SUPPLEMENTARY INFORMATION

Passive heating and cooling of photovoltaic greenhouses including thermochromic materials

Javier Padilla^{1,*}, Carlos Toledo^{2,3}, Rodolfo López-Vicente³, Raquel Montoya¹, José-Ramón Navarro¹, José Abad¹ and Antonio Urbina^{3,*}

1 Department of Applied Physics and Naval Technology, Technical University of Cartagena, Plaza Hospital 1, 30202, Cartagena. Spain.

2 ENEA Centro Ricerche Portici, Energy Technologies Department, Photovoltaics and Smart Devices Division, Innovative Devices Lab, largo Enrico Fermi 1, 80055 Portici (NA), Italy.
3 Department of Electronics, Technical University of Cartagena, Plaza Hospital 1, 30202, Cartagena. Spain.

* Correspondence: javier.padilla@upct.es (J.P.); antonio.urbina@upct.es (A.U.).

Table S1. Electrical and mechanical characteristics of the PV modules used to build the cubic structures called PV cubes.

Technology	c-Si	a-Si:H	CdTe	OPV
Manufacturer	Atersa	EPS	First Solar	Infinity PV
Model	SHS 100	EPS 80S 24	FS 397 PLUS	customised
P _{nom} [W]	100	80	97.5	16
V _{mpp} [V]	18.1	34.33	46.3	330
I _{mpp} [A]	5.56	2.33	2.11	0.05
V _{oc} [V]	22.2	43.83	58.6	400
I _{sc} [A]	5.93	2.51	2.29	0.07
FF	0.76	0.73	0.73	0.59
Active Area [m ²]	0.70	0.67	0.71	0.55
PCE [%]	14	12	14	3
Length [mm]	1200	1205	1200	1200
Width [mm]	670	605	600	600
Thickness (frame	4.5	6.8	6.8	12
not included) [mm]				
Weight [kg]	8.2	12	12	2.0
Frame (F)	F	F	NF	NF
No Frame (NF)				
Encapsulation	Glass-Tedlar	Glass-Glass	Glass-Glass	Polycarbonate

Figure S2. Evolution of (left) outer wall temperature and (right) inner air temperature as a function of spotlight distance (i.e. irradiance). (Data shown in the figure correspond to white colored wood. Similar exponential evolutions, not shown explicitly for all cases for the sake of clarity, were found for the rest of materials).

	50 cm	62.5 cm	75 cm	87.5 cm	100 cm
			Inner air		
		Brick	-black		
r ²	0.997	0.997	0.999	0.997	0.996
T _{sta}	48.297	41.037	40.344	37.720	35.635
ΔT	26.297	19.037	18.344	15.720	13.635
τ	87.210	110.792	99.027	107.281	98.134
		Brick-	white		
r ²	0.997	0.997	0.997	0.996	0.996
T_{sta}	39.279	37.218	34.250	35.138	33.859
ΔT	17.279	15.218	12.250	13.138	11.859
τ	124.070	122.604	99.273	186.157	176.663
		Wood	l-black		-
r ²	0.996	0.996	0.998	0.998	0.997
T_{sta}	45.444	40.945	37.563	36.799	33.716
ΔT	23.444	18.945	15.563	14.799	11.716
τ	93.555	133.622	99.929	81.607	77.573
		Wood	- white		
r ²	0.997	0.996	0.998	0.997	0.996
T _{sta}	37.308	36.610	34.191	34.645	31.786
ΔT	15.308	14.610	12.191	12.645	9.786
τ	86.175	131.236	153.460	141.649	150.042
		Plasterbo	ard-black		-
r ²	0.998	1.000	0.997	1.000	0.999
T_{sta}	51.726	44.122	40.090	38.985	36.519
ΔT	29.726	22.122	18.090	16.985	14.519
τ	63.675	68.856	63.333	73.245	82.751
		Plasterbo	ard-white		
r ²	0.997	1.000	0.999	0.999	0.985
T _{sta}	43.481	38.284	35.026	35.642	32.728
ΔT	21.481	16.284	13.026	13.642	10.728
τ	56.961	99.531	94.628	113.442	53.926
		Glass	-black		
r ²	0.997	1.000	0.999	1.000	0.999
T _{sta}	54.850	45.637	41.852	40.072	37.242
ΔT	32.850	23.637	19.852	18.072	15.242
τ	52.538	73.973	88.253	87.001	61.614

Table S2. Fitting parameters for equations $T(t) = T_{sta} - \Delta T e^{-\frac{t}{\tau}}$ corresponding to internal air temperature evolution.

