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Abstract: The reliability and durability of the proton exchange membrane (PEM) fuel cells are vital
factors restricting their applications. Therefore, establishing an online fault diagnosis system is
of great significance. In this paper, a multi-stage fault diagnosis method for the PEM fuel cell is
proposed. First, the tests of electrochemical impedance spectroscopy under various fault conditions
are conducted. Specifically, prone recoverable faults, such as flooding, membrane drying, and air
starvation, are included, and different fault degrees from minor, moderate to severe, are covered.
Based on this, an equivalent circuit model (ECM) is selected to fit impedance spectroscopy by the
hybrid genetic particle swarm optimization algorithm, and then fault features are determined by the
analysis of each model parameter under different fault conditions. Furthermore, a multi-stage fault
diagnosis model is constructed with the support vector machine with the binary tree, in which fault
features obtained from the ECM are used as the characteristic inputs to realize the fault classification
(including fault type and fault degree) online. The results show that the accuracy of the basic fault test
and subdivided fault test can reach 100% and 98.3%, respectively, which indicates that the proposed
diagnosis method can effectively identify flooding, drying, and air starvation of PEM fuel cells.

Keywords: fuel cell; fault diagnosis; support vector machine; equivalent circuit model

1. Introduction

The energy shortage and environmental pollution problems caused by using fossil
fuels are becoming increasingly severe, which means new and clean alternative energy
sources are gradually becoming the key research direction of various countries [1]. The
proton exchange membrane (PEM) fuel cell has become one of the ideal power sources for
new energy transportation due to the advantages of high efficiency, fast start-up speed,
environmental protection, and lower operating temperature [2]. However, the promotion
and large-scale commercial application of PEM fuel cells are restricted by their service life
and reliability [3]. Under vehicular conditions, improper internal states management can
lead to adverse phenomena, such as reactant starvation, membrane drying, and flooding,
finally affecting output performance and service life. Material and structural optimization
and design, as well as manufacturing methods for internal components, including mem-
brane [4], catalyst layer [5], gas diffusion layer [6], and bipolar plate [7], can fundamentally
alleviate these failures. On the other hand, advanced system control and management
to ensure that the fuel cell works under the right conditions are also important, where
the online fault diagnosis system can detect the early stage of the fault in time so that the
operating conditions can be adjusted in time to prevent further deterioration, which is of
great significance to improving the reliability and lifetime of PEM fuel cells [8].

For an online fault diagnosis system, two major elements, namely, the information
acquisition module and diagnosis module, are included. In terms of critical information
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extraction, techniques are mainly divided into two main categories: physicochemical tests,
such as pressure drop measurement, neutron imaging, and magnetic resonance imaging;
electrochemical methods: such as polarization curve, current pulse injection, and electro-
chemical impedance spectroscopy (EIS) [9]. The gas pressure drop between channel inlet
and outlet is an effective signal for the determination of gas transfer resistance, which
is closely associated with flooding failure, but it seems that drying information cannot
be obtained [10]. Neutron imaging and magnetic resonance imaging can realize internal
in situ measurement but are not suitable for on-board applications due to limitations of
measurement and price [11]. The polarization curve or voltage under specific current
density is the most direct indicator to judge output performance and is easy to obtain by
cell voltage monitor, while it is not accessible to distinguish fault type since all failures
are ultimately a drop in voltage [12]. Current pulse injection mainly reflects ohmic resis-
tance, which is primarily related to membrane water content, thus flooding or starvation
cannot be accurately located [13]. On the other hand, the electrochemical impedance
spectroscopy analyzing internal dynamics of PEM fuel cells at different time scales from
the perspective of the frequency domain has been widely applied in performance assess-
ment [14,15]. Legros et al. [16] found that PEM fuel cell flooding mainly affected the mass
transfer impedance and cathode Warburg impedance by EIS measurement under fault
experiment and further proved the feasibility of using EIS to diagnose flooding fault. Simi-
larly, Debenjak et al. [17] measured the EIS of an 80-piece PEM fuel cell stack and found
that the impedance at 30 Hz, 100 Hz, and 300 Hz had more significant differences under
flooding and drying, so they concluded that the impedance at these frequency points could
be used for fault diagnosis. Considering that the faster impedance acquisition with quick
calculation techniques had been already proposed for low-cost online application [18], by
this, the EIS-based feature acquisition is applied in this paper.

