy from the environment [1]. Previous studies have shown that vortices may be
generated alternately from the two side surfaces of a bluff body that is immersed in the
flow, which results in the phenomenon of flow-induced motion (FIM) [2]. Although
FIM may endanger the safety of structures, it can be potentially exploited for collecting
energy from the environment [3]. To this end, various energy harvesters and technologies
have been developed. It is also expected that such environmental energy harvesters can be
utilized in practices to power micro-electromechanical systems (MEMS) and wireless sensor
systems so that a more convenient realization of structural health monitoring, industry
sense and detection, military track, and environmental monitoring [4] can be achieved.

In reference to wind energy harvesting techniques, the majority of related harvesters
were developed using the principles of vortex-induced vibration (VIV), galloping, flutter,
and buffeting, the main forms of wind-induced induced VIV and galloping. For the VIV
energy harvester, the flow rate range of high-efficiency power generation requires that the
vortex shedding frequency of the harvester is consistent with the natural frequency. There-
fore, it is commonly used for fluid energy harvesting. Williamson’s team [5,6] conducted a
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lot of research on cylindrical VIV, identified various branches of the VIV amplitude, and
summarized the vortex shedding mode into S and P modes. Ding et al. [7] conducted
numerical simulation of VIV for different bluff bodies and studied their energy harvesting
efficiency. An et al. [8] analyzed and studied the effect of CFD technology on the plate
length of the VIV energy harvester on the flow velocity, dynamics, and performance of the
wake structure. Zhang et al. [9] used the two-dimensional Reynolds number method to
study the VIV of four staggered cylinders, and conducted a series of numerical simulations
for energy harvesting. Akaydin et al. [10] developed a cylindrical bluff body VIV piezo-
electric energy harvester. When the flow speed is 1.19 m/s, the harvester with a resonance
frequency of 3.14 Hz can output a maximum power of 0.1 mW to an optimized load of
2.46 MΩ. Galloping is a typical self-excited vibration phenomenon caused by aeroelastic
instability. It mostly occurs in rectangular, angular, and flexible structures, and is usually
characterized by low-frequency and high-amplitude oscillations [11]. Due to the greater
vibration and higher output power, this aerodynamic instability may be more suitable for
energy harvesting than VIV [12]. Barrero-Gil et al. [13] were first to theoretically analyze
the potential of using a single-degree-of-freedom (SDOF) system to harvest energy using
lateral gallop. Javed et al. [14] used a distributed parameter pattern to study the influence of
various aerodynamic force expressions on galloping. Zhao et al. [15] studied the influence
of bluff wind exposure area, load resistance, mass of bluff, and piezoelectric sheet length
on the output power of a galloping energy harvester. On the other hand, Hu et al. [16]
examined the influence of aerodynamic configuration on wind harvesting performance,
and found that the VIV of a cylinder could be transformed into galloping if the cylinder
was treated via corner modification techniques. Additionally, Sirohi et al. [17] proposed a
harvester based on triangular section rods attached to the cantilever beam.

The results from previous studies have shown that transmission lines can be covered
with ice on cold days, and their cross section may change to a non-circular shape [18]. Under
certain wind speed and wind attack angles, the incoming flow on both sides of the bluff
body can produce vortices and shed backwards, and generate an alternate aerodynamic
load, which results in the galloping of the transmission line [19]. Previous studies also
showed that the tension of the wire can influence galloping significantly, and greater
tensions tends to favor the occurrence of galloping. Meanwhile, many galloping energy
harvesters were developed by using columns with a square section, as prisms with a square
section have more complex cross-section geometric characteristics compared to cylinders.
Since Den Hartog first studied and explained the galloping phenomenon, numerous
studies have shown that galloping can be widely observed on bluff bodies with a square
section [20,21]. Therefore, the square section is usually preferred for the study of galloping
energy harvesters.

In this study, a square section energy harvester based on the galloping principle of
an iced transmission line was developed. The performance of the harvester was exam-
ined via both experimental tests and CFD simulations. The CFD technique was utilized,
since it provides a powerful tool to explore the characteristics of flow motions, and to
further understand the working mechanism of the harvester. The remainder of the article
is organized as follows: Section 2 introduces the design and modeling of the harvester,
Sections 3 and 4 detail the CFD method, and the experimental method, respectively. The
specific results are presented and discussed in Section 5, and the main findings and conclu-
sions are summarized in Section 6.

