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Abstract: Ocean energy is a kind of renewable energy contained in seawater, which has the character-
istics of large total reserves, sustainable use, and its being green and clean. Influenced by rising oil
prices and global climate change, an increasing number of countries are attaching great importance
to the strategic position of ocean energy in the future energy sector, and are formulating national
ocean energy development roadmaps and conducting research and development on ocean energy
technologies. Ocean current energy is a widely existing kind of ocean energy with abundant reserves.
However, due to the low current velocity in most of the deep sea, low current energy has not been
effectively exploited. In this paper, the Blade element momentum (BEM) theory based on Vortex
column theory is used to design a special airfoil for low current energy applications, and a prototype
turbine with rotor diameter of 4.46 m and tip speed ratio (TSR) of 6 is fabricated. In order to achieve
stable electric power output, this paper designs a hydraulic conversion power generation control
system with flexible control, and the hydraulic system working pressure designed to 21 MPa. In
this paper, we conducted towing experiments on the prototype of an ocean current energy turbine,
with hydraulic transmission and a control power generation system applied to the low flow rate, and
achieved the target of hydraulic motor speed in the range of 14.7~15.9 r/min and steady-state speed
accuracy in the range of £1%. The research conducted in this paper can provide a research basis for
the efficient exploitation of low-flow ocean current energy.

Keywords: ocean current energy; small ocean current energy turbine; hydraulic energy conversion

1. Introduction

Current energy is an important aspect of marine renewable energy, including offshore
tidal energy, offshore current energy, deep-sea circulation energy, etc. Its energy density is
much greater than other renewable energy sources, its power density is 800 times that of
wind energy and its reserves are abundant. The South China Sea is one of the main areas of
global typhoon activity, with the surface seawater in the South China Sea, when under the
influence of the tropical marine monsoon, forming the flow direction, flow speed and other
characteristics of different currents. The waterways of Jintang, Gushan and Xihoumen in
Zhoushan Islands of Zhejiang Province have an average power density of over 20 kW /m?
and a maximum current speed of over 4.0 m/s, making them the richest ocean current
energy resources in China. Additionally, the development environment and conditions are
very good. The marine energy distribution situation in China’s coastal areas coincides with
the energy demand, and the efficient development and reasonable utilization of marine
current energy can provide electric energy for China’s coastal areas.

As a first-class energy conversion device for ocean current energy, the ocean current
turbine is the core component of ocean current energy power generation devices, and its

Energies 2021, 14, 6499. https:/ /doi.org/10.3390/en14206499

https://www.mdpi.com/journal/energies


https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0001-7987-9094
https://orcid.org/0000-0001-9492-0761
https://doi.org/10.3390/en14206499
https://doi.org/10.3390/en14206499
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/en14206499
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en14206499?type=check_update&version=2

Energies 2021, 14, 6499

20f19

hydrodynamic performance is key to the efficient development and utilization of ocean
current energy. Therefore, the research on the hydrodynamic performance of sea current
energy turbines has been a focus and hotspot of current research. The selected designs of
the airfoil and turbine blades determine the hydrodynamic performance of the sea current
energy turbine. Horizontal-Axis Marine Current Turbines (HAMCT), Vertical-Axis Marine
Current Turbines (VAMCT) and Oscillating-Foil Hydrokinetic Turbines (OFHT) are the
main types of hydrokinetic turbine, as shown in Figure 1. Kai-Wern Ng reviews the research
on HAMCT, covering the aspects of turbine design and novel modifications [1]. Depending
on whether the measures are collected using specific sensors or the built-in generator
phase currents sensors, Xie reviewed the techniques and methods used the detection of
marine current turbines” blade faults [2]. Senad deployed a prototype marine current
energy converter, which is a fixed pitch VAMCT with a permanent magnet synchronous
generator (PMSG) [3]. Katsutoshi Shirasawa proposed a novel submerged horizontal axis
ocean-current turbine, similarly to kites [4]. To improve the water tightness of a marine
current, In-cheol Kim designed a coupling that increased the turbine’s maximum power
output by about 5% and the hydrodynamic coefficient of power by about 2% [5]. LIU
designed and tested a 1/5 th scale three-bladed horizontal axis tidal current turbine and
the maximum power output exceeded 29 kW. However, the power of the turbine is not
very efficient [6]. In order to maximize the lift-drag ratio of the hydrofoil, LUO proposed a
multi-point optimization method for foil in the operating range of from 0° to 15° of the
attack angle [7]. Molland carried out cavitation tunnel experiments on four representative
sections derived from the NACA series, and the results showed that the drag tends to be
higher than published values in the region a = 7-13° [8]. Krishnil presented airfoil sections
for a 20 kW turbine using the Multi-Objective Genetic Algorithm, designed a turbine using
the airfoil characteristics of the USP07-45XX family of airfoils, with the National Renewable
Energy Laboratory (NREL) rotor optimization code HARP_Opt, and provided evidence
of the usefulness of modern airfoils [9]. This paper will focus on the most widely used
Horizontal-Axis Marine Current Turbines (HAMCT).

T

(a) HAMCT (b) VAMCT (c) OFHT
Figure 1. Hydrokinetic turbines.