Fault diagnosis is an essential prerequisite for fault-tolerant control and fault elimina-
tion, and Gao et al. [19] presented a comprehensive review of the real-time fault diagnosis
method from model-based and signal-based perspectives. As for PEM fuel cells, fault diag-
nosis methods can mainly be divided into the model-based method, data-driven method,
and hybrid method [20–22]. The model-based approach, where the mechanism model
or empirical model that can predict the system performance is needed, detects typical
faults by a residual evaluation based on the variance between the predefined model and
measured signal. In detail, the mechanism model shows satisfactory accuracy, but it is
not suitable for online applications due to its high computation. In contrast, the empirical
model with a simpler expression and fewer parameters, such as the equivalent circuit
model (ECM), is more popularly used in fault diagnosis of PEM fuel cells. For example,
Fouquet et al. [23] improved the traditional Randles ECM by replacing the double-layer
capacitor with a constant phase element (CPE) and provided a qualitative explanation
for the variation of the model parameters under flooding and drying. Rubio et al. [24]
proposed two kinds of ECM and established the correlation between the parameters of
ECM and internal states within the PEM fuel cell to diagnose flooding and drying fault.
For another, the data-driven diagnosis method that considers the PEM fuel cell as a black
box detects fault via artificial intelligence method, statistical method, and signal processing
method based on analyzing a large amount of historical data [25,26]. Li et al. [27] applied
Fisher discriminant analysis to extract characteristic parameters from voltage and used the
support vector machine to classify faults of fuel cells, which achieved good results both
offline and online. Benouioua et al. [28] analyzed the singularities of the output voltage
signal of PEM fuel cell via wavelet transform and further classified the flooding fault of fuel
cell accurately by using the k-nearest neighbor method. Riascos et al. [29] used Bayesian
networks classification for the PEM fuel cell fault diagnosis. Note that the data-driven
diagnosis method is essentially the analysis of data, and the accuracy of its diagnosis results
depends on the training of data, which means that high precision requires a particular
scale of data. However, the acquisition and storage of large amounts of data are often
not easy, which requires many prior experiments and has high requirements on hardware
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resources. Recently, several researchers have used EIS as the information acquisition to
diagnose fuel cell faults in combination with a data-driven approach. Zhang et al. [30]
proposed a diagnosis method based on fuzzy clustering by extracting graphic features from
the EIS of PEM fuel cell as indicators to complete the fault diagnosis of different degrees of
flooding and drying. Lu et al. [31] designed an online fault diagnosis system via online
EIS calculation, and the parameters of the ECM identified by the least square method were
input into the model on the basis of a machine-learning algorithm to complete the diagnosis.
Their proposed system successfully diagnosed the flooding and drying faults of the PEM
fuel cell with an accuracy of 90.9%. Inspired by the characteristics of the model-based
method and data-driven method, these two methods can be combined, namely the hybrid
method [22]. Recently, Djeziri et al. [32] proposed a hybrid method that combines a prior
physical model and data-driven updated kernel for fuel cell failure diagnostics, where the
updated kernel is enabled when the estimation error between the predicted and measured
values of stack voltage surpasses a predefined threshold. Similarly, Pan et al. [33] combined
a model-based adaptive Kalman filter and data-driven NARX neural network to realize
fuel cell failure diagnostics. From another perspective, the fault diagnosis of the PEM fuel
cell based on external signals is inseparable from the sensor measurement. The accuracy
of measurement data is the premise of subsequent diagnostic applications. In the actual
application of fuel cell vehicles, sensors may encounter significant measurement errors
and complete failure. In general, the underlying software of the fuel cell system control
unit may determine whether there is a complete failure through analog detection. As for
measurement errors, an example is given by Won et al. [34], where the air flow meter fault
caused by reduced measurement sensitivity was detected by an artificial neural network
classifier and a residual-based diagnosis model. In comparison, this paper assumes that all
sensors, including impedance measurement equipment, can work normally. The failure of
the PEM fuel cell itself is the focus of research.

Although the above methods have made a significant effect on the fault diagnosis
study of PEM fuel cells, there are still some challenges. Firstly, respecting fault features
extraction based on EIS with a predefined ECM, the least-squares or directly software fitting
is usually used for EIS fitting thanks to their fast convergence speed, but the initial value of
various components of ECM needs to be set in advance artificially, which is not conducive
to the online application of diagnosis. What is more, the vehicular fuel cell system operating
under dynamic conditions has been facing a wide variety of situations with different fault
types/degrees. It seems that incorrect fault degree detection may lead the controller to
take drastic measures, even fault type is correctly identified, which may result in the fault
aggravation or occurrence of other faults. Therefore, fault degree detection is also essential,
and a case of the detection and identification of air stoichiometry fault with different
degrees was given by Pahon et al. [35], where the fault diagnosis tool was established by
wavelet transform technology. Zheng et al. [36] also proposed a data-driven fault detection
tool on the basis of reservoir computing to study faults under four degrading operating
conditions. However, multi-degree fault diagnoses of membrane drying, flooding, and air
starvation are often overlooked. Considering these research gaps, it is strongly incentivized
to design an innovative multi-stage online impedance-based fault diagnosis method for
improving fuel cell management robustness. In this study, first, a comprehensive fuel cell
fault experimental procedure is carried out, in which flooding, membrane drying, and air
starvation, covering from minor to moderate and severe, are included. Accordingly, a fuel
cell failure data set is established. Second, an improved Randles ECM is introduced to
fit EIS by the hybrid genetic particle swarm optimization algorithm, in which the initial
values of ECM components are replaced by parameter ranges, avoiding the accurate initial
parameter selection. Then, a support vector machine with the binary tree (BT-SVM) is
introduced for the detection of fault types, where part of the fitted ECM parameters is
selected as characteristic inputs to realize the fault type classification, which can further
distinguish the fault degree on the basis of fault types.
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2. Experimental Setups
2.1. Experimental Platform