2. Design and Modeling of the Energy Harvester
2.1. Configuration

Figure 1 depicts the setup of the developed harvester. It consists of a flexible structure
(i.e., the counterpart of transmission lines with a length of 0.42 m) that aims to receive
wind energy from incoming flows, a supporting frame where the flexible structure is
fixed, and a wind direction regulator that is mainly composed of a spindle and a deflector.
The two ends of the flexible structure are respectively connected with the rigid body of
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the supporting frame, and the free end of a cantilever beam where a piezoelectric film is
adhered. The cantilever beam is made of 0.3 mm× 150 mm stainless steel. The piezoelectric
film, i.e., the PVDF (Polyvinylidene Fluoride) film (IPS-17020, ZHINK TECHNOLOGY)
has dimensions of 30 mm (length) × 12.1 mm (width) × 0.28 µm (depth), and the density is
1.78 × 103 kg/m3. The spindle is fixed with the supporting frame and the deflector rigidly.
Due to the guiding effects of the deflector, incoming wind flows tend to blow in a direction
that is perpendicular to the windward surface of the flexible structure. When the wind
speed exceeds a certain value, the flexible structure can vibrate up and down severely, i.e.,
galloping occurs. The vibrating flexible structure then drives the cantilever and therefore
the PVDF film to sway, which fulfills the conversion of wind energy into electricity.
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Figure 1. Schematic diagram of energy harvester.

When the energy harvester faces the incoming wind, the flexible bluff body swings
around the plane and causes the thin wire to generate tension. The tension at one end of
the thin wire directly drives the cantilever beam to produce periodic alternating strain. At
the same time, the piezoelectric film is deformed. A certain charge is generated, which
effectively converts the flow energy of the air into electric energy. The energy harvester has
a simple structure and low manufacturing costs, and is very suitable for the surrounding
windy environment all year round. Compared with various forms of energy harvesters, this
paper’s harvester is not affected by wind direction and is suitable for any wind direction
angle. Since the designed energy harvester has excellent parameters, and the critical wind
speed generated is small, the flexible structure is prone to galloping and improves the
efficiency of energy harvesting.

2.2. CFD Mathematical Model

As shown in Figure 2, the harvester system can be mathematically simplified as a
SDOF system. Taking the middle section of the flexible structure as the simulation research
object, it is assumed that the wind field is incompressible and the effect of structural torsion
and the inverse piezoelectric effect in the system can be reasonably neglected.



Energies 2021, 14, 6548 4 of 19Energies 2021, 14, x FOR PEER REVIEW 4 of 19 
 

 

 
Figure 2. 2-dimensinal dynamic model. 

Thus, the dynamics of the harvester body over a unit length can be depicted by [22]: 

yM y C y K y F+ + = 
 (1)

where y denotes the lateral displacement of the square column, M is the mass per length, 
Fy is the force acting on the square structure in y direction, C is the mechanical damping 
coefficient, and K is the stiffness of the vibration model.  

The details of the equation can be referred to in Barreiro-Gill et al. [23]. 
According to the quasi-steady theory [24], wind force can be expressed as function of 

wind velocity U, the characteristic length of the square section D (or the side length in this 

study) and a dimensionless coefficient, or the lift coefficient LC  in this study: 

21
2y LF U DCρ=

 
(2)

The main parameters involved in this model of harvester are listed in Table 1, where 
ζ represents the damping ratio, which is defined as 2C MKζ = . Note that the values 
of damping ratio and effective stiffness coefficient can be determined through experiment. 

Table 1. Main physical model parameters of the harvester. 

Item Symbol Value 
Mass(g) M 0.144 

Diameter(mm) D 30 
Stiffness (N/m) K 30.2 
Damping ratio ζ 0.0018 

Air density(Kg/m³) ρ
 1.225 

Motion viscosity (m2·s−1) v 1.41 × 10−6 

2.3. Piezoelectric Performance Equation 
The energy harvester uses a d31 piezoelectric sheet, i.e., the polarization direction is 

perpendicular to the applied stress direction, and the working mode of the piezoelectric 
material is the d31 mode with the polarized direction parallel to the surface normal. To 
simplify the analysis, a load resistance (RL) was attached to the conductive electrode of the 
PVDF piezoelectric ceramic film. The piezoelectric constitutive relationship can be directly 
expressed as [25]: 

31 1 3 33 3
TD d T Eε= +  (3)

y

x

Wind

c k

Lift

Drag

𝑦ሶ 𝑈௥
U

D

Figure 2. 2-dimensinal dynamic model.

Thus, the dynamics of the harvester body over a unit length can be depicted by [22]:

M
..
y + C

.
y + Ky = Fy (1)

where y denotes the lateral displacement of the square column, M is the mass per length,
Fy is the force acting on the square structure in y direction, C is the mechanical damping
coefficient, and K is the stiffness of the vibration model.

The details of the equation can be referred to in Barreiro-Gill et al. [23].
According to the quasi-steady theory [24], wind force can be expressed as function of

wind velocity U, the characteristic length of the square section D (or the side length in this
study) and a dimensionless coefficient, or the lift coefficient CL in this study:

Fy =
1
2

ρU2DCL (2)

The main parameters involved in this model of harvester are listed in Table 1, where ζ
represents the damping ratio, which is defined as ζ = C/2

√
MK. Note that the values of

damping ratio and effective stiffness coefficient can be determined through experiment.

Table 1. Main physical model parameters of the harvester.