Regarding the induced motion of water flow through the turbine, many experts have
established relevant theories, all of which refer to the vortex system. When the turbine
blades rotate and move, the motion of the fluid in the flow field of the rotating region is not
a simple one-dimensional constant flow, but a very complex three-dimensional motion. The
velocity of the water flow at any point in space can be seen as a synthesis of the incoming
water velocity and the rotationally induced velocity. We consider that the pressure drop on
both sides of the actuator disc constitutes the energy absorbed by the turbine by the ocean
current energy. In actuator disc theory, the actuator disc is described as a region swept
by a plurality of airfoil blades, with each having the same radial amount of attachment
rings. At the tip of each blade, spiral vortex intensity occurs in the downstream zone and
convection occurs in the local flow. In this way, the accumulation of vortices at the tip of
the spiral leaves forms a tubular surface. A large number of blades are infinitely close to
the tubular surface, and thus become a continuous tubular vortex surface. The properties
of the spiral tubular vortex surface expansion are not determined by the momentum
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theorem, so the tube is approximated as cylindrical, as shown in Figure 2. The vortex
cylinder has a surface vortex that moves along a spiral path with a spiral angle, the angle
of entry at the tip of the leaf. Since the vortex-intensity-induced velocity along the rotating
surface of the turbine parallel to the rotation axis is uniform throughout the turbine disc, it
can be concluded that the axial-induced velocity within the cylindrical wake is uniform
at the distal end of the wake according to the Biot-Savart Law, proving that the vortex
theory assumption is correct. To research the aerodynamic performance characteristics of
turbine, Wu utilized the multi-relaxation time lattice Boltzmann (MRT-LBM) model and
showed that the linearized migration of the tip vortex changed, and the mutual fusion of
wake vortex structures was directionally weakened, inducing downstream reflection [10].
Pan used a large-eddy simulation (LES) model to research the wake vortex structure of
airfoil trailing edge and showed that the lift coefficient and lift-drag ratio increased with
increasing tail thickness parameters, which can impact the position of vortex formation and
the length of the vortex [11]. Raquel studied the wake geometry, core radius and circulation
of tip vortex using a new aerodynamic module labeled AeroVIEW (Aerodynamic Vortex
fllamEnt Wake) based on an implementation of the Free Vortex filament Method (FVM). His
study obtained good predictions of the near-wake vortex dynamics and induced velocity
flow field [12]. Liu solved the enlargement of the vortex system behind the turbine by
using more efficient and mature blade element momentum and showed that the core
growth of the vortex filaments due to turbulence mainly dominate the velocity deficit
along the downstream distance in the wake [13]. Lee conducted the post-stall behaviors
and nonlinear stall, and predicted the aerodynamic performances and wake geometry of
turbines at a high angle of attack using the nonlinear vortex lattice method (NVLM), with
the results showing that the aerodynamic loads and tip vortex curve are in good agreement
with the measured data [14].

Central
Vortex

Bound Vortices

Ocean
Current
Energy

Figure 2. Schematic diagram of vortex system downstream of an ocean current turbine [15].

BEM theory is the abbreviation of blade element momentum theory, which combines
blade element theory and momentum theory and is the basis of blade hydrodynamic
performance analysis. BEM theory assumes that the ocean current is an incompressible,
one-dimensional and non-viscous flow. Lee used the BEM to optimize blade chord length
and the built-in twist angle of the blade, which are important design variables for the
optimal design of the ocean current turbine blade, and his research showed that the blade
efficiency increases by 8.7%, with an annual energy production increase of approximately
7% [16]. To study the performance and wake of a horizontal axis tidal stream turbine,
Nicolo adopted a hybrid Blade Element Momentum-Computational Fluid Dynamics (BEM-
CFD) approach based on the Virtual Blade Model (VBM) [17]. In [17], the researcher also
pointed out that greater environmental ocean turbulence may affect the length and strength
of the wake formed by an ocean current turbine. To maximize power extraction, Franklyn
developed blade element momentum theory to automate the procedure and predicted the
power coefficient and thrust coefficient of the turbine in low-speed regions [18].
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The more mature methods used in turbine blade optimization design at home and
abroad are mainly the Glauert method based on blade element momentum theory, Schmitz
method and Wilson optimization method, while the Wilson optimization method is closer
to the engineering practice. Wilson optimization method takes the maximum power
coefficient at the rated flow rate as the optimization target, the designed blade has higher
energy utilization, and the model is simpler and more convenient to calculate. Many
scholars have conducted related research. To improve the design’s efficiency and accuracy,
Chen combined the blade element momentum and Wilson’s optimization design method to
calculate the blade shape parameters. His tests showed that the method could improve the
energy capture efficiency of the turbine within the range of the changing flow velocity [19].
As the velocity loss caused by drag is confined to the narrow wake, which flows both
from the trailing edge of the airfoil, velocity deficient is only an aspect of the wake and
does not contribute to the velocity loss upstream of the turbine disk [20]. To calculate
the performance of turbine rotors, Sun considered the influence of pressure drop with
Wilson’s tip correction, and the results show a better prediction than the classic BEM
method, especially in the blade tip region [21].

