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Abstract: Photovoltaic (PV) power fluctuations caused by weather changes can lead to short-term
mismatches in power demand and supply. Therefore, to operate the power grid efficiently and
reliably, short-term PV power forecasts are required against these fluctuations. In this paper, we
propose a deep RNN-based PV power short-term forecast. To reflect the impact of weather changes,
the proposed model utilizes the on-site weather IoT dataset and power data, collected in real-
time. We investigated various parameters of the proposed deep RNN-based forecast model and
the combination of weather parameters to find an accurate prediction model. Experimental results
showed that accuracies of 5 and 15 min ahead PV power generation forecast, using 3 RNN layers with
12 time-step, were 98.0% and 96.6% based on the normalized RMSE, respectively. Their R2-scores
were 0.988 and 0.949. In experiments for 1 and 3 h ahead of PV power generation forecasts, their
accuracies were 94.8% and 92.9%, respectively. Also, their R2-scores were 0.963 and 0.927. These
experimental results showed that the proposed deep RNN-based short-term forecast algorithm
achieved higher prediction accuracy.

Keywords: Internet of Things (IoT); photovoltaic power forecasting algorithm; recurrent neural
networks (RNN)

1. Introduction

Most of the electrical energy was supplied through fossil fuels. As the use of fossil fuels
for power generation increases, concern for environmental pollution increases. Accordingly,
unexhausted and clean renewable energy, such as solar energy and wind energy, becomes
more significant and attracts more attention. The International Renewable Energy Agency
(IRENA) reported that the world renewable energy capacity increased to 2537 GW in
2019 [1]. Solar energy is one of the promising renewable resources as a substitute for fossil
fuels. In particular, the photovoltaic (PV) system steeply increased more than 14 times over
10 years, the capacity of which was from 41.5 GW in 2010 to 586.4 GW in 2019.

As the portion of PV power in the total electrical energy increases, the impact of
PV power generation on the power grid is also increasing. PV power fluctuates rapidly
with daytime weather changes due to cloud shadows and rainfalls [2]. This PV power
fluctuation penetrates the power grid, causing a short-term mismatch between power
supply and demand. It leads to instability and inefficiency of the power grid operation.
Managing a power grid stably and efficiently requires short-term PV power forecasts to
respond to PV power fluctuation [3–5].

The statistical and machine learning methods, such as ARMA (Auto-Regressive Mov-
ing Average), ARIMA (Auto-Regressive Integrated Moving Average), and regression
models, were studied to forecast PV power generation [6–8]. Various neural network
approaches, like artificial neural networks (ANN), gray prediction model [9], BP-ANN
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model [10], and the radial basis function (RBF) network [11], were proposed. To further
improve the accuracy of PV power prediction, hybrid models were developed [12,13].
Those previous studies were based on historical PV power and weather data and were not
suitable for real-time short term PV forecasting.

The online sequential extreme learning machine with a forgetting mechanism (FOS-
ELM) was introduced to the short-term PV power prediction [14]. Predicted data computed
by a weather forecast model was used as input to the PV prediction model. However,
it required a large amount of computation for weather forecasting. A hybrid one-day-
ahead power forecasting model was proposed, combining wavelet transform, particle
swarm optimization, and support vector machine (Hybrid WT-PSO-SVM) [15]. It used
the actual power data from PV power system SCADA (Supervisory Control and Data
Acquisition) and numerical weather forecast meteorological data for one year with one-
hour time step. To forecast daily generated PV power, several LSTM-RNN models were
studied [16]. Wavelet-based LSTM-DNN model was proposed [17], which used predicted
temperature and solar radiation for the short-term PV power prediction. Also, to enhance
the short-term (24 ahead) forecasting accuracy of distributed PV power output, an adaptive
hybrid predictor subset selection strategy was proposed, which combined binary genetic
algorithm (BGA) and support vector regression (SVR) [18]. For a real-time short-term
PV power forecast, feature data were collected at 5-min intervals [19], where a weighted
Gaussian process regression was proposed to detect outliers in the data for improving the
prediction accuracy.