Item Symbol Value

Mass(g) M 0.144
Diameter(mm) D 30
Stiffness (N/m) K 30.2
Damping ratio ζ 0.0018

Air density(Kg/m3) ρ 1.225
Motion viscosity (m2·s−1) v 1.41 × 10−6

2.3. Piezoelectric Performance Equation

The energy harvester uses a d31 piezoelectric sheet, i.e., the polarization direction is
perpendicular to the applied stress direction, and the working mode of the piezoelectric
material is the d31 mode with the polarized direction parallel to the surface normal. To
simplify the analysis, a load resistance (RL) was attached to the conductive electrode of the
PVDF piezoelectric ceramic film. The piezoelectric constitutive relationship can be directly
expressed as [25]:

D3 = d31T1 + εT
33E3 (3)

where d31 is the piezoelectric charge constant, D3 is the electric displacement component, T1
is the stress component, E3 is the electric field component, and εT

33 is the dielectric constant.
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3. CFD Simulation Method
3.1. Numerical Methods

The fluid–structure interaction solution method in conjunction with the weak coupling
solution technique were used to numerically calculate the evolutions of wind field over the
computational domain and to obtain the aerodynamic force acting on the harvester. The
two-dimensional Reynolds number average Navier–Stokes (RANS) equation and the k-ω
SST (shear stress transport) turbulent model [26] were used to numerically simulate the
flow around a square cross-section. This turbulence model was chosen because, compared
to other turbulence models, the k-ωmodel of SST is a hybrid of the k-ω and k-εmodels.
It activates the k-ω model near the wall and the k-ε model in free flow. It has better
performance when predicting the boundary layer flow of the reverse pressure gradient.
Therefore, this paper adopts the SST k-ω turbulence model in CFD simulation.

The interaction effects between the wind flows and the harvester structure were
embedded into the CFD to implement the link with the main program. At the same time,
the structure dynamic equation was solved and the structure domain calculated, and then
the motion lift coefficient and displacement of the structure were obtained. At the same
time, the overset grid technology was used to update the grid of the computational domain
in real time.

User-defined functions (UDFs) were compiled (in C Language) and embedded into
the CFD software to realize the simulation of fluid–structure interaction. In this paper,
DEFINE_CG_MOTION was used as the motion function to define the motion mode. The
overset grid model was used to define computational grid movement and data exchange.
The Newmark-β method was used in UDF (refer to the Appendix A for details). This
method is a numerical integration method for solving differential equations. It has been
widely used to solve problems with oscillating systems [27].

Based on the basic assumptions of the central difference method, the explicit difference
method of dynamic equations was adopted. The basic assumption of the Newmark-β
method is that the acceleration changes linearly in each time increment, and the characteris-
tics of the system remain constant during this interval. The equilibrium requirement of the
force system acting on the mass at any time is as follows: the Newmark-βmethod approx-
imates the speed and displacement of the system at time (t + ∆t) through the following
two assumptions:

.
y(t + ∆t) =

.
y(t) + (1− γ)∆t

..
y(t) + γ∆t

..
y(t + ∆t) (4)

y(t + ∆t) = y(t) + ∆t
.
y(t) + (

1
2
− β)∆t2 ..

y(t) + β∆t2 ..
y(t + ∆t) (5)

The two parameters γ and β in the formula can be selected as required, and different
combinations correspond to different processing effects. When γ = 1

2 and β = 1
2 , it is the

central difference method [28]. Therefore, the acceleration and velocity can be obtained.

..
y(t + ∆t) =

1
β∆t2 (y(t + ∆t)− y(t))− 1

β∆t
.
y(t)− (

1
2β
− 1)

..
y(t) (6)

.
y(t + ∆t) =

γ

β∆t
(y(t + ∆t)− y(t)) + (1− γ

β
)

.
y(t) + (1− γ

2β
)∆t

..
y(t) (7)

The motion of the system at time t + ∆t can be expressed as:

M
..
y(t + ∆t) + C

.
y(t + ∆t) + Ky(t + ∆t) = Fy(t + ∆t) (8)

Integrating the above formulas leads to:

K̃y(t + ∆t) = F̃y(t + ∆t) (9)
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where
K̃ =

1
β∆t2 M +

γ

β∆t
C + K (10)

F̃(t + ∆t) = F(t + ∆t) + M
[

1
β∆t2 y(t) + 1

β∆t
.
y(t) + ( 1

2β − 1)
..
y(t)

]
+C

[
γ

β∆t y(t) + ( γ
β − 1)

.
y(t) + ( γ

2β − 1)∆t
..
y(t)

] (11)

The numerical simulation flowchart is shown in Figure 3.
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3.2. Computational Fluid Domain and Grid