Ocean current energy conversion is similar to wind energy conversion [22]. Since the
hydraulic transmission control power generation system has great potential to absorb wind-
or water-flow energy fluctuation, improving the system reliability, power quality and power
generation, as well as reducing the manufacturing and operation and maintenance costs, it
has attracted the attention of many manufacturers and researchers at home and abroad,
and gradually become a research hotspot. Voltage frequency, as the main evaluation index
of power quality, mainly depends on the speed of synchronous generator for a hydraulic
transmission-controlled power generation system, so if we can capture as much ocean
current energy as possible under the premise of constant speed and precise control of the
hydraulic motor (error of £0.4%), we can realize a great impetus to improve the power
quality and annual power-generation capacity of existing generating units. At the same
time, due to the characteristics of hydraulic flexible connection and strong scalability,
for the characteristics of low flow velocity in deep sea, multiple groups of low-speed
and large displacement hydraulic pumps can be combined to drive the generation of
a single hydraulic motor rotation, which can adapt to ultra-low flow velocity power
generation and enhance the environmental applicability. In addition to this, AC power can
be supplied directly to the deep-sea equipment and DC power can be supplied through
rectifiers. Borkowski showed that the control complexity in small hydropower plants
is mainly caused by special steady-state features of the ocean current turbine, the long-
term constants of the hydraulic system and/or aging-related degradation in the system
performance, and proposed a simple formula verified on a real small hydropower plants,
with 150 kW as the optimal operating curve [23]. To extend the mathematical modeling
methodology, Natalia presented the methodology of spatial harmonic interactions in an
axial flux permanent magnet generator for three-phase generators with asymmetrical
windings and an electromagnetic circuit [24]. In this paper, we use a hydraulic system as
an energy conversion system to achieve variable speed and constant frequency control of
hydraulic power generation from ocean currents, as shown in Figure 3.
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Figure 3. Diagram of an ocean current turbine hydraulic energy generation system.

In summary, this paper focuses on the following three aspects of the study. Firstly,
the design of the airfoil, blade and overall structure of the turbine is based on vortex
theory, blade momentum theory and Wilson design theory, and the flow field simulation
study of the ocean current turbine is carried out by Computational Fluid Dynamics (CFD).
Next, the hydraulic energy conversion control system is designed and applied to the
ocean current energy generation system, the hydraulic system parameters are calculated
and the applicable models of hydraulic components are selected. Finally, the hydraulic
power generation system of sea current energy is tested by towing experiment, and the test
conclusions are drawn.

2. Methods
2.1. Ocean Current Turbine Performance Parameters

The power factor C, is the main parameter to evaluate the performance of the ocean
current turbine, and the calculation formula is as Equation (1)

P

Cp= s
P 0.50V37R2

)
where P is the ocean current turbine power, V is the ocean current velocity, and R is the
radius of the rotor.

The ratio of the linear speed at the tip of the turbine blade to the rated incoming
velocity is called the tip speed ratio, calculated as Equation (2)

_ @R

A
|4

@)
where w is the angular velocity of ocean current turbine rotation.

The size of the thrust of the turbine impacted by the water flow affects the instal-
lation and manufacture of the turbine, etc. The expression of the thrust coefficient is
as Equation (3)

F

Cr=-—
F™ 05pV2nR?

3)
where F is the thrust of the turbine.

2.2. Vortex Column Theory

The vortex causes a change in the axial and tangential velocity of the water flow in
the flow field. Here, the axial interference factor 4 and the tangential interference factor b
are introduced. 2 and b represent the degree of influence of the turbine on the velocity of
the water flow in the axial and tangential directions when the water passes through the
rotating turbine, respectively.
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In the axial direction, after the introduction of the induced factor, the axial water flow
velocity of the water flow in the rotation plane of the turbine is as shown in Equation (4).

V=(1-aW @)

In the tangential direction, the water flow creates a rotation angle in the downstream
tangential direction due to the vortex motion of the water , while the angular velocity of
rotation of the water flow in the upstream tangential direction is 0. According to the Betz’
Law, the angular velocity of the water flow in the plane of rotation of the turbine is /2. If
the angular speed of the turbine is w, then the relative angular velocity of the water flow in
the plane of rotation to the turbine is as shown in Equation (5)

Q
a)+§:(1+b)a) (5)
where (2 is the rotational angular velocity of water flow, w is the rotational angular velocity
of ocean current turbine, and b is the tangential Induced Factor.
From Equations (4)—(6), it can be derived that the tangential linear velocity of the
water flow relative to the turbine at the radius r of the turbine is as shown in Equation (6).

Vie = (14 b)wr (6)

The inlet angle ¢ and relative velocity V, at the radius r of the turbine plane are as
shown in Equations (7) and (8).

- vV (1—a)W
© = arctanv—rt = arctanm 7
Ve = \/(1 —a)?V2 4+ (1+b)*w?r? 8)

2.3. Blade Element Momentum (BEM) Theory

BEM is used to divide the blade into several microsegments along the spreading
direction, and each microsegment is called a blade element. Assuming that there is no
fluid interaction between the individual blade element planes and that each blade element
is only subject to lift and drag, the forces on each blade element can be analyzed and
summarized along the spreading direction to obtain the thrust and torque acting on the
entire blade.