Glass-white							
r ²	0.999	0.979	0.999	0.995	0.999		
T_{sta}	45.824	41.232	36.996	36.995	34.426		
ΔT	23.824	19.232	14.996	14.995	12.426		
τ	52.822	33.567	89.936	61.182	103.673		

* Regression coefficients were rounded to the third significant figure. Where the fourth figure is higher, regression coefficient appears as 1.000, which obviously does not correspond to a perfect fitting.

	50 cm	62.5 cm	75 cm	87.5 cm	100 cm
			Front wall		
r ²	0.987	0.984	0.982	0.926	0.993
T _{sta}	70.214	55.914	54.013	45.690	44.435
ΔT	48.214	33.914	32.013	23.690	22.435
τ	19.745	32.160	36.940	19.585	29.295
		Brick-	white		
r ²	0.982	0.979	0.986	0.991	0.989
T_{sta}	52.083	46.254	41.233	38.508	36.938
ΔT	30.083	24.254	19.233	16.508	14.938
τ	44.463	39.736	31.509	60.371	55.632
		Wood	-black		
r ²	0.697	0.924	0.975	0.954	0.970
T_{sta}	68.579	57.573	52.560	51.147	45.227
ΔT	46.579	35.573	30.560	29.147	23.227
τ	12.182	21.474	16.188	17.307	18.440
		Wood	- white		
r ²	0.921	0.928	0.925	0.934	0.956
T_{sta}	56.142	47.928	42.619	41.337	36.396
ΔT	34.142	25.928	20.619	19.337	14.396
τ	13.708	27.833	43.141	42.996	35.460
		Plasterbo	ard-black		
r ²	0.884	0.969	0.965	0.874	0.937
T _{sta}	73.940	58.094	49.862	47.600	44.599
ΔT	51.940	36.094	27.862	25.600	22.599
τ	13.311	14.888	12.509	19.593	23.748
		Plasterbo	ard-white		
r ²	0.942	0.867	0.925	0.957	0.945
T_{sta}	62.243	44.779	41.595	40.579	37.718
ΔT	40.243	22.779	19.595	18.579	15.718
τ	12.122	25.810	37.883	37.885	13.642
		Glass	-black		
r ²	0.989	0.990	0.967	0.987	0.997
T_{sta}	72.515	55.712	50.772	47.977	43.116
ΔT	50.515	33.712	28.772	25.977	21.116
τ	18.077	25.449	39.697	34.313	19.403

Table S3. Fitting parameters for equations $T(t) = T_{sta} + \Delta T e^{-\frac{t}{\tau}}$ corresponding to front external wall temperature evolutions.

Glass-white							
r ²	0.984	0.997	0.990	0.985	0.987		
T _{sta}	54.774	45.866	41.199	40.861	37.228		
ΔT	32.774	23.866	19.199	18.861	15.228		
τ	21.615	19.275	45.539	23.604	49.823		

Table S4. Linear fitting values of inner air and front wall temperatures vs. irradiance, forthe four different materials tested and the two corresponding colorations.

					Inner air			
	Brick- black	Brick- white	Wood- black	Wood- white	Plasterboard- black	Plasterboard- white	Glass- black	Glass- white
r ²	0.978	0.975	0.963	0.835	0.978	0.967	0.978	0.982
Slope	0.020	0.009	0.019	0.009	0.024	0.016	0.029	0.018
T ₀	31.010	31.954	30.029	31.073	31.811	29.826	30.312	31.177
					Front wall			
r ²	0.988	0.962	0.967	0.957	0.984	0.917	0.968	0.975
Slope	0.044	0.024	0.037	0.034	0.047	0.038	0.047	0.027
T ₀	33.318	32.192	37.619	30.723	33.955	28.730	31.571	32.084

Modelling of thermal response under stationary or variable irradiance conditions

To simulate the temperature evolutions in our test box, we used a simple 1-D transient heat conduction finite difference model, with a mesh composed of eight nodes, as shown in the following scheme:

Experimental temperature values available were:

 $t_{air,ext}^{f}$ - Front fluid temperature (air) close to the irradiated front wall.

 $t_{wall.ext}$ - Front wall (tested material) external temperature.

t_{wall.int}- Front wall (tested material) internal temperature.

 $t_{air.int}^{f}$ - Inner air temperature in the front half box volume.

 $t_{air,int}^{b}$ - Inner air temperature in the back half box volume.

 $t_{ins,int}$ - Back wall (insulating material) internal temperature.

 $t_{ins.ext}$ - Back wall (insulating material) external temperature.

 t_{amb} - air ambient temperature.