As shown in Figure 4a, the simulation used a rectangular computational fluid domain.
The calculation domain had a width of 20D and a length of 30D. The middle position of the
square was 10D away from the inlet. The boundary conditions used included the left speed
inlet, the right pressure outlet, and the upper and lower sides’ sliding wall surface. The
center of the square column was the origin of the coordinate system; x and y respectively
represent the along-wind and crosswind directions.
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The model establishment and grid division were all carried out in the commercial
software Ansys ICEM. The grids under different working conditions were all divided
by non-uniform structured grids to ensure the accuracy of calculation and save a lot of
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computing resources. In computational fluid dynamics, the dynamic overset grid method
has efficient dynamic grid processing capability and can guarantee the quality of the grid,
so it has been widely used in unsteady flow simulation. Therefore, this research used
overset grid technology; many concepts related to nested grid computing used today can
be traced back to the breakthrough idea of Joseph Steger [29,30]. The overset grid method
was used in Fluent; when FIM occurred, the constructed grid oscillated with the square
column to ensure that the grid was not updated, which effectively avoided the negative
element grid. The square coordinate grid (called the component grid) matched the square
cylinder, and the background grid adopted a unified Cartesian grid. Details of the overset
grid are shown in Figure 4b.

In order to make the grid height Y+ of the first layer of the wall satisfy the wall
function, the height value was determined according to the required Reynolds number [31].
Enough densification was performed close to the wall, and at least 20 layers of wall surface
grids were set with a rate of change of 1.2. The Y+ of the wall grids were all around 1.

3.3. Solving Method

The turbulence, pressure, momentum, and other fluid control equations used the
second-order upwind spatial discretization algorithm, and the gradient calculation used an
algorithm based on a least squares unit [32]. The discretization was performed using the
second-order upwind difference scheme, and the transient term was discretized using the
second-order backward Euler scheme. The first-order algorithm was used for preliminary
calculation and then the second-order algorithm was used to improve the calculation
accuracy. All simulation conditions adopted the pressure-velocity (SIMPLEC) coupling
method, and the convergence was determined by the size of the residual error of the
governing equation [33]. The continuity equation, momentum equation, k equation, andω
of all scale residuals below 1 × 10−5 were used. The equation was used as the convergence
criterion, and the corresponding calculation results were observed to be stable, which can
be considered reliable results.

3.4. Validation of Numerical Model

To ensure reliability, and that the model used numerical simulation and obtained a
convergent and accurate solution within a reasonable calculation time, this paper considers
different grid densities and time steps. Tables 2 and 3 list the results of different grid
parameters and time steps, in which CD denotes the mean drag coefficient over the time
domain, CL stands for the root mean square (RMS) of the lift coefficient, and St represents
the Strouhal number.

Table 2. Verification of grid density independence (Re = 2.2 × 104).

Grid Density CD CL St

Coarse (32,414) 2.20 1.44 0.128
Medium (43,954) 2.25 (2.27%) 1.41 (2.08%) 0.127 (0.78%)

Fine (96,153) 2.26 (2.65%) 1.45 (0.90%) 0.127 (0.78%)

Table 3. Validation of time-step independence (Re = 2.2 × 104).

Time Steps CD CL St

0.001 2.25 1.45 0.127
0.0008 2.30 (2.22%) 1.56 (7.59%) 0.129 (1.57%)
0.0006 2.29 (1.78%) 1.66 (14.5%) 0.132 (3.93%)

LES [31] 2.21 (1.78%) 1.71 (17.9%) 0.128 (0.79%)
DNS [32] 2.18 (3.11%) 1.51 (4.14%) 0.132 (3.93%)
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As shown in Table 2, the results under the three different grid densities were similar.
The scheme with medium grid resolution was adopted in this study so that a balance
between computational efficiency and cost could be achieved.

Meanwhile, the transient numerical method was adopted and time-step independent
verification was carried out to evaluate the uncertainty of the value. The independence
of the time steps was verified by using different time step sizes of 0.0006 s~0.001 s/step
for numerical simulation. According to the calculation results for different time steps, a
small time step cannot improve the simulation accuracy but takes a long time. Therefore,
the time step of 0.0008 s per step was selected. The calculated results of the square at
Re = 2.2 × 104 were similar to the results presented by Cao [34] and Trias [35], indicating
that the turbulence model adopted can obtain more reliable results.

4. Experimental Method

The experiment was carried out in a subsonic closed recirculation wind tunnel. The
design range of the flow velocity at the working section of the tunnel was 1–22 m/s, with
the turbulence intensity not exceeding 0.5%. The layout of the experiment is shown in
Figure 5. When exploring the influence of the external resistance RL, the external load
resistance of 10 kΩ–1 MΩ was connected in sequence, and the wind tunnel control speed
changed in a gradient of 3 m/s–10 m/s. The output voltage was collected and stored by
a data acquisition instrument (NI 9234). The highest sampling frequency was 2840 Hz
for acquisition, and the acquisition time exceeded 120 s. The voltage and displacement
were inputted into labview for visual observation and analysis. The displacement of the
transmission-line-like flexible structure was monitored by a laser displacement sensor that
was installed on the side wall of the wind tunnel. The output voltage of the harvester was
recorded when the vibration of the flexible structure became stable.
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5. Results and Discussion
5.1. Performance Analysis of the Harvester

On obtaining the voltage time-history data through wind tunnel experiments, the root
mean square (RMS) value of voltage VRMS can be calculated:

VRMS =

√
1

T2 − T1

∫ T2

T1

u(t)dt (12)

Accordingly, the mean power P can be obtained as:

P =
1

T2 − T1

∫ T2

T1

u(t)2

RL
dt (13)

in which T2 and T1 are the start and end time during the acquisition period, respectively,
RL is the external load resistance, and u(t) is the instantaneous voltage.