To calculate the thrust and moment of a hydraulic turbine, either in the blade element
theory or in the momentum theory, the axial induction factors a and the circumferential
induction factor b must be obtained. The value of the induction factor cannot be obtained by
using either momentum theory or lobe theory alone. The equations of thrust and moment
derived from blade theory and momentum theory need to be combined to obtain the
correlation between the induction factor and the tip speed ratio. This correlation formula
is the basic form of the constraint function that must be used in the optimal design of a
hydraulic turbine, as shown in Equation (9).

a(1—a) =b(1+b)A? )

2.4. Wilson Theory

Different design methods are chosen to design slightly different blade shapes, which
are directly related to the performance of the ocean current turbine. With the continuous
improvement of the basic theory, the blade design method is also gradually matured. At
present, there are three main blade design methods, namely the Glauert method, Schmitz
method and Wilson method. The Glauert method takes the effects of axial and induction
factors on blade elements, which improves the deficiencies of blade element momentum
theory into account, thus quantifying the interactions between neighboring blade elements
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and making the design theory more consistent with the actual results. Ignoring airfoil
drag and blade tip loss in the calculation of power coefficient simplifies the calculation
process and this method is widely used in the initial design of blade shape. The Wilson
design method is used in the Glauert design method based on the improvement, detailed
derivation of the power coefficient, blade tip speed ratio and tip loss of the mathematical
relationship formula. These are considered so that the power coefficient on each blade
element’s maximum, derived with high calculation accuracy in the low flow rate design
results, is very close to the actual situation. This is the most common blade design method
at present.

The main design model of Wilson theory is as shown in Equation (10).

Objective Function:

dc, 8 3

s A—%b(l —a)FA’dA (10)
Constraint function:

a(1—aF) = b(1 4 b)FA? (11)

Solver function:
BCC,  8msing? (1—aF)aF (12)
ro cosg (1—a)?

Among Equations (10)—(12), the force of the blade tip is crucial to the power coefficient
of the whole turbine, so the blade tip loss cannot be neglected, and the calculation formula
of the blade tip loss coefficient F is as shown in Equation (13).

2 _B(Rr)
F = %acos (e ZRS”W) (13)

Installation angle 6 is calculated as in Equations (14) and (15).

v(l—a) 1 (1—a)

e = o a) A (1+b)

(14)

0=¢—un (15)

3. HAMCT Design
3.1. Design Requirements

To meet the requirements of energy capture in low-flow velocity ocean currents, the
specific operating conditions for the HAMCT design in this paper are as follows. Ocean
current velocity of no more than 0.5 m/s, power no less than 500 W, a distributed horizontal
direction symmetrical arrangement of two turbines, initial design of 1.2 times the power
margin, a turbine design power of 300 W each, seawater density of 1024 kg/m?, design tip
speed ratio of 6, design power coefficient of 0.4, and electromechanical joint efficiency of
0.75. The key parameters of the design are shown in Table 1.

Table 1. HAMCT key parameters.

Key Parameters Numerical Value Unit
Design power 300 w
Incoming velocity 0.5 m/s
Tip speed ratio 6 /
Power coefficient 0.4 /
Seawater density 1024 kg/ m3
Rotor numbers 3 /
Rotor Diameter 4.46 m
Electromechanical efficiency 0.75 /

Rated rotation speed 12.8 r/min
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3.2. Airfoil Selection

At present, there is no airfoil type specifically suitable for ocean current energy turbine
blades, and the most-used airfoil type is still the National Advisory Committee for the
Aeronautics (NACA) series airfoil type or wind turbine special airfoil type. In order
to obtain a better hydrodynamic performance, the airfoil is mainly screened by its lift
coefficient, drag coefficient and pitch moment coefficient. After a preliminary estimation,
we concluded that the Reynolds number Re continuously decreases along the impeller
spreading direction, and the basic interval is 2 x 10°>-3 x 10°. Since the NACA 63 series
airfoil has good lift-to-drag characteristics, this paper focuses on screening the optimal
airfoil in the NACA 63 series airfoil with the best lift-to-drag ratio as the condition. The
results of the airfoil analysis are shown in Figure 4.

NACA 83-412= eni——
NACA 63.512 = [Cemi——
NACA 63.612= [e———.
MACA 83.712= Prasm———
NACA 63-812= —
CliCd(alpha): Cmialpha):
150 020
100 HElE: I I S N S 0.10
50 A | ooo
/ e —
ciica / \ | cm /__/5
o oy ] P
]
]
s e
_100 | am
o 5 10 1% ] 5 10 15
alpha alpha
(a) (b)
MACA 63-412 = [mii——
NACA 83512 = —————— T e
MACA 63-612 = T T
MACH 63-712 = F———
MACH 63-812 = P—
CUCdlalpha): Cmialpha):
150 020

o010

—
\ 00

clice 1 | oem | | —
’———/‘ﬁ

h\

_sp -0.20

alpha alpha

(0) (d)

Figure 4. Comparison of lift-to-drag ratio of airfoils with different Reynolds numbers. (a,b) are the
lift-to-drag ratio and pitch moment coefficient for Re = 2 x 105, (¢,d) are the lift-to-drag ratio and
pitch moment coefficient for Re = 3 x 105.