We propose a short-term PV power generation forecast algorithm based on the deep
recurrent neural network (RNN) in the paper. To reflect the impact of weather changes,
the proposed model utilizes the on-site weather IoT dataset and power data, collected in
real-time. To build a model using low-cost and low-computation power, we used only
IoT sensors without image data, such as solar radiation, module temperature, ambient
temperature, wind speed, and humidity. In experiments, we investigated the best com-
bination of parameters to improve forecast accuracy. The proposed deep-RNN consists
of multiple RNN layers. Each RNN layer includes long-short term memory (LSTM) and
layer normalization units. For experiments, a very short-term forecast algorithm predicts a
power 5 or 15 min ahead. A short-term forecast algorithm also predicts a power 1 h or 3 h
ahead. The experimental results showed that the very short-term forecast accuracy was
99.01% (nMAE)/98.02% (nRMSE) for 5 min ahead prediction and 98.16% (nMAE)/96.58%
(nRMSE) for 15 min ahead prediction using three RNN layers. And the short-term predic-
tion accuracy was 93.75% (nRMSE) and 96.6% (nMAE) for 1 h ahead prediction and 90.29%
(nRMSE) and 94.7% (nMAE) for 3 h ahead prediction.

This paper organizes as follows. Section 2 describes the photovoltaic power generation
system and Power IoT data. In Section 3, the short-term PV power forecasting algorithm
based on deep-RNN is proposed. The experimental results and performance evaluation
are discussed in Section 4, and then the conclusion is summarized in Section 5.

2. Collecting PV Power Datasets Using Power IoT Sensors
2.1. Photovoltaic Power Generation System with Power IoT Sensors

Since PV power systems use solar radiation to generate electricity, PV power is sen-
sitive to weather changes. Therefore, on-site weather information as well as PV power
data is needed to predict short-term PV power generation [20]. Various weather informa-
tion providers like the Meteorological Administration (KMA) publish regularly observed
weather data and weather forecasts. We may collect such data over the Internet. How-
ever, they are released at intervals of at least 1 h, so they are not suitable for short-term
predictions. Since the published meteorological data are measured based on meteorolog-
ical observations, it may differ from the on-site weather conditions of the solar system
considered in this study.

To obtain PV power data and on-site weather information for this study, we adopt a data
acquisition system using the PIoT (Power Internet of Things) device shown in Figure 1. PIoT
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devices measure the DC current and voltage to monitor generated PV power. Also, we use five
IoT sensors to measure solar radiation, module temperature, ambient temperature, humidity,
and wind speed. The collected PIoT data are transmitted and stored to the monitor server.

Figure 1. Photovoltaic power generation system with PIoT sensors.

2.2. The Correlation Analysis of PIoT Data in the Photovoltaic System

In order to design a short-term forecast algorithm, it is important to select learning
parameters. For PV power generation short-term forecast, we analyze the correlation
between the generated power data and the PIoT data in a PV system and select the efficient
parameters accordingly [21]. The Pearson correlation coefficient r is used for the correlation
analysis as follows:

r = ∑ (x− x′)(y− y′)√
∑ (x− x′)2 ×

√
∑ (y− y′)2

(1)

where x and y are the individual samples and x′ and y′ are their sample means. Figure 2
shows the correlation between data parameters measured from PIoT sensors, including the
power and weather data. In general, the PV power generation performance is related to
solar irradiation, module temperature, and ambient temperature. However, wind speed
and humidity are not taken into consideration since these are not directly related to the
current and voltage equation of PV power generation. As shown in Figure 2, the humidity
and wind speed have a relation to the module temperature, resulting in affecting the PV
power generation indirectly [22,23]. They are less significant than solar radiation, module
temperature, and ambient temperature. Depending on how far short-term prediction, the
influence of the parameter will change. In this study, we investigate the prediction impacts
of these parameters through experiments.
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Figure 2. Correlation analysis of PIoT data in the PV system: P (Power), S (Solar Radiation), MT
(Module Temperature), AT (Ambient Temperature), H (Humidity), and WS (Wind Speed).

3. Short-Term PV Power Generation Forecast Based on Deep-RNN Using PIoT Data
3.1. The Review of RNN and LSTM

A general artificial neural network (ANN) consists of inputs and outputs that are
independent of each other. In general, inputs and outputs of time-series applications are
interdependent, so the ANN is known as unsuitable for them. A recurrent neural network
(RNN) is proposed for the time-series applications, as shown in Figure 3 [24]. Unlike ANN,
an RNN unit takes previous hidden states and present inputs as input and makes new
current hidden states and outputs. During training, the RNN parameters are updated
using the backpropagation through time (BPPT) algorithm [25], which is indicated by the
dotted line in Figure 3.