Figure 6 displays the results of the RMS voltage and mean power output by connecting
various load resistances from 10 kΩ to 1 MΩ in the PVDF film in the wind speed range of



Energies 2021, 14, 6548 9 of 19

3–10 m/s. It can be seen in Figure 6a that under the same load resistance, the wind speed
continues to increase, and the output RMS voltage has an obvious upward trend. The
minimum RMS voltage recorded under a load resistance of 10 kΩ is 350 mV. In addition,
the output RMS voltage of this resistance model is relatively small. In the wind speed range
of 3–10 m/s, the output RMS voltage steadily increased from 350 mv to 0.14 V. The highest
RMS voltage recorded under the load resistance of 1 MΩ was 2.96 V. It can be found from
Figure 6b that in the wind speed range of 3–10 m/s, the rising trend of output power was
similar to the rising trend of RMS output voltage. When the wind speed was 10 m/s, the
maximum load resistance of 200 kΩ in this experiment was 12.1 µW. The results indicate
that when the load resistance is constant, as the input air speed increases, the voltage and
power between the load resistances increase almost in advance.
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Figure 6. (a) Output voltage and (b) power with different wind speed.

According to the RMS voltage and output power calculated by Formulas (12) and (13),
the power density and voltage density per scanning volume, which are defined as the
power value and RMS voltage value divided by the volume of piezoelectric film, were
calculated. In the analysis that followed, the load resistance first had to be matched to
evaluate the harvesting performance. Figure 7 displays the change of output voltage
density and power density with load resistance under different wind speeds. Figure 7a
shows that the overall output trend of the measured voltage density increases with the
increase of resistance within a certain wind speed range, and the maximum voltage density
is 29.1 V/mm3. Figure 7b shows that within a certain range, the overall output power trend
of the measured power density at all wind speeds increases as the resistance increases.
The optimal value of the load resistance for different wind speeds is between 100 kΩ and
430 kΩ. Outside this load resistance range, the average power generated is significantly
reduced. After intensive testing, it was found that when the load resistance is about
200 kΩ, it provides the highest output average power. Therefore, R0 = RL = 200 kΩ is the
optimal electrical load resistance, and this result will be used for the efficiency of the energy
harvester in the subsequent experimental discussion when the load resistance is 200 KΩ,
and the power density is 119.7 µW/mm3. Previous studies have pointed out that there is
an optimal resistance R0 for the best collection efficiency. Neglecting the effects of damping
and dielectric loss, the optimization resistance can be determined as [36]:

R0 =
1

2π f C
(14)

where C is the harvester capacitance and f is the vibration frequency.



Energies 2021, 14, 6548 10 of 19

Energies 2021, 14, x FOR PEER REVIEW 10 of 19 
 

 

After intensive testing, it was found that when the load resistance is about 200 kΩ, it pro-
vides the highest output average power. Therefore, R0 = RL = 200 kΩ is the optimal electri-
cal load resistance, and this result will be used for the efficiency of the energy harvester 
in the subsequent experimental discussion when the load resistance is 200 KΩ, and the 
power density is 119.7 μW/mm3. Previous studies have pointed out that there is an opti-
mal resistance R0 for the best collection efficiency. Neglecting the effects of damping and 
dielectric loss, the optimization resistance can be determined as [36]:  

0
1

2
R

fCπ
=  (14)

where C is the harvester capacitance and f is the vibration frequency. 

 
Figure 7. (a) Output voltage density and (b) power density with different load resistance. 

To further explore the working performance of the harvester, it was necessary to an-
alyze the piezoelectric film dynamics characteristics. Figure 8 displays the time history of 
the output voltage with a load resistance of 300 kΩ at a wind speed of 3–7 m/s. As demon-
strated, the voltage signal fluctuates periodically for each case associated with a fixed 
wind speed, and the amplitude of the voltage increases distinctly as the wind speed in-
creases (from 0.14 V to 1.12 V). Apparently, the periodic variation of output voltage is 
attributed to the periodic evolution of the strain around the fix end of the cantilever beam. 
Because the galloping amplitude increases consistently with the increase of wind speed, 
the strain becomes larger for the cases with stronger incoming wind, which further leads 
to higher output voltage. 

