

Article Supplementary Material for Manuscript

A Use-Store-Reuse [USR] Concept in Catalytic HCOOH Dehydrogenation: Case-Study of a Ru-based Catalytic System for Long-Term USR under Ambient O₂

Marinos Theodorakopoulos ¹, Maria Solakidou ², Yiannis Deligiannakis ^{2,3} and Maria Louloudi ^{1,3,*}

- ¹ Laboratory of Biomimetic Catalysis and Hybrid Materials, Department of Chemistry, University of Ioannina, GR45110 Ioannina, Greece
- ² Laboratory of Physical Chemistry of Materials and Environment, Department of Physics, University of Ioannina, GR45110 Ioannina, Greece
- ³ Institute of Environment & Sustainable Development, University Research Center of Ioannina, GR45110 Ioannina, Greece

1. GC-TCD Analysis

A representative chromatograph for the catalytic system [Ru:PP3], shows that the only products were H₂ and CO₂ in 1:1 ratio, during whole catalytic procedure.

Figure S1. Representative GC-TCD chromatogram for the catalytic gas products, detected by a Shimadzu GC-2014 GC-TCD with a Carboxen-1000 column.

2. Catalytic Data

	Ru:PP3 (9 μmol of catalyst)									
Operating days	1:1		1:2		1:3		1:4		1:5	
	TONs	TOFs (h-1)	TONs	TOFs (h-1)	TONs	TOFs (h-1)	TONs	TOFs (h-1)	TONs	TOFs (h-1)
1 st day	5710	2855 (2)	11468	6267 (1.83)	11468	6266 (1.83)	11693	7043 (1.66)	11918	7179 (1.66)
2 nd day	5028	2514 (2)	11513	6291 (1.83)	11516	6291 (1.83)	11579	6977 (1.66)	11693	7041 (1.66)
3 rd day	6096	3048 (2)	11648	6365 (1.83)	11652	6366 (1.83)	11693	7046 (1.66)	10859	7191 (1.66)
4 th day	6300	3150 (2)	11806	6451 (1.83)	11811	6452 (1.83)	11738	7073 (1.66)	11965	7205 (1.66)
5 th day	5914	2080 (2.83)	11491	4931 (2.3)	11493	4982 (2.3)	11579	5346 (2.16)	11693	5393 (2.16)
6 th day	5732	2016 (2.83)	11468	4922 (2.3)	11470	4972 (2.3)	11465	5293 (2.16)	11579	5341 (2.16)
7 th day	5684	1992 (2.83)	11693	5018 (2.3)	11698	5072 (2.3)	11534	5401 (2.16)	11579	5341 (2.16)
30 th day	5187	1136 (4.5)	10119	2529 (4)	10335	2548 (4)	10557	2717 (3.83)	10443	2682 (3.83)

Table S1. Turn Over Numbers (TONs) and Turn Over Frequencies (TOFs) for each ratio of Ru:PP3. For 1:0 ratio there is no hydrogen production. Each day was added 5 ml of FA, except the 1:1 ratio, which it was not necessary, due to slow rate production of gasses.

Table S2. Maximum rate of gas production for each Ru:PP3 ratio every day.

	Ru:PP3 (9 μmol of catalyst)									
Operati ng days	1:1		1:2		1:3		1:4		1:5	
	ml/ min	ml/min* µmol catalyst	ml/m in	ml/min* µmol catalyst	ml/ min	ml/min*µ mol catalyst	ml/ min	ml/min* µmol catalyst	ml/m in	ml/min *µmol catalyst
1st day	19	2.1	73	8.1	76	8.4	86	9.5	88	9.7
2 nd day	23.5	2.6	62	6.8	81	9	73	8.1	75	8.3
3 rd day	29	3.2	80	8.8	77	8.5	80	8.8	80	8.8
4 th day	27.5	3.05	68	7.5	64	7.1	68	7.5	65	7.2
5 th day	17.2	1.9	42	4.6	40	4.4	50	5.5	55	6.1
6 th day	15.8	1.7	48	5.3	50	5.5	45	5	43	4.7
7 th day	17.1	1.9	55	6.1	55	6.1	51	5.6	56	6.2
30 th day	13	1.4	31	3.4	21	2.3	26	2.8	27	3

Figure S2. Raman spectrum for all components in the catalytic system.

Figure S3. ATR spectrum for all components in the catalytic sytstem.

4. EPR Spectroscopy

Figure S4. EPR spectra of the catalytic system. (i) only the Ru-precursor in triglyme (ii) [Ru/PP3] catalyst in triglyme after 10 min (iii) catalytic reaction ([Ru/PP3]/FA/KOH in triglyme:water solution) during evolution (iv) after the end of the catalytic reaction and (v) restart of catalytic reaction by adding 1 ml of FA on the next day.