Figure 3. The structure of a recurrent neural network.

Let’s consider an example of RNN as shown in Figure 3. The hidden state ht at time
t can be calculated as follows, where the present input is xt, the recurrent hidden state is
ht−1 at time t− 1, σ is the sigmoid function (or other non-linear functions like hyperbolic
tangent and the rectified linear function), and W and U are the weight matrices and b is
the biases:

ht = σ(Wxt + Uht−1 + b) (2)

yt = Wht (3)

If the length of a data sequence in RNN increases, the training time of RNN drastically
increases. Also, RNN output can converge into 0 or infinite, which is called a vanish-
ing/exploding gradient problem. To overcome the vanishing/exploding gradient problem
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of the RNN model, the long-short term memory (LSTM) network is proposed [26]. The
LSTM network consists of an LSTM cell, instead of an RNN cell, as shown in Figure 4.
Different from RNN cells, the LSTM cell can determine whether to retain or discard the
previous hidden states through a forget gate ( ft) and calculate current hidden states as
output accordingly. The forget gate ( ft) is computed by the sigmoid function (σ) of the
input data (xt) and previous hidden state (ht−1). According to the status of the previous cell
(Ct−1), which is between 0 and 1, it is determined how much of the previous hidden state
is accepted. If Ct−1 is zero, any value of the previous hidden state (ht−1) is not accepted as
an input. If it is one, all of the previous hidden state (ht−1) is accepted. First, the forget gate
ft at time t can be calculated as follows, where the forget gate weight is W f and the forget
gate bias unit is b f :

ft = σ(W f [ht−1, xt] + b f ). (4)

Second, the information value (it) and the new candidate value (C̃t) can be calculated
as follows, where the information value and the new candidate weight are Wi and WC and
the information value and the new candidate bias are b f and bC:

it = σ(Wi[ht−1, xt] + bi) (5)

C̃t = tanh(WC[ht−1, xt] + bC). (6)

Finally, the LSTM cell generates a new state value (Ct) that determines how much
information is forgotten or kept at time t + 1. The output decision ot at time t can be
calculated as follows, where the output decision’s weight is Wo and the output decision’s
bias unit is bo:

Ct = ft × Ct−1 + it × C̃t (7)

ot = σ(Wo[ht−1, xt] + bo). (8)

The current hidden state (ht) is computed by the multiplying ot and the hyperbolic
tangent of Ct.

ht = ot × tanh(Ct) (9)

Figure 4. The structure of an LSTM cell.

3.2. Deep RNN-Based Short-Term Forecasting

For a short-term forecast of PV power generation, we propose a deep RNN with a
multi-layer model as shown in Figure 5. After finishing the training process, the test process
evaluates the performance of the deep RNN model using the test dataset. The proposed
deep RNN model takes in input data measured by PIoT sensors, which are a PV power, solar
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radiation, module and ambient temperature, a humidity, and wind speed in the on-site, to
forecast the short-term PV power generation as shown in Figure 6. Time-series sequence
data is collected periodically through PIoT sensors. Before fed into the proposed model, it
is applied to the pre-processing stage. At first, the collected sequence data is formatted to a
requested interval to fit the input format of a short-term or very short-term forecast model.
In the next, each formatted input data is normalized. In general, a photovoltaic system has
the maximum generating electrical power capacity. Also, according to weather statistics,
weather data generally vary within some range. The normalization of weather input data
is computed as follows:

xnorm =
x− xmin

xmax − xmin
(10)

where x is an input vector, xnorm is the normalized input vector, xmax is the maximum
value of x, and xmin is the minimum value of x. Input normalization helps to improve the
accuracy and execution time of the training process [27].