The PEM fuel cell tested here is a single cell with an active area of 50 cm2 commercial
membrane electrode assembly (MEA) produced by Shanghai Fuel cell Vehicle Powertrain
Co. LTD. The flow field structure within the anode/anode graphite bipolar plate is a
three-channel snake flow field, and the flow field of coolant is parallel straight structure.
The general connection structure of the experimental test system is shown in Figure 1.
The fuel cell test bench (G60, Greenlight, Vancouver, BC, Canada) is used to monitor
the external state and control the operating parameters, such as gas stoichiometry, inlet
humidity, pressure, and cell temperature. The electrochemical workstation (Reference
3000AE with 30k Booster, Gamry Instruments, Warminster, PA, USA) is applied to measure
the EIS, and a booster is added to amplify the disturbance signal in the workstation
(the original equipment is not suitable for EIS testing at high current density). Consider
that a minor voltage disturbance can lead to a considerable change in current, the EIS
experiment is conducted under galvanostatic mode by sweeping frequencies covering the
range of 5 kHz to 0.1 Hz with 10 points per decade (when the low frequency is as low as
0.01 Hz and 0.001 Hz, the measurement time will increase to about 1 h and 10 h, which is
not conducive to stable measurement). Furthermore, in order to ensure that the system
approximately meets the linear condition during impedance measurement, the amplitude
of the disturbance signal should be as small as possible. On the other hand, respecting the
interference of noise and the measurable precision, the amplitude of the disturbance signal
should not be too small. For this, the amplitude of the current disturbance selected is 8% of
the DC load to ensure a significant trade-off between system linearization conditions and
signal-to-noise ratio. Moreover, before each EIS measurement under corresponding fault
test conditions, the PEM fuel cell should be sufficiently stable until cell voltage does not
change obviously to ensure measurement accuracy.
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2.2. Experiment Procedures

This paper aims to propose a multi-stage fault diagnosis method and validate its
performance under flooding, membrane drying, and starvation conditions. First of all, a
standard operating condition referred to typical vehicle working conditions is established
prior to fault impedance testing, and specific information is displayed in Table 1. Based on
previous papers, Table 2 presents primary causes of flooding, drying, and starvation by
external operating conditions and internal effects [31,37]. It seems that changing operating
conditions is convenient and the most direct way to create anticipant faults by directly
influencing internal transfer and reaction process. Hence, fault conditions are adjusted
based on the standard operating condition. On the other hand, according to polarization
curves and sensitivity analysis of polarization loss against different operating conditions in
our previous works [38], it can be noted that cell temperature has a significant influence on
the ohmic resistance and proton transfer resistance. A higher cell temperature can lead to a
lower cell voltage at a smaller current density because this condition easily causes lower
water activity. In contrast, the PEM fuel cell presents a poor performance at a lower cell
temperature since water vapor condenses easily. Moreover, the convection on the cathode
side is conducive to the discharge of liquid water, if the air stoichiometry is reduced, the
convection effect will be weakened, and the fuel cell is extremely prone to flooding. At the
same time, higher inlet gas humidity and higher current density are also recommended
in the flooding experiment. Membrane drying is usually the opposite of flooding fault,
and its occurrence can adjust operating conditions in the reverse direction of flooding
experiments. As for the vehicular fuel cell system, air starvation is more likely to occur
than hydrogen starvation in the process of dynamic load change since the mixture air is
more viscous, and the response hysteresis of the air compressor is more severe than that of
the proportional valve [39,40]. Hence, the air starvation fault experiment is designed here,
and air stoichiometry is the main regulating parameter.

Table 1. Fuel cell standard operating condition.

Name Symbol Unit Value

Current density I A/cm2 1
Inlet pressure 1 Pc/Pa kPa 150/160

Cell temperature T ◦C 75
Gas stoichiometry λc/λa - 2.5/1.5

Inlet humidity RHc/RHa % 50/60
1 The operating pressure is relative pressure.

Table 2. Fault cases of external operating conditions and internal effect.

Fault Type Causes by Operating Conditions Internal Effect

Flooding

• Excessive humidity in the inlet gases
• High working current
• Lower cell temperature
• Lower water discharging rate

• Liquid water accumulates
• Porous media and gas flow channel are blocked
• Hydrophobic materials degradation

Drying
� Insufficient humidification
� Higher gas stoichiometry
� Excessive cell temperature

� Membrane dehydration
� Membrane crack
� Proton transport path is cut off
� Coolant loop blocked

Starvation

� Higher current density
� Inappropriate operating pressure
� Lower gas stoichiometry
� Flooding is a factor

� Carbon in porous media dissolve, in turn, leading to porosity reduction
� Gas supply pipeline is blocked
� Insufficient reactant concentration at catalyst layer

The basic fault experiments designed based on the standard operating condition are
shown in Table 3. The experimental steps of the basic fault are as follows: (1) Adjust the test
bench to make the fuel cell run stably for 20 min under the standard operating condition;
(2) Set the minor flooding condition according to Table 3, and run steadily for 30 min and
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then measure EIS 20 times, and stabilize for 10 min between each two EIS measurements;
(3) Change the condition to moderate flooding and severe flooded conditions, repeat step 3
to complete the EIS measurement of medium and severe flooding; (4) Repeat steps 1, 2, and
3 to complete the basic fault EIS measurements of minor, moderate, and severe degrees of
drying and air starvation.