From the above figure, it can be seen that the NACAG63-8 series airfoils all have the
highest lift-to-drag ratio and more gentle pitch moment coefficients, so the NACA63-8
series airfoils were selected for further analysis. When the relative thickness of the airfoil
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varies from 12% to 25%, the NACA63-812 airfoil has a better performance in terms of
lift-to-drag ratio at different Reynolds numbers, so the NACA63-812 airfoil was chosen as
the design airfoil for this paper.

3.3. Design of Blades

When researching the project, after comparing Vortex Column Theory and BEM
Theory and Wilson Theory, we finally chose Wilson Theory as the design method for the
hydraulic turbine blade by combining the actual working condition demand. Considering
the difficulty of directly solving the parameters in the Wilson Theory model, this paper
uses the fmincon optimization toolbox in MATLAB to optimize the solution for each blade
element parameter and calculate the chord length and mounting angle of each blade
element, etc.

In this paper, the optimization tool Fmincon function in MATLAB was used to op-
timize the solution of each leaf element parameter, and the calculation procedure was
developed by combining the design requirements and the selected airfoil data with Wilson
design theory. In this paper, the blade is divided into 18 sections, which are equally spaced
along the radius direction, and the sections use NACA63-812 wing plus two circular sec-
tions at the root of the blade, totaling 20 sections. The calculated chord lengths and torsion
angles of each section are shown in Table 2.

Table 2. Blade element data at different blade heights.

s o Angle of Lift
Index v/R ¢ (m) Pitch(®) Attack (°) Coefficient

1 0.15 0.3718 25.2859 6 1.25
2 0.20 0.3230 20.2003 6 1.25
3 0.25 0.2825 16.1582 6 1.25
4 0.30 0.2491 12.9672 6 1.25
5 0.35 0.2215 10.4558 6.5 1.3
6 0.40 0.1987 8.4735 6.5 1.3
7 0.45 0.1798 6.8907 6.5 1.3
8 0.50 0.1640 5.5988 6.5 1.3
9 0.55 0.1507 4.5102 6.5 1.3
10 0.60 0.1391 3.5580 6.5 1.3
11 0.65 0.1290 2.6965 7 1.33
12 0.70 0.1198 1.9008 7 1.33
13 0.75 0.1115 1.1672 7 1.33
14 0.80 0.1040 0.5126 7 1.33
15 0.85 0.0971 —0.0249 7 1.33
16 0.90 0.0911 —0.3865 7 1.33
17 0.95 0.0862 —0.4920 7.5 1.35
18 1.00 0.0828 —0.2408 8 1.35

In this paper, the optimal parameters of each blade element calculated by the MATLAB
program are organized and converted to the corresponding coordinates, and the converted
leaf element cross-section is imported into SolidWorks, as shown in Figure 5a. The turbine
model is shown in Figure 5b by placing samples on the basis of each blade element’s
cross-section and establishing the hub model and the model at the blade root connection.
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(b)

Figure 5. Ocean current turbine design results. (a) Blade element section at different blade heights;
(b) Ocean current turbine modeling.

Since parameters such as the load condition, frictional moment of the drive system,
and eccentric moment of the turbine are unknown, the rotational moment of the rotor at
rest for this turbine at different flow rates is calculated in this paper through a dynamic
analysis of the turbine when it is not rotating, and these data can be used as a reference
basis for the turbine’s starting flow rate, as shown in Figure 6. The overall structure of the
ocean current turbine is shown in Figure 7.

200

150 t

100

Torque (Nem)

50

0 0.1 0.2 0.3 0.4 0.5
Water velocity (m/s)

Figure 6. Ocean current turbine torque at different flow rates.
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*. Pump .
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Figure 7. HAMCT overall three-dimensional drawing and assembly structure drawing.

4. Hydraulic Control System Design

This section completes the overall design of hydraulic transmission and control power
generation equipment, designs the hydraulic schematic diagram according to the require-
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ments of hydraulic power generation equipment of ocean current energy, carries out the
scheme design of hydraulic transmission and control power generation equipment, and
completes the manufacturing and assembly of hydraulic power generation equipment of
sea current energy.

4.1. Design of Hydraulic Transmission and Control Power Generation Equipment

The prototype of hydraulic transmission and control power generation equipment
mainly consists of an energy capture device and hydraulic power generation device. In
order to meet the power supply demand of the grid and realize flexible energy conversion,
this paper adopts the parallel distributed hydraulic power generation equipment. The
goal is to control the speed of the variable motor to stabilize around the theoretical speed
of 1500 r/min, with a relative error rate of the speed no greater than +2%, to drive the
synchronous generator to achieve a constant frequency power generation. The power
target of synchronous generator constant frequency power generation is 500 W, the system
working pressure is 21 MPa, the voltage target is 380 V, and the power generation frequency
is 50 Hz. The energy capture device adopts a distributed turbine structure. In order to
monitor the hydraulic transmission and control power generation system in real time, it
needs to be equipped with the necessary sensors.