The proposed deep RNN model consists of multi-layer RNN with layer normalization
and one fully-connected layer. Figure 7 shows one example of a deep RNN, consisting
of 3 layers with a layer normalization and one fully-connected layer. The input layer of
RNN receives normalized input vectors computed in the pre-processing stage. In order to
overcome the vanishing and the exploding problem of the RNN model, each RNN cell is
configured with an LSTM cell introduced in Section 3.1. At the layer i, the output of the tth
RNN cell is computed as follows, where xi−1

t is the output of the tth output of the (i− 1)th
RNN layer including the RNN cell and layer normalization computation:

h(i)t = LSTM(x(i−1)
t , h(i)t−1) where t = 1, 2, · · · , n (11)

In general, batch normalization is not suitable for the RNN model. Instead of batch
normalization, layer normalization [28] is applied to the proposed model by comput-
ing the normalization statistics separately at each time step as follows, where LN is the
computation of layer normalization:

x(i)t = LN(h(i)t1 ) where t = 1, 2, · · · , n (12)

Figure 5. The proposed deep RNN to forecast PV power generation.
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Figure 6. The PIoT sensor inputs and output of the deep RNN model to predict PV power generation.

The layer normalization at the tth time step, LN(ht), is computed as follows:

LN(ht) = f [
g
σt
� (ht − µt) + b] (13)

µt =
1
H

H

∑
j=1

ht,j (14)

σt =
1
H

H

∑
j=1

(ht,j − µt)
2 (15)

where H is the number of hidden units in an LSTM cell. � is the element-wise multipli-
cation between two vectors. b and g are bias and gain parameters of the same dimension
as ht. Layer normalization improves the training and test computation time in our model.
Also, it can effectively stabilize the hidden state dynamics in RNN. Finally, a fully con-
nected layer applied to the output of the last time-step LSTM makes PV power generation
prediction. We optimize the proposed deep RNN model trained with backpropagation
using an Adam optimizer [29] to minimize the prediction loss. Furthermore, we apply the
decayed learning rate method in the training optimization stage. As the training epoch
increases and the prediction loss decreases, the learning rate is decayed to approach the
optimal point. Also, we apply the gradient clipping to our deep-RNN model in order to
limit the magnitude of the gradient. It can make stochastic gradient descent (SGD) behave
better in the vicinity of cliffs since cliffs commonly occur in recurrent neural networks.
After optimizing the training, the inference model built based on deep-RNN is used to
short-term predict PV power generation. Since validation and test datasets are normalized
in the pre-processing stage, the predicted output should be denormalized to compare with
the measured PV power.
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Figure 7. The architecture of Deep-RNN.

4. Experimental Results
4.1. Experimental Environments and Performance Evaluation

For this study, we used a PV power platform, which consisted of 10 serial-connected
solar panels on the roof of the Engineering Building in Konkuk University, Seoul, Korea,
as shown in Figure 8. For the proposed deep RNN-based short-term PV power forecast
model, we measured the on-site PV power and weather data using PIoT sensors installed
in the PV power platform. The DC voltage and current of the PV system and the weather
data such as solar radiation, module, and ambient temperature, humidity, and wind speed
were collected using PIoT sensors summarized in Table 1. We partitioned the whole data
into 3 data sets: train, validation, and test set. The ratio of them is 3:1:1. We conducted the
experiments on the Nvidia Tesla P100 server. The training parameters were presented in
Table 2.

Figure 8. PV Power Platform with IoT sensors in Konkuk University.
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Table 1. Installed solar devices and PIoT sensors.

Parts Device

Solar panels 10 serial-connected LG250S9W panels
Maximum electrical power 2.649 kW

Solar radiance sensor SE1000-SEN-IRR-S1
Module temperature sensor SE1000-SEN-TMOD-S2
Ambient temperature sensor SE1000-SEN-TAMB-S2

Wind speed sensor SE1000-SEN-WIND-S1
Humidity sensor DY-HTT1

Table 2. Training Model Parameters.

Parameters Value

Learning Rate 0.01
Layers 3, 5, 7
Epochs 10,000

Time steps of RNN 12, 24, 36, 48

We trained the model in 10 times and tested these models, and then reported their
average prediction accuracy. To evaluate the prediction accuracy, normalized Root Mean
Square Error (nRMSE), normalized Mean Absolute Error (nMAE) for the maximum power
capacity of a PV system, and R2-score were computed as follows [30]:

nRMSE =

√√√√ 1
N

N

∑
i=1

(P̃i − Pi)2

Pm
(16)

nMAE =
1
N

N

∑
i=1

|P̃i − Pi|
Pm

(17)

R2-score = 1− ∑i(P̃i − Pi)
2

∑i(Pi − P′)2 (18)

where P̃i is the prediction power, Pi is the measured power, Pm is the maximum capacity
of the PV power, and P

′
is the mean of the measured power. nRMSE and nMAE can be

represented as a percentage (%) since the normalized power, varying from 0 to 1, is used
as inputs.