Table 3. Fuel cell basic fault operating condition adjusted based on standard operating condition 1.

Fault Level Degree ∆I(A/cm2) ∆T(◦C) ∆λc ∆RHc/∆RHa

Flooding
Minor 1 0.5 −10 −0.3 20%/20%

Moderate 4 0.7 −15 −0.5 30%/30%
Severe 7 0.7 −20 −0.8 40%/40%

Drying
Minor 1 −0.5 - - −30%/−10%

Moderate 4 −0.6 5 0.2 −40%/−10%
Severe 7 −0.7 10 0.5 −50%/−10%

Starvation
Minor 1 - - −0.8 -

Moderate 4 - - −1.0 -
Severe 7 - - −1.2 -

1 A positive value means increasement, and a negative value stands for decrement. As for the degree information,
the higher the number, the more serious the fault.

Again, four subdivided fault degree experiments of fuel cells are defined, on account
of the above basic fault (degree: 1, 4, 7) tested procedures. The subdivided fault degrees
are labeled as 2, 3, 5, and 6, respectively, in which degree 2 corresponds to the minor level
of the fault, degrees 3 and 5 represent the moderate level, and degree 6 to the severe level.
The specific subdivided fault conditions are listed in Table 4, and each test sequence is
tested 5 times.

Table 4. Fuel cell subdivided fault operating condition adjusted based on standard operating condition 1.

Fault Level Degree (Basis) ∆I(A/cm2) ∆T(◦C) ∆λc ∆RHc/∆RHa

Flooding

Minor 2(1) 0.05 - - 5%/5%

Moderate
3(4) −0.05 - - −5%/−5%
5(4) 0.05 - - 5%/5%

Severe 6(7) −0.05 - - −5%/−5%

Drying

Minor 2(1) - - 0.1 −5%/0%

Moderate
3(4) - - −0.1 5%/0%
5(4) - - 0.1 −5%/0%

Severe 6(7) - - −0.1 5%/0%

Starvation

Minor 2(1) - - −0.05 -

Moderate
3(4) - - 0.05 -
5(4) - - −0.05 -

Severe 6(7) - - 0.05 -
1 A positive value means increasement, and a negative value stands for decrement. As for the degree information,
the higher the number, the more serious the fault.

2.3. Data Set

So far, a total of 200 basic fault experiments and 60 subdivided fault experiments
have been conducted. First, 150 measured samples extracted from basic fault experimental
data were selected as the training data set for diagnosis model training. The remaining
50 samples from basic fault date set and 60 samples in subdivided fault data set were
utilized for model accuracy detection. The data usage instructions are shown in Figure 2.
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3. Equivalent Circuit Model and Parameters Identification
3.1. Equivalent Circuit Model

The equivalent circuit model composed of several simple equivalent components,
separating from the complex internal mechanism process, is an effective means to analyze
the impedance spectroscopy of the PEM fuel cell in real-time and quantitatively calculate
each polarization loss. A typical EIS of the PEM fuel cell and its relation to internal dynamics
are given in Figure 3a, and anode polarization processes are not included because they
show negligible effects on the overall performance loss of the PEM fuel cell [41]. The ohmic
impedance, equaling to the intercept of the spectroscopy and the real axis, mainly refers to
the loss of the proton passing through the membrane and the electron passing through the
electrode material. Furthermore, the impedance from high-frequency to low-frequency is
mainly dominated by proton transfer within the cathode ionomer, charge transfer attributed
to oxygen reduction, and oxygen transfer in the cathode, respectively. The high-frequency
inductive phenomenon is mainly related to equipment disturbance [42]. For another, there
is the same variation trend between the ohmic loss and cathode proton transfer loss, so the
fault characteristic involving proton transport loss in the cathode catalyst layer is ignored
to reduce the calculation of ECM. The traditional Randles model with Warburg element
is shown in Figure 3b, where Rm is the ohmic resistance, and Rct is the charge transfer
resistance, and Cdl stands for the double-layer capacitor attributed to the capacitance effect
between the anode and cathode. Warburg element Zw reflects the oxygen mass transfer,
and its impedance expression is given as:

Zw = Rw
tanh(Tw jω)Pw

(Tw jω)Pw
(1)

where Rw represents the mass transfer resistance; Tw is the time constant; ω is the angular
frequency; and j is the imaginary part. Give that the capacitor with distributed parameters
rather than lumped parameters can better describe real non-uniform structure in porous
electrode, the constant phase element (CPE) can be used to replace the standard double-
layer capacitor, and its impedance ZCPE is expressed as:

ZCPE =
1

Tdl · (jw)Pdl
(2)

where Tdl is the time constant; Pdl is an exponent of the electrode distribution parameters,
and the CPE is a standard capacitor. Based on this, the total impedance of Randles model
with Warburg element and CPE (see Figure 3c) can be calculated as follows:
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Z = Rm +
(Tw jω)Pw · Rct + Rw · tanh(Tw jω)Pw