The kinetic energy of the unstable water flow drives the turbine to rotate and convert
into mechanical energy. The main shaft of the turbine drives the variable speed rotation of
the dosing pump through coupling, which converts the mechanical energy into hydraulic
energy. The hydraulic pipeline connects the dosing pump and the variable motor, and the
hydraulic oil drives the motor to rotate. The control system changes the swashplate tilt
angle of the hydraulic motor in real time to realize the adjustment of the displacement,
so as to ensure the constant speed output of the variable motor and realize the constant
frequency power generation of the synchronous generator, which finally converts the
mechanical energy into stable electric energy. The energy storage device stores the electrical
energy from the generator to cope with different load working conditions.

In the hydraulic transmission-controlled power generation equipment, the synchronous
generator is used, with the advantages of strong environmental adaptability and adjustable
excitation current. Therefore, to meet the requirements of the rated operation of the syn-
chronous generator, the motor output speed should remain stable and reach the rated
speed of the synchronous generator. The energy storage device adopts a lithium battery
pack, which has the advantages of a high energy density, being clean and pollution-free,
etc. The stable DC power from the generator is stored directly in the lithium battery pack
through the DC-DC bidirectional converter.

Figure 8 shows the principle diagram of hydraulic transmission and control power
generation. The system adopts the closed-type volumetric speed control circuit of the
quantitative pump-variable motor, in which the two turbines convert the unstable kinetic
energy of water flow into mechanical energy, and the quantitative pump in the main
oil circuit converts the mechanical energy of the turbine, which is converted with its
coaxial into hydraulic energy. It then provides the pressure energy of oil and outputs the
corresponding flow rate. Speed sensors are set at the main shaft of the two dosing pumps
to detect the pump speed.
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Figure 8. Hydraulic schematic of HAMCT. 101,102—rotors; 201,202—fixed displacement
pumps; 301,302—check valves; 4—safety valve; 501,502,503—solenoid valves; 6—accumulator;
7—pressure sensor; 8—hydraulic pressure gauge; 9—variable displacement hydraulic motor;
10—generator;11—directional valve; 12—flow valve; 13—cooler; 1401,1402,1403—oil filter; 15—tank;
16—refill pump; 17—refill pump motor; 18—relief valve; 19—solenoid valve; 20—pressure-reducing
valve; 21—high-pressure circuit; 22—low-pressure circuit; 23—energy storage device.

A check valve is installed at the outlet of the two fixed displacement pumps to prevent
the oil from flowing back. The safety valve is to prevent the danger caused by high pressure
in the high-pressure circuit, and the set pressure is 21 MPa. Flow sensor and pressure
sensor are installed in the high-pressure circuit to detect the flow and pressure of the
hydraulic circuit in real time. An accumulator is installed on the high-pressure circuit
to improve the stability of the hydraulic circuit during operation and reduce the losses
caused by pressure pulsations. The oil in the high-pressure circuit drives the variable
motor to rotate, converting hydraulic energy into mechanical energy. The reversing valve is
equivalent to opening the switch of the motor displacement mechanism and adjusting the
tilt angle of the motor swashplate to change the displacement of the motor, and the control
system changes the motor displacement in real time so that the motor speed remains stable.
The generator outputs the frequency voltage, converting mechanical energy into electrical
energy. When the hydraulic power generation prototype is working, the solenoid valves
on the high- and low-pressure circuits open. Since this system is a closed circuit, it must
be equipped with an oil-replenishment system to fulfil the function of oil replenishment
and cooling for the main oil circuit when oil leakage and heat generation are unavoidable.
The oil charge pump motor drives the oil charge pump to pump oil from the oil charge
tank and provide oil to the low-pressure circuit through the oil filter and pressure reducing
valve; the pressure of the low-pressure circuit is determined by the outlet pre-sure of the
pressure-reducing valve, which is set at 2 MPa. The oil charge relief valve is set at 5 MPa,
which protects the oil charge system and is also the opening pressure of the displacement
adjustment mechanism. The cooler is installed between the motor return port and the
charge oil tank to cool down the charge oil system return circuit.
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4.2. Hydraulic Transmission and Control Power Generation Equipment Prototype

This prototype adopts the hydraulic drive to convert the unstable kinetic energy of
water flow into stable electric energy, which has the advantages of distributed expansion,
high power density, absorbing fluctuation and stepless speed adjustment. The energy
capture device is mainly composed of a support, vane, quantitative pump and back pressure
valve. The support plays the role of fixed support. The impeller is driven by the water flow
to rotate and convert the kinetic energy of water flow into mechanical energy. The hydraulic
turbine drives the coaxially connected quantitative pump to convert mechanical energy into
hydraulic energy. Hydraulic power generation device mainly consists of variable motor,
valve group, accumulator, synchronous generator, an oil replenishment system, etc. The
variable motor is connected with the dosing pump in the energy capture device through the
hydraulic pipeline to convert hydraulic energy into mechanical energy, and then realize the
conversion of electric energy through the synchronous generator. The intelligent algorithm
controls the internal displacement adjustment mechanism of the motor to realize the real-
time adjustment of the motor displacement, so that the frequency of the output electric
energy can be kept stable under the condition of unstable kinetic energy input of water
flow. The oil replenishment system consists of 0il replenishment pump, oil replenishment
tank, oil replenishment pump motor, solenoid valve, etc. When the pressure in the main
hydraulic circuit is low, the oil replenishment system works to maintain the pressure in the
main system circuit. The whole machine assembly is shown in Figure 9.