4.2. Experiment Results and Discussion

We designed a set of experiments composed of two groups: one for a very short-term
forecast and the other for a short-term forecast model. Very short-term forecasting experi-
ments were considered for 5-min and 15-min ahead predictions of PV power generation.
For the short-term forecast, experiments were conducted concerning the 1 h ahead and
the 3 h ahead forecast. To make the best short-term forecasting model, we performed
experiments by varying the number of time steps of a RNN layer. In Table 3, the results of
the very short-term forecast were presented. The time interval of an RNN time step was
5 min. Typically the change of the weather features for 5 or 15 min was relatively less than
that for a longer period like 1 h, 3 h, or one day. As shown in Table 3, the deep RNN-based
forecast model using 12 time-steps achieved a smaller prediction error than ones with 24,
36, or 48 time-steps.

Table 4 showed the error of a very short-term forecast by varying the number of RNN
layers. The deep RNN consisting of 3 layers achieved the best prediction accuracy. As the
number of layers increases, the prediction accuracy was degraded a little. So, we chose the
deep RNN consisting of 3 layers for overall experiments in the very short-term forecast.
The 5 min ahead prediction accuracy of PV power generation was 98.9% (nMAE) and 97.9%
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(nRMSE). The 15 min ahead prediction accuracy of PV power was 98.2% (nMAE) and 96.5%
(nRMSE) using 3-layer RNN with 12-time steps.

Table 3. Results of the very short-term forecasting error by varying the number of RNN time steps.

Time Steps
nRMSE nMAE

5 min Ahead 15 min Ahead 5 min Ahead 15 min Ahead

12 0.0214371 0.0348593 0.0109102 0.0179979
24 0.0216388 0.0369868 0.0111218 0.0189269
36 0.0229877 0.0363113 0.0120307 0.0183018
48 0.0220876 0.0369531 0.0114320 0.0186102

Table 4. Results of very short-term forecasting error by varying the number of RNN layers.

RNN Layers
nRMSE nMAE

5 min Ahead 15 min Ahead 5 min Ahead 15 min Ahead

3 0.0214371 0.0348592 0.0109102 0.0179979
5 0.0228140 0.0356600 0.0117408 0.0183442
7 0.0247898 0.0366400 0.0129337 0.0190659

To forecast very short-term PV power generation, we used all of PIoT sensor data
based on the correlation analysis in Section 2.2. Further experiments were conducted to
find the best combination of PIoT sensors with minimal forecasting error. Table 5 showed a
result of very short-term forecasting errors due to the combination of PIoT sensors. For
the very short-term forecasting PV power, the combination of PV Power (P), Solar (S),
and Wind Speed (WS) minimized the error compared to others. Short-term temperature
changes can be further affected by wind speed. Using the selected PIoT sensor combination,
the 5 min ahead prediction accuracy of PV power was improved to 99.1% (nMAE) and
98.0% (nRMSE). The 15 min ahead prediction accuracy of PV power was 98.4% (nMAE)
and 96.6% (nRMSE) using 3-layer RNN with 12-time steps.

Figures 9 and 10 showed the results of 5 and 15 min ahead forecast using the selected
PIoT sensor combination for 3 different weather cases. The deep RNN-based forecast model
used 3 RNN layers, 12 time-steps of RNN, and the sampling interval of 5 min. In Figure 11,
the 5 and 15 min ahead forecast results of PV power generation during 6 consecutive days
were presented, compared with the power measured in the PV platform. Even though the
weather changed to a cloudy or rainy day, the prediction graph in Figure 11 showed the
proposed model made reliable forecast results. The scatter graphs of the very short-term
forecast were presented in Figure 12. R2-scores of 5 min and 15 min ahead forecast were
0.983 and 0.949, respectively.