(Tw jω)Pw + Tdl(jω)Pdl · Rw · tanh(Tw jω)Pw + (Tw jω)Pw · Tdl(jω)Pdl · Rct
(3)

in which Rm, Rct, Rw, Tw, Pw, Tdl, and Pdl are the parameters to be identified. The second-
order RQ (R-CPE) model evolved from the Randles model with CPE, as shown in Figure 3d,
is also frequently used for impedance analysis.
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To select an appropriate ECM for fault feature identification and extraction, the
impedance carried out in the standard operating condition given in Table 1 is chosen
to test the fitting effect of three ECMs mentioned above by Zview software. The Chi-square
is often used to evaluate the fitting accuracy of ECM, which represents the deviation
between the actual value and the fitted value of the model, and its expression is as follows:

χ2 = ∑
(Z0 − Ze)

2

Ze
(4)

where Z0 is the measured impedance; Ze is the estimated impedance of the ECM. The
fitting results are shown in Figure 4 and Table 5. In particular, the initial parameters of
each component are obtained by separate fitting of data in different frequency bands. It
can be observed that traditional Randles model with Warburg element is more deviated
in the middle frequency range because of the characteristics of the standard double-layer
capacitor, while the improved Randles model with CPE and the second-order RQ model
have higher impedance fitting accuracy in the whole frequency range, and the former has
a lower Chi-square value. To this end, the Randles model with Warburg element and CPE
is finally selected for fault diagnosis study.
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Table 5. Chi-square values of fitting results by different ECMs.

ECM Chi-Square Value

Randles model with Warburg element 2.67
Randles model with Warburg element and CPE 0.86

Second-order RQ model 1.30

3.2. Hybrid Genetic Particle Swarm Optimization Algorithm

To avoid initial parameter determination, intelligent optimization algorithms are
more appropriate for online identification. The genetic algorithm (GA) is an evolution-
ary algorithm that imitates the evolution of a population, which mainly includes cod-
ing, fitness calculation, selection, crossover, and mutation steps [43]. The algorithm first
needs to encode the target parameters and initialize individuals to construct the initial
population, then combine the target problem to calculate fitness calculation of the corre-
sponding chromosomal individuals, and on this basis, select the outstanding individuals
with high fitness to complete the genetics operations such as crossover and mutation.
After each process, better populations will be produced, repeatedly subjected to fitness
calculation and genetics operations until the target population is obtained. The particle
swarm optimization (PSO) algorithm is a global search algorithm based on the habits
of the foraging behavior of a flock of birds, which is modified by using the velocity
and position model, and the adaptation calculation is completed through the continu-
ous iteration of particle velocity and position to find the optimal solution [44]. First,
PSO assumes that there exists a particle population (X =

{
x(t)1 , x(t)2 , x(t)3 , · · · , x(t)n

}
) in a

n-dimensional search space, and the position vector of the kth particle in the space at
moment t is X(t)

k =
{

x(t)k1 , x(t)k2 , x(t)k3 , · · · , x(t)kn

}
, k = 1, 2, · · · , n. The position of each particle

is a potential feasible solution in the search space, and the velocity vector corresponding to
the particle at moment t is V(t)

k =
{

v(t)k1 , v(t)k2 , v(t)k3 , · · · , v(t)kn

}
. If the best position searched

by the kth particle in the current space is P(t)
k =

{
p(t)k1 , p(t)k2 , p(t)k3 , · · · , p(t)kn

}
, and the best

position of the whole target population is P(t)
g =

{
p(t)g1 , p(t)g2 , p(t)g3 , · · · , p(t)gn

}
. The iterative

formulas of particle velocity and position can be expressed as:

v(t+1)
k = ω · v(t)k + c1r1

(
p(t)k − x(t)k

)
+ c2r2

(
p(t)g − x(t)k

)
(5)

x(t+1)
k = x(t)k + v(t+1)

k (6)
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where ω is the inertia factor; c1 and c2 are learning factor; and r1 and r2 are random
numbers within in [0, 1]. A comprehensive review of parameter identification techniques
for the PEM fuel cell is given by Priya et al [45], and more detailed information about GA
and PSO can be found in it.

Both GA and PSO belong to the bionic algorithm, and the evolution process of both is
similar. The information is shared among individuals in GA with the population going
through genetics operations so that the whole population can evolve uniformly toward the
optimal solution, making GA obtain high precision. However, the computation of GA is
considerable because of its chromosomes encoding and decoding, which results in a long
convergence time. In contrast, the PSO has fewer parameters with a more straightforward
structure, making it easy to implement and converge quickly. Still, it is easy to fall into
the local optimum and reach a poor result due to the insufficient information interaction
between particles. By this, we combine the advantages of GA and PSO to construct a hybrid
genetic particle swarm optimization algorithm (HGAPSO) for parameter identification of
ECM in the application of PEM fuel cells. The general framework of the HGAPSO is shown
in Figure 5. The selection and mutation are further added on particles at each iteration to
reduce the uncertainties of being trapped into local optima [46].
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3.3. Parameters Identification

In general, the sum of the error squares of the actual measured values and calculated
values will be adopted as the fitness function of the algorithm, which can be expressed as:

F =
n

∑
j=1

(
Z′j − z′j

)2
+

n

∑
j=1

(
Z′′j − z′′j

)2
(7)



Energies 2021, 14, 6526 11 of 22

where n is the total frequency points of EIS; Z′ and Z
′′

are the real and imaginary parts of
the single-frequency impedance measured by the electrochemical workstation, respectively;
and z′ and z

′′
are the real and imaginary parts of the impedance fitted by ECM.