0 5 10 15 20 25
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5
 7m/s 6m/s

 5m/s

 4m/s 4m/s
 3m/s

vo
tla

ge
(V

)

Time（s）

 3m/s

 
Figure 8. Diagram of Voltage time history (RL = 100 kΩ). 

5.2. Dynamic Characteristics Analysis 
By calculating the damping coefficient, mass ratio, and Reynolds number selected in 

this study, it can be found that the value of Ug/Uv is much less than 1, which means that 
the square column FIM has a strong interaction between VIV and galloping [37]. It can be 
considered that galloping continuously affects the amplitude and locking area of VIV, and 

10
8

6
4

2
0

200
400

600

800

10000

5

10

15

20

25

30

R L（kΩ）

V
otlage

（
V

/m
m

3）

Wind speed（m/s）

(a) (b)

10
8

6
4

2
0

200
400

600

800

10000

20

40

60

80

100

120

R L(kΩ)
O

utputpow
er(μw

/m
m

3)
Wind speed（m/s）

Figure 7. (a) Output voltage density and (b) power density with different load resistance.

To further explore the working performance of the harvester, it was necessary to
analyze the piezoelectric film dynamics characteristics. Figure 8 displays the time history
of the output voltage with a load resistance of 300 kΩ at a wind speed of 3–7 m/s. As
demonstrated, the voltage signal fluctuates periodically for each case associated with a
fixed wind speed, and the amplitude of the voltage increases distinctly as the wind speed
increases (from 0.14 V to 1.12 V). Apparently, the periodic variation of output voltage is
attributed to the periodic evolution of the strain around the fix end of the cantilever beam.
Because the galloping amplitude increases consistently with the increase of wind speed,
the strain becomes larger for the cases with stronger incoming wind, which further leads
to higher output voltage.
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5.2. Dynamic Characteristics Analysis

By calculating the damping coefficient, mass ratio, and Reynolds number selected
in this study, it can be found that the value of Ug/Uv is much less than 1, which means
that the square column FIM has a strong interaction between VIV and galloping [37]. It
can be considered that galloping continuously affects the amplitude and locking area
of VIV, and VIV also changes the form of galloping. In order to better understand FIM
and flow structure, this paper introduces four kinds representative simulation examples
under various Reynolds numbers (Re = 2054/6161/16,430/20,537). This includes four FIM
regions: VIV initial branch, VIV upper branch, VIV-galloping transition, and galloping.
These vortex patterns, at different Reynolds numbers, are analyzed. In addition, the effects
of the amplitude and frequency responses for square columns are discussed as well.

This paper presents the instantaneous vorticity diagram, velocity cloud diagram, and
velocity streamline of the square column at different wind speeds (Reynolds number),
including the vortex shedding at the highest and lowest points of the structure. In those
figures of the vortex pattern, the red vorticity is positive, which means counterclockwise
rotation; the blue vorticity is negative, which means clockwise rotation. There are two
vortex shedding modes: 2S mode (in one cycle, two vortices shed from opposite sides
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of the cylinder) and 2P mode (in each cycle, two pairs of vortices shed from each side of
the cylinder). As the wind speed changes, the vortex shape can change, and the branch
transitions affect each other [27]. In this paper, the vortex shedding mode is studied by
observing the instantaneous vorticity contours around the square column oscillator, where
the vorticity is defined as ω = ∂v/∂x− ∂u/∂y.