Table 5. Very short-term forecasting errors according to PIoT sensors: P (Power), Solar (S), Wind
Speed (WS), Humidity (H), Ambient Temperature (AT), Module Temperature (MT).

PIoT Sensor
nRMSE nMAE

5 min Ahead 15 min Ahead 5 min Ahead 15 min Ahead

P + S 0.0201445 0.0349844 0.0096700 0.0173440
P + WS 0.0205237 0.0342443 0.0099648 0.0168421
P + H 0.0211889 0.0375769 0.0106577 0.0197006
P + AT 0.0198681 0.0337223 0.0095489 0.0168570
P + MT 0.0195991 0.0339807 0.0093713 0.0168980

P + S + WS 0.0196118 0.0335514 0.0091331 0.0160464
P + S + H 0.0210492 0.0356164 0.0102950 0.0176773
P + S + AT 0.0197068 0.0350883 0.0094416 0.0174761
P + S + MT 0.0199925 0.0347033 0.0097225 0.0170862

ALL 0.0214371 0.0348592 0.0109102 0.0179979
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(a) Sunny (b) Cloudy (c) Rainy

Figure 9. 5 min ahead very short-term forecast result of PV power generation (Layer = 3).

(a) Sunny (b) Cloudy (c) Rainy

Figure 10. 15 min very short-term ahead forecast result of PV power generation (Layer = 3).

(a) 5 min ahead (b) 15 min ahead

Figure 11. The very short-term forecast results for 6 consecutive days (RNN layers = 3, time steps = 12).

For the short-term PV power generation forecast, the weather change during the
longer period should be observed, since it will be related to the PV power generation trend
during a half-day or a full day. In the experiments, it was predicted based on data collected
during 6, 12, 18, or 24 h. For the short-term forecast, the sampling interval between two
time-steps in RNN was a half hour (30 min) or one hour. If the samples every 5 min
were used, the number of time-steps in RNN increased too large to degrade the overall
prediction accuracy and to increase the training time. Table 6 showed the forecast error of
the short-term PV power generation according to the sampling interval, time-steps, and
layers of RNN. As shown in Table 6, the model that had 3 RNN layers, 12-time steps in
RNN, and the sampling interval with an hour achieved the minimized prediction error.
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The 1 h ahead prediction accuracy of the PV power generation was 94.6% (nRMSE). The
3 h ahead prediction accuracy was 97.1% (nMAE) and 91.8% (nRMSE) and 95.6% (nMAE).

Table 7 showed the results of short-term forecasting error considering various com-
binations of PIoT sensors. For the short-term forecast PV power, the combination of PV
power (P), solar (S) and humidity (H) was chosen because it appeared more stable than the
other combinations. Using the selected PIoT sensor combination, the 1 h ahead prediction
accuracy of PV power improved to 97.4% (nMAE) and 94.8% (nRMSE). The 3 h ahead
prediction accuracy of PV power was 96.2% (nMAE) and 92.9% (nRMSE) using 3-layer
RNN with 12 time-steps.

In the experiments, the short-term forecast model used 3 RNN layers, 24-time steps of
RNN, and the sampling interval with a half-hour. Figures 13 and 14 showed the results
of 1 and 3 h ahead forecast using 3 RNN layers, 24-time steps of RNN, and the sampling
interval with a half-hour. In Figure 15, the PV power generation forecast results for 6
consecutive days were compared with the power measured in the PV platform. Also,
scatter graphs of them were presented in Figure 16 and R2-scores of 1 h and 3 h ahead
prediction were 0.963 and 0.927, respectively.

(a) 5 min ahead prediction (b) 15 min ahead prediction

Figure 12. Scatter graph of the very short-term forecast results (RNN layers = 3, time steps = 12).

Table 6. Results of short-term forecast errors of PV power generation.

(a) Sampling Interval: A Half Hour

RNN Layers Time Steps
nRMSE nMAE

1 h Ahead 3 h Ahead 1 h Ahead 3 h Ahead

3

12 0.057695 0.092774 0.032357 0.059011
24 0.055494 0.097961 0.030231 0.055047
36 0.057168 0.098609 0.031431 0.056543
48 0.055738 0.102766 0.032196 0.059352

5

12 0.060658 0.096450 0.034332 0.060378
24 0.065590 0.105692 0.035126 0.057941
36 0.086854 0.104988 0.049024 0.060416
48 0.101877 0.111261 0.059894 0.063388

7

12 0.058439 0.097542 0.032793 0.062403
24 0.085157 0.111650 0.045277 0.061853
36 0.117063 0.113846 0.063210 0.066362
48 0.111486 0.121041 0.064372 0.066793
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Table 6. Cont.