The goal of the HGAPSO algorithm is to minimize the fitness function. However,
the fitness function does not distinguish the impedance at the high and low frequencies
based on Equation (7), which will lead to obvious error of fitting in high frequency. To
improve the fitting accuracy, a frequency weighting factor Wj consisting of the inverse of
the impedance modulus is introduced, as expressed in Equation (8). Wj can be adaptively
adjusted according to the frequency, thus reducing the volatility of the fitness function.

Wj =
1(

Z′j
)2

+
(

Z′′j
)2 (8)

According to Equations (7) and (8), the final fitness function of HGAPSO can be
expressed as:

F =
n

∑
j=1

Wj

(
Z′j − z′j

)2
+

n

∑
j=1

Wj

(
Z′′j − z′′j

)2
(9)

The parameter range is adjusted on account of experimental data and can cover the
extreme conditions of fuel cells, which ensures the stability of the algorithm and make the
online application possible, which is shown in Table 6.

Table 6. Parameter range of critical components of the ECM.

Symbol Unit Range

Rm mΩ · cm2 10~200
Rct mΩ · cm2 10~1500
Rw mΩ · cm2 10~1500
Tw sPw /mΩ · cm2 0.1~1
Pw - 0.5~1
Tdl sPdl /mΩ · cm2 1× 10−5 ∼ 1× 10−4

Pdl - 0.5~1

Four different conditions (normal/flooding/drying/air starvation) test whether the
HGAPSO algorithm could keep high identification accuracy under extreme conditions. The
maximum number of iterations of the HGAPSO is set to 200, and the termination condition
is that the minimum value of the fitness function is less than 1× 10−5. Figure 6 presents the
convergence curves of the fitness function of HGAPSO under the four working conditions.
It is seen that the adaptation curves are relatively smooth in the convergence process,
and the algorithm converges to the same fitness value at a lower number of iterations for
10 consecutive identifications in all four conditions, proving that the HGAPSO algorithm
has good stability and convergence speed in the parameter identification.

Figure 7 shows the EIS fitting results for the above four conditions with the HGAPSO
algorithm and Zview, and the relative deviation between the HGAPSO and the Zview is
less than 3%, which also indicates that the HGAPSO algorithm has sufficient accuracy.
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4. Multi-Stage Fault Diagnosis Based on BT-SVM Algorithm
4.1. Support Vector Machine Algorithm with Binary Tree

Support vector machine (SVM) is a machine learning method based on statistical
learning theory. As shown in Figure 8, the basic SVM is designed to solve the binary
classification problem, and its principle is to find an optimal hyperplane L in the data
set [47]. Hence, the separation distance between the two types of data and the hyperplane L
is the largest, that is, with the L parallel sample boundary l1 and l2 have the largest interval,
and the sample point on the maximum interval sample boundary is the support vector.
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The set of sample data should be set as Di = {xi, yi | xi ∈ Rm, yi ∈ {−1, 1}}n, where xi is
the sample vector, and yi is the sample label, such that the classification function is:

g(x) = w · xi + b (10)

Then the classification interval is:

γi = yi(w · xi + b) (11)

Normalize Equation (11) and one can obtain:

γi =
|g(xi)|
‖ w ‖ (12)

where w is the normal vector to the optimal plane; b is the bias of the hyperplane to the ori-
gin. To maximize the classification interval distance γi, ‖ w ‖ should be minimized, which
is equivalent to minimizing ‖ w ‖2 /2. Therefore, the objective function minimization
problem can be transformed into a plane programming problem with constraints [48]:{

f (x) = sgn
[
∑ α∗i yi(x · xi) + b∗

]
s.t. α∗i [yi(w∗ · xi + b∗)− 1] = 0

(13)

where the optimal Lagrange factor α∗i can be obtained by solving the following convex
optimization problem: 

max
a

n
∑

i=1
αi − 1

2

n
∑

i=1

n
∑

j=1
αiαjyiyj

(
xi · xj

)
s.t. 0 ≤ αi ≤ C, i = 1, 2 · · · , n

n
∑

i=1
αiyi = 0

(14)

in which C is a penalty factor to constrain the error degree of the algorithm. When the
sample data of the system are not linearly separable, a nonlinear mapping, i.e., a kernel
function needs to be introduced to map the sample data into higher dimensions and
transform it into a linear problem for further processing. The kernel function chosen in this
study is a Gaussian kernel function, as shown in the following equation:

K(x, xi) = exp
(
−‖ x− xi ‖2

2σ2

)
(15)