When the wind speed is 1 m/s (Re = 2054), the harvester is in the initial branch of
VIV. As shown in Figure 9, the 2S model of the vortex shedding mode in the wake can be
clearly observed; that is, the positive vortex and the negative vortex separate out during
the vibration period. This mode is the classical von Kármán Street. In this range, as Re
increases, the size of the vortex is larger than when Re is low, which is consistent with the
numerical results given by Ding et al. [27].
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As the wind speed increases to 3 m/s (Re = 6161), the number of vortices shed in
each oscillation cycle increases. In each oscillation period, 6 vortices shed from the square
column and shed in the 2P + 2S mode of two pairs of vortices and one single vortex, as
shown in Figure 10. This vortex pattern is known as Quasi-2P, which means two pairs of
vortices shedding per cycle.
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When the wind speed reaches 8 m/s (Re = 16,430), the vortex pattern in the
VIV-galloping transition zone is formed. As shown in Figure 11, ten vortices shed from the
square column in an oscillation cycle. According to previous research by Ding [38], a similar
near-wake vortex structure was captured as 4P + 2S. There are still many controversies
about the identification method of multiple vortices shedding from square columns. At the
highest and lowest points of vibration, a single vortex appears first. In the next downward
or upward process, a total of two pairs of vortices appear.
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When the wind speed is 10 m/s (Re = 20,537), the FIM of the square column is in
the fully developed galloping state zone. As shown in Figure 12, there is a fundamental
difference between galloping vibration and VIV. When entering the galloping state, a total
of 14 vortices will shed in the manner of 6P + 2S in each oscillation period, two of which
are separate vortices. According to the results of previous studies [39], it can be found that
the vortex of the square column is at high Reynolds number. The type is np + 2S, where n
represents the number of p and increases with the increase of Reynolds number or flow
rate. The 2S vortex appears at the highest point and the lowest point of the displacement
and falls off respectively.
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Figure 12. Vortex pattern and Velocity distributions contour (Re = 16,430).
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Within a certain wind speed range (as shown in Figures 13–16), the lift coefficient
decreases with the increase of wind speed. When the wind speed is relatively small, the lift
coefficient becomes a regular oscillation under low Reynolds number [40]. In the initial
stage of VIV, comparing the lift coefficient and the displacement graph, the lift coefficient
and the displacement performance are highly consistent. The displacement curve and lift
coefficient curve are transformed by FFT to obtain the frequency spectrum. In Figure 15b,
it can be seen that both the displacement spectrum and lift spectrum have multiple peak
frequencies and that they maintain good consistency and their main frequency is close to
the natural frequency. When galloping occurs, the dominant frequency of the displacement
spectrum decreases, and the lift spectrum frequency is more obviously controlled by the
vortex deflation frequency. In Figure 16b, when the square column enters the state of
full galloping, it can be found that the proportion of low frequency in the displacement
spectrum increases. The increase in its proportion is also an important signal for the full
development of galloping. When galloping occurs, the frequency response of the square
column is obviously different; its vibration is hardly controlled by the vortex breakaway
frequency and the main frequency is always lower than the natural frequency, which also
leads to the occurrence of large vibrations.
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Figure 14. (a) Amplitude and lift coefficient versus time; (b) Frequency spectrum (Re = 6160).
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Figure 15. (a) Amplitude and lift coefficient versus time; (b) Frequency spectrum (Re = 16,430).
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Figure 16. (a) Amplitude and lift coefficient versus time; (b) Frequency spectrum (Re = 20,538).

Through the numerical simulation results, as the wind speed increases (the Reynolds
number also increases), although the lift coefficient decreases, the lift applied to the
two sides of the bluff body continues to increase. The maximum displacement of the
system also increases, which causes an increase in the instantaneous stress of the piezoelec-
tric thin film. Combined with the results of the output power of the energy harvester, it
can be found that when the Reynolds number is low, the bluff body’s vibration amplitude
and frequency are low, so the harvesting efficiency is at a low level. However, when the
incoming wind speed increases and begins to enter the galloping state, the coupling effect
of VIV and galloping can accelerate the onset of galloping and increase the displacement
response of the bluff body at low and medium wind speeds. After entering full galloping,
the amplitude of the entire system will increase significantly, and the output power will
be increased. In addition, compared with VIV, the vibration of the square column in the
galloping process is unstable, and its amplitude will increase with the increase of the
incoming flow velocity. This means that the kinetic energy of the fluid captured by the
square column FIM harvesting system will continue to increase with the increase of the
incoming wind, and there is no limit [41]. Therefore, it can be seen that the square cylinder
has obvious advantages in the application of FIM energy conversion, especially under high
Reynolds number. The form of wind-induced vibration is closely related to the damping,
elastic stiffness, and mass of energy harvester, which is used as the power source of energy
collection. The harvesting efficiency of the flexible structure can be further improved only
through analysis of its dynamic characteristics and reasonable design.
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6. Conclusions

In this study, a novel type of piezoelectric energy harvester was developed based
on the principle of wind-induced galloping. The dynamic model of the fluid–structure
interaction system was established, and CFD techniques in conjunction with the Newmark-
βmethod were adopted to obtain corresponding numerical solutions. Wind tunnel tests
were also conducted to detail the working performance of the harvester. The main findings
and conclusions are summarized below:

1. The flexible structure experienced four FIM stages. The wind speed increased to
8 m/s in the transition zone between vortex-induced resonance and galloping. When
the wind speed reached 10 m/s, it started to gallop completely, and the harvester
system experienced low-frequency and high-amplitude vibration.

2. Within the studied wind speed range of 3–10 m/s, it was found that as the wind
speed increased, the vortex-induced shedding frequency of the flexible structure first
increased and then decreased, but the associated displacement increased consistently.