	Reflectance	C _p / Jkg ⁻¹ K ⁻¹	ρ /kgm ⁻³	Wall thickness /cm	k /Wm ⁻¹ K ⁻¹	
Brick, white	0.424	840ª	1602 ^b	5.00	0 69ª	
Brick, black	0.022	040	1002	5.00	0.05	
Wood, white	0.483	2800ª	130ª	2 70	0 11 ^a	
Wood, black	0.019	2000	450	2.70	0.11	
Plasterboard, white	0.373	Q10a	1 <i>11</i> 0ª	1 75	0 1 0 ^C	
Plasterboard, black	0.025	640	1440	1.75	0.10	
Glass, white	0.426	840b	JJOOp	1 75	0 76 ^b	
Glass, black	0.024	640	2700	1.75	0.76	
Glass Wool, back wa		840 ^d	40 ^d	2.50	0.04 ^b	

Table S5. Optical and thermal values used for each material

^a From "Heat transfer". J. P. Holman.(10th ed.) (2010)

^b From "Heat transfer" A. J. Chapman (4th ed.) (1984)

^c From "Manual técnico Pladur" www.pladur.es (2020)

^d From "Rockwool: Firesafe insulation" (2020)

http://download.rockwool.es/media/111580/catalogo%20industria.pdf

Reflectance values (R) and wall thickness (Δx_1 , Δx_3) were measured, while C_p (specific heat capacity), ρ (density) and k (thermal conductivity) values were obtained from the references listed in the table. The rest of parameters and/or values were calculated/defined as follows:

Front wall (tested material)

Irr-Irradiance

 q_{ref} – Reflected heat flux, defined as $q_{ref}=R\;Irr$, being R the reflectance of the tested material

 q_{inc} – Incident heat flux, defined as $q_{inc} = Irr - q_{ref}$

 $q_{f,ext}^{conv}$ – Exterior convective heat flux (convection between ambient air and front wall), calculated as $q_{f,ext}^{conv} = h_{f,ext}(t_{wall,ext} - t_{air,ext}^{f})$

 q_{rad} – Net radiative heat flux, calculated as $q_{rad} = \varepsilon_f \sigma T_{wall,ext}^4 - \varepsilon_{amb} \sigma T_{amb}^4$, difference between radiated heat flux of the tested wall material and the incident radiated heat flux from ambient. For the sake of simplicity values of ε were considered 0.9 in all cases. $T_{wall,ext}^4$ and T_{amb}^4 were obtained from the stationary experimental values of $t_{wall,ext}$ and t_{amb} expressed in Kelvin. σ =5.67x10⁻⁸ W/m⁻² K (Stefan-Boltzmann constant).

 t_f - Front fluid temperature (air). Obtained from the experimentally measured stationary values of $t_{air\,ext}^f$

 $h_{f,ext}$ - Exterior heat transfer coefficient (convection between ambient air and front wall). This coefficient was calculated as $h_{f,ext} = \frac{5}{4} \frac{NuK_f}{\Delta y}$ a corrected average coefficient corresponding to a vertical wall submitted to a constant incident heat flux. In that expression, Nusselt number was obtained as $Nu = 0.6 (Gr^*Pr)^{0.2}$, where Pr stands for Prandtl number and Gr^* stands for a modified Grashoff number calculated as $Gr^* = \frac{g\beta q_{inc}\Delta y^4}{k_{air}v^2}$, being g= gravitational acceleration, 9.8 ms⁻²; $\beta = \frac{1}{T}$, fluid expansion coefficient, q_{inc} =incident heat flux as defined above; Δy = height of the wall, 0.36 m; v=fluid kinematic viscosity, k_{air} = fluid thermal conductivity. Fluid parameters (air) were evaluated at $t_m = \frac{t_{wall,ext} + t_{air,ext}^f}{2}$.

 q_f^{cond} – Front wall conductive heat flux, calculated as q_f^{cond} = $Irr - q_{ref} - q_{f,ext}^{conv} - q_{rad}$

 k_f - Front wall thermal conductivity

 Δx_i – Nodal spacing, with $\Delta x_1 = \frac{d_1}{2}$, $\Delta x_2 = \frac{d_2}{3}$, $\Delta x_3 = \frac{d_3}{2}$, and d_i thickness of the corresponding element (d_1 =wall thickness, d_2 =inner space thickness, d_3 =insulating wall thickness).