Then the final classification decision function can be shown in the following Equation (16):

f (x) = sgn
[
∑ α∗i yiK(x · xi) + b∗

]
(16)

Nevertheless, the traditional SVM algorithm is a binary classifier that cannot meet
the multiple fault type classification. Therefore, it is necessary to improve the traditional
SVM algorithm by extending its binary classification capability into multi-classification.
Currently, there are two primary forms of SVM-based multiclassification improvement:
one-to-one and one-to-many. In details, one-to-one refers to designing classifiers for the
data set two-by-two, and it is necessary to train N(N − 1)/2 classifiers for the N-class
problem. In contrast, only N classifiers need to be trained in one-to-many, which have
higher efficiency for issues with a more significant number of classes. Recognizing that the
fault of the PEM fuel cell contains three types, the one-to-many SVM is applied to transform
the fault diagnosis of fuel cells into a multiclassification problem in the form of the binary
tree. The whole structure of the designed fuel cell fault diagnosis tool is manifested in
Figure 9. Specially, the backbone of the fault classifier consists of a pre-classifier and three
fault-type classifiers. The pre-classifier is placed first to determine whether the PEM fuel
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cell has faults, and terminate if there is no fault to improve the diagnosis efficiency, which is
consistent with the actual situation that the PEM fuel cell is in the normal status most of the
time during operating. The fault type classifier is designed in the order of flooding, drying,
and air starvation, which is arranged according to the probability of fault occurrence in
the empirical data statistics [49]. Such a design sequence can save computing resources
and improve computing efficiency to a certain extent, which is conducive to the online
application of the diagnostic algorithm. When the PEM fuel cell is diagnosed to be in
specific fault status (flooding, drying, and air starvation), it will continue to enter three
fault degree classifiers to analyze the fault degree further, thus improving the diagnostic
accuracy and providing a more accurate guide for the controller regulation.
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4.2. Fault Feature Extraction and Selection

Figure 10 shows the average EIS under each fault degree of flooding, drying, and
air starvation conditions, respectively, where 0 represents the normal status (standard
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conditions), 1, 4, and 7 labeled by solid line illustrate the three fault levels of minor,
moderate, and severe under the basic fault degree, respectively. At the same time, 2, 3,
5, and 6 labeled by discrete form correspond to the average EIS under the subdivided
fault degree. As expected, there are apparent differences between the EIS curve under
the basic fault degree, while the EIS under the subdivided fault degree is close to the
corresponding basic fault levels. Therefore, the experiments of subdivided fault can further
test the validity of fault degree diagnosis between adjacent basic fault levels.
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Figure 10. Measured average EIS under different fault degrees: (a) flooding; (b) drying; (c) air starvation.

Figure 11 shows the ECM parameters under different operating conditions identified
by HGAPSO algorithm. As can be seen, with the fault degree increasing, Rm, Rw, Tw, and
Pdl have no obvious intersection of the curves under three fault conditions, possessing high
differentiation and good fault type differentiation capability. Rct also increases with the
growth of fault degree after the interpolation of low fault degree. On the other hand, Pw
and Tdl cross over each other as the fault degree growth, and there is no linear relationship
between different fault degrees. In this regard, it can be considered that Pw and Tdl
are not suitable for fault diagnosis so that Rm, Rw, Rct, Tw, and Pdl are selected as fault
feature inputs.

4.3. Results and Discusion
4.3.1. Fault Diagnosis Results

Once the fault features were extracted and filtered, as mentioned in Section 2.3,
150 samples from the basic fault experiments were selected as training data to complete the
offline training of the diagnostic model, and the remaining 50 samples of basic fault data
and 60 samples from the subdivided fault experiments were used as online test data for the
diagnostic model. The diagnostic results are shown in Figure 12, where N represents the
normal status, F, D, and S stand for the fuel cell faults of flooding, drying and air starvation,
respectively. Additionally, the subscript notation “min”, “mod”, and “sev” represent
the three levels of minor, moderate, and severe level, respectively. The number marked
indicates the severity of the fault (five samples in a group). As shown in Figure 12a, it is
seen that the diagnostic model can recognize fault type/degree with 100% accuracy under
the basic fault experiment, and this is because both training and test data are extracted from
impedance parameters under the basic fault conditions. Moreover, among the 60 samples
in the subdivided fault experiment, the diagnostic model only misdiagnosed 1 sample, and
the overall diagnostic accuracy is 98.3%. The misdiagnosis occurred in the 47nd sample,
in which the fault is moderate air starvation in real, but diagnosed as minor level. The
fault type was diagnosed correctly, confirming that the model has a high diagnostic ability
for the fault type. The diagnostic error of the fault degree may be caused by the slight
measurement error of EIS during the experiment. In summary, the fault diagnosis method
proposed in this paper cannot only accurately diagnose flooding, drying, and air starvation
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fault types of the fuel cell based on the EIS, but also has good differentiation performance
in terms of fault degree, which can effectively ensure the controller for fuel cell internal
status regulation, so as to improve the reliability and service life of the PEM fuel cell.
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Figure 11. Fitted results of the ECM under different fault types and degrees.