3. When the resistance was constant, the output voltage and power of the harvester
increased with the increase of wind speed. When the wind speed was constant, the
output voltage increased consistently with increasing resistance. By contrast, the
output electric power first increased and then decreased with the resistance, and there
was optimal resistance at around 100 kΩ. The maximum output power of the energy
harvester was 119.7 µW/mm3.
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Appendix A

#include “udf.h”
#include “stdio.h”
#include “time.h”
#include “stdlib.h”
#include “math.h”
static real speed[ND_ND];
static real weiyi_before[ND_ND],sudu_before[ND_ND],jiasudu_before[ND_ND];
static real speed_nz;
static real weiyi_before_nz,sudu_before_nz,jiasudu_before_nz;
static real number_1 = 0;
static real number_2 = 0;
DEFINE_CG_MOTION(first,dt,vel,omega,time,dtime)
{

real m[ND_ND],k[ND_ND],zunibi[ND_ND],zunixishu[ND_ND],freq_rad[ND_ND];
real beta,gama;
real k_equ[ND_ND],inertia_equ[ND_ND],damping_equ[ND_ND],force

_equ[ND_ND];
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real code_1,code_2,code_3,code_4,code_5,code_6,code_7;
real weiyi[ND_ND],sudu[ND_ND],jiasudu[ND_ND];
real m_nz,k_nz,zunibi_nz,zunixishu_nz,freq_rad_nz;
real beta_nz,gama_nz;
real k_equ_nz,inertia_equ_nz,damping_equ_nz,force_equ_nz;
real code_1nz,code_2nz,code_3nz,code_4nz,code_5nz,code_6nz,code_7nz;
real weiyi_nz,sudu_nz,jiasudu_nz;
real hezai,force,moment,li[ND_ND],liju[ND_ND];
real cog[ND_ND];
int x, y, z;
#if !RP_NODE
FILE *fp_1;
#endif
#if !RP_HOST
Domain *d;
Thread *t;
face_t f;
cell_t c;
real NV_VEC (A);
d = Get_Domain(1);
t = DT_THREAD(dt);
for(x=0; x<ND_ND; x++)

{
cog[x] = DT_CG(dt)[x];

}
Compute_Force_And_Moment(d, t, cog, li, liju, FALSE);
hezai = li[0];
force = li[1];
moment = liju[2];
#endif
node_to_host_real_4(hezai,force,moment,cog[1]);
if (number_1 == 0)

{
weiyi_before[1] = 0;
sudu_before[1] = 0;
jiasudu_before[1] = 0;
weiyi_before[0] = 0;
sudu_before[0] = 0;
jiasudu_before[0] = 0;
weiyi_before_nz = 0;
sudu_before_nz = 0;
jiasudu_before_nz = 0;
number_1 = number_1 + 1;

}
m[1] = 1; /**the mass of vertical movement, Kg**/
k[1] =1; /**the stiffness of vertical movement, N/m**/
zunixishu[1] =1;
gama = 0.5;
beta = 0.25;
code_1 = gama/(beta*dtime);
code_2 = 1/(beta*dtime*dtime);
code_3 = (1-gama)*dtime;
code_4 = gama/beta;
code_5 = gama*dtime*(0.5-beta)/beta;
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code_6 = 1/(beta*dtime);
code_7 = (0.5-beta)/beta;
k_equ[1] = k[1] + code_1*zunixishu[1] + code_2*m[1];
inertia_equ[1] = m[1] * (code_2*weiyi_before[1] + code_6*sudu_before[1] +

code_7*jiasudu_before[1]);
damping_equ[1] = zunixishu[1] * (-1*sudu_before[1] - code_3*jiasudu_before[1] +

code_1*weiyi_before[1] + code_4*sudu_before[1] + code_5*jiasudu_before[1]);
force_equ[1] = force + inertia_equ[1] + damping_equ[1];
weiyi[1] = force_equ[1]/k_equ[1];
sudu[1] = sudu_before[1] + code_3*jiasudu_before[1] + code_1*(weiyi[1]-weiyi_

before[1]) - code_4*sudu_before[1] - code_5*jiasudu_before[1];
jiasudu[1] = (force - zunixishu[1]*sudu[1] - k[1]*weiyi[1])/m[1];
weiyi_before[1] = weiyi[1];
sudu_before[1] = sudu[1];
jiasudu_before[1] = jiasudu[1];
speed[1] = sudu[1];

#if !RP_NODE
fp_1 = fopen(“Fluent_couple.dat”,”a+”);
fprintf(fp_1, “%.16lf %.16lf %.16lf %.16lf %.16lf %.16lf %.16lf \n”, time, hezai, force,

moment, weiyi[1], sudu[1], jiasudu[1]);
/**1_shijian, 2_zuli, 3_shengli, 4_liju, 5_niuzhuanjiao(hudu), 6_jiaosudu, 7_jiaojia-

sudu, 8_shuxiangweiyi(m), 9_shuxiangsudu, 10_shuxiangjiasudu, 11_zhongxinshuxiang-
weizhi**/

fclose(fp_1);
#endif
host_to_node_real_3(sudu[0],sudu[1],sudu_nz);
#if !RP_HOST
NV_S(vel, =, 0.0);
NV_S(omega, =, 0.0);
if (!Data_Valid_P())

return;
vel[1] = sudu[1];
#endif

}
DEFINE_CG_MOTION(second,dt,vel,omega,time,dtime)
{

host_to_node_real_3(speed[0],speed[1], speed_nz);
#if !RP_HOST

vel[1] = speed[1];
#endif
}
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