Hydraulic Pump-
power controlled
generation valve sets

QUIQ.M) JUSLIND ULII)

Hydraulic control system

B e ) |

Figure 9. Assembly of ocean current turbine and hydraulic power generation control system.

In summary, this section completes the function and scheme design of the hydraulic
transmission and control power generation equipment and clarifies that its working princi-
ple is a pump-motor closed hydraulic circuit speed control system, which mainly consists
of three parts: an energy capture device, hydraulic power generation device and energy
storage device. According to the designed hydraulic transmission and control power
generation equipment scheme, the parameters of hydraulic components in the hydraulic
power generation equipment are calculated and selected, and the hydraulic transmission
and control power generation equipment prototype is assembled to realize the overall
hardware design and construction of the equipment.
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5. Towing Experiment

In order to verify the energy-capture effect of the turbine and the control effect of
the hydraulic power generation control system, a towing experiment of the ocean current
energy turbine is conducted in this paper.

5.1. Basic Information of Towing Experiment

The key laboratory of “Unmanned Underwater Delivery Technology” mainly includes
towing pool and integrated pool. The towing pool is 170 m long x 7 m wide x 6 m deep,
with a maximum test speed of 7 m/s, as shown in Figure 10. The laboratory has the
capability to conduct full-scale model hydrodynamic tests, load separation tests, power
and propulsion system tests, and hydrodynamic noise tests of underwater vehicles in
towing condition.

Figure 10. Towing system for the Unmanned Underwater Delivery Technology Laboratory.

5.2. Towing Experiment Procedure

The towing experiment includes the following steps: commissioning the towing
system, installing the turbine, docking the turbine, initial test of the trailer, towing test,
maintaining still water, saving data, disassembling the turbine, installing the turbine to the
support frame.

Stepl. Commissioning the Towing System

Before the test, the towing system was debugged to ensure the normal operation
of the trailer. The commissioning mainly includes mechanical structure commissioning,
hydraulic locking system commissioning, hydraulic rotation system commissioning, hy-
draulic telescopic system commissioning, electrical control system commissioning, etc.

Step2. Installing the Turbine

The turbine test section was lifted (as shown in Figure 11a) and assembled with the
trailer tie rod section by means of a connecting plate (as shown in Figure 11d). The turbine
was connected to the trailer by M14 x 65 high strength bolts.
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(d)

Figure 11. Pictures of the towing experiment process. (a) Lifting turbine; (b) Turbine underwater;
(c) Fixed turbine; (d) Connection plate.

Step3. Docking the Turbine

The turbine was docked (as shown in Figure 11c) and adjusted after installation was
completed. The adjustment process ensured that the turbine was level and stable.

Step4. Initial Test of the Trailer

For initial commissioning, the trailer towed the turbine and the trailer was commis-
sioned at a speed of 0.05 m/s (as shown in Figure 11b).

Step5. Towing Test

The towing tests were conducted under three different working conditions: 0.1 m/s,
0.3m/s, and 0.5 m/s, respectively (as shown in Figure 12). The running time of the trailer
under each working condition was 60 s.

(@ (b) (©

Figure 12. Towing test under different working conditions. (a) 0.1 m/s working condition;
(b) 0.3 m/s working condition, (c) 0.5 m/s working condition.
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Step6. Maintaining Still Water

In order to prevent the pool fluctuations caused by dragging operation, resulting in a
blocking effect, the operation of each test speed remained still for 30 min after completion,
to ensure that the pool’s underwater water flow was without movement.

Step?7. Saving Data

Using a USB flash drive allows one to make copies of the PLC stored data and obtain
data by connecting the USB port to the back of the PLC through the USB flash drive.

Step8. Disassembling the Turbine

The hydraulic hoses, hydraulic joints and electrical signal connection lines were kept
neat and tidy during the disassembly of the turbine to prevent any breakage. During the
disassembly process, the blades are removed in advance, the turbine is removed from
the dock, and the disassembled and completed test section is installed on the turbine
support frame.

Step9. Installing the Turbine to the Support Frame

The turbine was installed to the turbine support frame and adjusted to ensure the
turbine was level.

6. Results

Figure 13 shows the experimental result curve of the hydraulic motor when the hy-
draulic pump speed was a sine change input. In this case, the load was set constant
at 10 MPa, and the pump speed input was changed to a sinusoidal signal with an am-
plitude of 30~50 r/min. From the experimental curve in the figure, it can be seen that
under the condition of a feed-forward algorithm, the motor speed roughly maintained the
sinusoidal trend of the pump speed input signal with a constant period, i.e., the motor
speed followed the change in pump speed, and the motor speed fluctuated in the range
of 1468~1587 r/min. Under the feedforward PID algorithm, the motor speed lost the si-
nusoidal trend of maintaining the pump speed input signal that the original feedforward
algorithm had, due to the combined effect of disturbing factors such as flow pulsations
generated within the piping and hydraulic components during the experiment, as well as
control accuracy errors in control components such as PLCs, proportional amplifiers and
sensors. A feed-forward algorithm detects the real-time speed of the dosing pump, obtain-
ing the flow rate of the system, and deriving the reference value of the motor displacement
through the flow balance equation. The PID algorithm fine-tunes the motor constant speed
control on the basis of feed-forward coarse-tuning and corrects the larger steady-state error,
so that the feed-forward PID algorithm finally maintained a motor output speed in the
range of 1475~1526 r/min, and the relative error rate of motor speed was +1.73%, which
meets the design requirements and ensures the power-generation quality of the equipment.