4.3.2. Algorithm Related Parameters Analysis

It is well known that the amount of training data has a significant influence on the
accuracy or learning ability of diagnostic models. Therefore, in addition to 150 samples for
training, 50 samples and 100 samples were respectively applied for model training, and
the same test set was used to test their accuracy, as shown in Figure 13. It can be seen that
a lower number of training samples can also achieve 100% basic fault diagnosis. As for
subdivided fault conditions, the detection accuracy based on the training of 50 samples
and 100 samples is 90% and 96.7%, respectively, meaning that increasing the number of
samples can improve the detection accuracy in a particular range. Still, the detection result
of 200 samples after training was the same as that of 150 samples (not plotted here), which
may be related to the fact that the training samples are all basic fault data.
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Another critical parameter setting in support vector machines is kernel function
selection. Here, three different kernel functions, including linear, polynomial, and Gaussian,
are compared. The linear kernel is usually used for linearly separable cases, suitable
for the number of features up to about the number of samples. Both polynomials and
Gaussian kernels can map a sample to a higher-dimensional feature space, but higher-order
polynomials have more parameters. Theoretically speaking, when selecting the kernel
function, if we have specific prior knowledge of our data, the kernel function can be
chosen based on the data distribution. If there is no previous information, cross-validation
is usually used to try different kernels, and the kernel with the lowest error is the best
effect. Figure 14 shows the diagnosis results based on different kernels. Observing that all
configurations can achieve a satisfactory diagnostic result under basic fault conditions, but
for subdivided fault, the Gaussian kernel has the best effect, while the accuracy of linear
and polynomial are 70% and 96.7%, respectively.
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5. Conclusions and Future Research Orientations

In this paper, a multi-stage fault diagnosis method based on BT-SVM was proposed to
diagnose the fault type and fault degree of the PEM fuel cell. Firstly, a fault data set was
established, including different fault types and fault degrees. Then, a Randles model with
Warburg element and CPE was selected to extract fault features from the measured EIS. To
realize the online parameter identification of ECM, a parameter identification method based
on HGAPSO was proposed, where the initial values of ECM components were replaced by
parameter ranges, avoiding the initial parameter selection. The relative error of parameters
identified by the HGAPSO algorithm and the software Zview is less than 3% under four
working conditions of normal, flooding, drying, and air starvation. Based on this, a
diagnosis model in conjunction with BT-SVM was constructed and trained by 150 samples
from basic fault experiment data set, where five identified ECM parameters were selected
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as valuable features to be input into the diagnostic model. The remaining 50 samples
from the basic fault data set and 65 samples from the subdivided fault data set were
applied to complete the online fault diagnosis. The results show that the diagnostic model
demonstrates satisfactory performance for both basic fault and subdivided fault with the
accuracy of 100% and 98.3%, respectively, which proves that the proposed diagnosis method
is capable of improving the reliability and durability of the fuel cell system. Furthermore,
the multi-stage fault diagnosis method with different training samples and kernel function
configuration were analyzed.

There are still many improvements in the future:

(1) Impedance online acquisition is the premise of impedance diagnosis. However,
current laboratory impedance measurements are primarily based on expensive test
equipment, which is challenging to use in a real vehicle environment. At present, the
signal processing method based on wavelet variation can calculate the impedance
spectrum covering a wide frequency range quickly online, but it requires an additional
square wave excitation source, and the existing controller resources are challenging
to meet its calculation requirements. Hence, it is necessary to develop a more effi-
cient and fast online impedance calculation method to meet the needs of real-time
fault diagnosis.

(2) In this paper, although varying degrees of failure is produced by changing the ex-
ternal operating conditions, it seems that the complex working conditions of the
vehicle fuel cell system are still not satisfied. In the future, it will be necessary to
simulate fuel cell failure scenarios in extreme environments, such as high temperature,
high humidity, cold, and plateau, based on the environment chamber, and then to
implement diagnostic algorithm validation.

(3) At present, the experimental object is a single cell (MEA level), so it is necessary to
carry out fault experiment and diagnosis for a high-power fuel cell stack. Meanwhile,
except for the overall performance of the stack, failures of the single cell in the stack
also need to be considered.
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Nomenclature

BT Binary tree
CPE Constant phase element
ECM Equivalent circuit model
EIS Electrochemical impedance spectroscopy
HGAPSO Hybrid genetic particle swarm optimization algorithm
MEA Membrane electrode assembly
PEM Polymer electrolyte membrane
RQ Resistance-CPE
SVM Support vector machine
b Bias of the hyperplane
c Learning factor
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Cdl Double-layer capacitor
D Sample data
F Fitness function
g Classification function
I Current density
j Imaginary part
K Kernel function
P Position vector
P Inlet pressure
R Resistance
RH Inlet humidity
r random number
T Cell temperature or time constant
v Particle velocity
V Velocity vector
W Weighting factor
w normal vector
x Particle position
X Particle population
Z0 Measured impedance
Ze Estimated impedance
Z′ Real part of impedance
Z′ Imaginary part of impedance
λ Gas stoichiometry
ω Angular frequency or inertia factor
χ Chi-square
γi Interval distance
α∗i Lagrange factor
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