 $q_{f,int}^{conv}$ – Interior convective heat flux (convection between inner air and front wall), equaled to q_{f}^{cond}

 $h_{f,int}$ - Interior heat transfer coefficient (convection between inner air and front wall). This coefficient was calculated as $h_{f,int} = \frac{q_{f,int}^{conv}}{t_{wall,int} - t_{air.int}^{f}}$

 k_{int} - inner air thermal conductivity

Back wall (insulating material)

 k_b - back wall thermal conductivity

 q_b^{cond} - Front wall conductive heat flux, calculated as $q_b^{cond} = \frac{k_b}{d_a}(t_{ins,int} - t_{ins,ext})$

 $q_{b,int}^{conv}$ – Interior convective heat flux (convection between inner air and back wall), equaled to q_b^{cond}

 $h_{b,int}$ - Interior heat transfer coefficient (convection between inner air and back wall). This coefficient was calculated as $h_{b,int} = \frac{q_{b,int}^{conv}}{t_{air,int}^b - t_{ins,int}}$ $q_{b,ext}^{conv}$ – Exterior convective heat flux (convection between back wall and ambient air), equaled to q_b^{cond}

 $h_{b,ext}$ - Exterior heat transfer coefficient (convection between back wall and ambient air). This coefficient was calculated as $h_{b,ext} = \frac{q_{b,ext}^{conv}}{t_{ins,ext} - t_{amb}}$

 q_{loss} - heat flux loss through the rest of box walls. It was estimated as $q_{loss} = nq_{b,ext}^{conv}$, with n=4 (number of walls)

Resulting equations for each node were as follows:

$$\begin{split} t_1' &= t_1 \Big[1 - 2Fo_f \Big(1 + Bi_{f,ext} \Big) \Big] + 2Fo_f \big[t_2 + Bi_{f,ext} t_f + (q_{inc} - q_{rad}) \frac{\Delta x_1}{k_f} \big] \\ &\quad t_2' = t_1 (1 - 2Fo_f) + Fo_f (t_3 + t_1) \\ &\quad t_3' = t_3 \Big[1 - 2Fo_f \Big(1 + Bi_{f,int} \Big) \Big] + 2Fo_f (t_2 + Bi_{f,int} t_4) \\ t_4' &= t_4 \Big[1 - Fo_f \Big(Bi_{f,int} + Bi_{b,int} \Big) \Big] + Fo_f \Big(Bi_{f,int} t_3 + Bi_{b,int} t_5 + q_{loss} \frac{\Delta x_2}{k_{int}} \Big) \\ &\quad t_5' = t_5 \Big[1 - Fo_f \Big(Bi_{f,int} + Bi_{b,int} \Big) \Big] + Fo_f \Big(Bi_{f,int} t_4 + Bi_{b,int} t_6 \Big) \\ &\quad t_6' = t_6 \Big[1 - 2Fo_b \Big(1 + Bi_{b,int} \Big) \Big] + 2Fo_b (t_7 + Bi_{b,int} t_5) \\ &\quad t_7' = t_7 (1 - 2Fo_b) + Fo_b (t_6 + t_8) \\ &\quad t_8' = t_8 \Big[1 - 2Fo_b \Big(1 + Bi_{b,ext} \Big) \Big] + 2Fo_b (t_7 + Bi_{b,ext} t_b) \end{split}$$

Where

$$Bi_{f,ext} = \frac{h_{f,ext}\Delta x_1}{k_f}$$
$$Bi_{f,int} = \frac{h_{f,int}\Delta x_1}{k_f}$$
$$Fo_f = \frac{\alpha_f\Delta\tau}{\Delta x_1^2}$$
$$Bi_{b,int} = \frac{h_{b,int}\Delta x_3}{k_b}$$
$$Fo_b = \frac{\alpha_b\Delta\tau}{\Delta x_3^2}$$
$$Bi_{b,ext} = \frac{h_{b,ext}\Delta x_3}{k_b}$$

	h _{f,ext} /Wm ⁻² K ⁻¹	h _{f,int} / Wm ⁻² K ⁻¹	h _{b,ext} / Wm ⁻² K ⁻¹	h _{b, int} / Wm ⁻² K ⁻¹
Brick, white	5.53	12.03	3.03	8.39
Brick, black	6.37	9.39	4.48	10.06
Wood, white	5.56	7.15	2.80	5.09
Wood, black	6.32	8.04	4.07	5.92
Plasterboard, white	5.80	11.37	3.97	8.63
Plasterboard, black	6.47	7.43	4.94	12.03
Glass, white	5.24	18.83	3.78	4.67
Glass, black	6.46	8.20	4.89	5.97

Table S6. Average values of heat transfer values of the materials as modified when using white or black paint.