—— Feedforward algorithm
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Figure 13. Experimental curve of rotational speed change. (a) Hydraulic pump speed change input
signal, (b) Hydraulic motor speed output signal.
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The hydraulic motor speed conditions and the steady-state accuracy of the hydraulic
motor speed under different flow rate conditions are shown in Figure 14.
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Figure 14. Motor speed under different working conditions. (a—c) show the motor speed at 0.1 m/s,
0.3m/s and 0.5 m/s, respectively; (d—f) show the steady-state accuracy of motor speed at 0.1 m/s,
0.3m/s and 0.5 m/s, respectively.

Combining the above experiments on the effect of pump speed variation on motor’s
constant speed control, it can be concluded that the feedforward algorithm has advantages
in terms of its fast response. When the pump speed or load changes, the feedforward
algorithm can quickly compensate for the motor speed, but it also generates a steady-
state error and cannot restore the original smooth speed, so it is only suitable for rough
commissioning stage. Combining the feedforward algorithm and PID algorithm, the PID
algorithm can further optimize the parameters for the steady-state error generated by the
feedforward algorithm to restore the motor speed to the target speed of 1500 r/min with a
relative error rate of £1.73%, but its response time is slow compared with the feedforward
algorithm, so it is suitable for the precise commissioning stage.

7. Discussion

(1) The turbine starts to rotate from a standstill under the action of an incoming current
and enters the power generation state when the turbine speed reaches a certain speed.
The rotating torque of the generator is small when it is not connected to the load, and
once it is connected to the load, the rotating torque of the generator is mainly determined
by the load power and rotational speed. Considering the low current velocity in the
marine environment, it is necessary to analyze and design the starting torque of the turbine,
i.e., the torque when the turbine starts to rotate from standstill under the action of the
incoming current.

(2) Generally speaking, the torque required to start the hydraulic turbine is only
needed to overcome the static friction torque of the transmission system and the eccentric
torque caused by the eccentricity of the turbine mass. Once the turbine starts to rotate from
a standstill, the static friction becomes dynamic friction, the friction torque of the system
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decreases rapidly, the turbine will more easily enter the acceleration state, and VAMCT has
a lower starting torque than HAMCT, so the study of VAMCT transmission system torque
of VAMCT transmission system will be very meaningful.

(3) As the physical and chemical properties of deep seawater are significantly different
from surface seawater, with the increase in seawater depth, the difficulty of material corro-
sion data accumulation and characterization method research also increases. Therefore, sub-
sequent research also needs to consider the corrosion characteristics of deep seawater, and
select and apply corrosion-resistant materials and protective coatings that suit the marine
environment as the corrosion-resistant guarantee method for power generation equipment.

(4) In the future, to further increase the energy that can be captured by the ocean
currents, researchers may consider extending the size of the ocean current turbine, in which
case the focus needs to be on the maximum lift that the blades can withstand and the
maximum torque that the hub can withstand, based on safety considerations.

8. Conclusions

(1) This paper completes the optimized design of a large-depth low-current kinetic
turbine, develops a special hydrofoil suitable for a low-current deep-sea environment,
proposes a new type of low-speed, heavy-load blade-design theory, and carries out global
optimization with the goal of maximizing the rated current speed and power capture
under a time-varying current speed. It then realizes a turbine design with high-efficiency
miniaturization and wide energy capture conditions, and achieves a high energy capture
efficiency of no less than 50%. Under working pressure conditions, the system efficiencies
of above 0.1 m/s, 0.3 m/s and 0.5 m/s are found under the three working conditions of
61.7%, 62.1% and 64.2% respectively, no less than 50%; under the highest pressure condition,
the system efficiencies of the above three working conditions are 63.2%, 62.9% and 65.1%
respectively, no less than 50%.

(2) For the objective conditions of low-velocity underwater currents at large depths,
through the advantages of the high energy density of hydraulic transmission, stepless speed
regulation, flexible connection and strong scalability, multiple groups of high-volumetric-
efficiency quantitative hydraulic pumps are used to allow the flow merge to drive variable
motors to form a closed-volume speed-regulation system with high system efficiency. This
helps to gather less energy into an increasing, continuous output, through optimization
of the structure, parameter matching, and the use of new energy-saving technology, such
as a low-voltage DC servo motor direct drive constant pressure variable pump. When
used to achieve on-demand output, this can maximize the reduction in the drive sys-
tem’s own energy consumption, to achieve the efficient transmission and transformation
of micro-energy.

(3) Through the towing experiment, we completed the test of a hydraulic conversion
power generation system of low-flow sea-current energy with a small hydraulic turbine,
and achieved a rated hydraulic system pressure of 21.5 Mpa, maximum system pressure of
25 MPa, and steady-state accuracy of motor speed of £1%, which verified the accuracy of
the hydraulic turbine energy capture and hydraulic system control.
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