(b) Sampling Interval: One Hour

RNN Layers Time Steps
nRMSE nMAE

1 h Ahead 3 h Ahead 1 h Ahead 3 h Ahead

3

6 0.055559 0.092245 0.031206 0.057545
12 0.053786 0.081521 0.028862 0.044214
18 0.058728 0.099165 0.032458 0.059825
24 0.067123 0.116084 0.038262 0.069958

5

6 0.055097 0.092629 0.030790 0.058102
12 0.055954 0.119104 0.029299 0.066054
18 0.098553 0.106004 0.058824 0.062490
24 0.119102 0.131118 0.068404 0.079055

7

6 0.057089 0.091231 0.030805 0.056377
12 0.064465 0.118246 0.033785 0.069548
18 0.108424 0.113594 0.060944 0.066392
24 0.126459 0.143920 0.071622 0.084973

(a) Sunny (b) Cloudy (c) Rainy

Figure 13. The 1 h ahead short-term forecast (SI = 30 m, PDL = 12 h, Layer = 3).

(a) Sunny (b) Cloudy (c) Cloudy

Figure 14. The 3 h ahead short-term forecast (SI = 30 m, PDL = 12 h, Layer = 3).

We compared with other well-known forecasting models [31,32] as shown in Table 8.
We implemented ARIMA model and support vector regression model using radial basis
function (SVR-RBF) using scikit.learn package and optimized [33]. ARIMA and SVR-
RBF showed good forecasting performance for very short-term forecasting, but their
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performance became degraded for short-term forecasting. On the other hand, our proposed
model showed steadily forecasting performance superior to others.

Table 7. Short-term forecasting errors according to PIoT sensors.

(a) Sampling Interval: A Half Hour

PIoT Sensors
nRMSE nMAE

1 h Ahead 3 h Ahead 1 h Ahead 3 h Ahead

P + S 0.053376 0.073983 0.027237 0.036884
P + WS 0.054742 0.082392 0.028266 0.042642
P + H 0.057274 0.074718 0.029514 0.037749
P + AT 0.053358 0.079791 0.026367 0.042881
P + MT 0.055065 0.093144 0.028007 0.051992

P + S + WS 0.053748 0.076649 0.026894 0.040960
P + S + H 0.061221 0.077733 0.030781 0.041051
P + S + AT 0.054953 0.080403 0.027865 0.042355
P + S + MT 0.060307 0.099938 0.031417 0.054222

ALL 0.054954 0.097358 0.030009 0.054945

(b) Sampling Interval: One Hour

PIoT Sensors
nRMSE nMAE

1 h Ahead 3 h Ahead 1 h Ahead 3 h Ahead

P + S 0.0514665 0.0720381 0.0266180 0.0381465
P + WS 0.0535264 0.0782458 0.0269258 0.0434581
P + H 0.0517415 0.0733767 0.0261095 0.0378675
P + AT 0.0516080 0.0755971 0.0267553 0.0391916
P + MT 0.0526849 0.0785240 0.0268701 0.0423619

P + S + WS 0.0528003 0.0768050 0.0278792 0.0426302
P + S + H 0.0516003 0.0712736 0.0261328 0.0383220
P + S + AT 0.0521235 0.0731266 0.0270783 0.0381502
P + S + MT 0.0518424 0.0770116 0.0269668 0.0398325

ALL 0.0548797 0.0858394 0.0284395 0.0493673

Table 8. Forecasting performance comparison with other models.

Models

Very Short-Term Forecasting Short-Term Forecasting

5 min Ahead 15 min Ahead 1 h Ahead 3 h Ahead

nRMSE nMAE nRMSE nMAE nRMSE nMAE nRMSE nMAE

ARIMA (1,1,0) 0.03264 0.01445 0.04547 0.02294 0.16800 0.10239 0.29635 0.19911
SVR-RBF 0.04632 0.25613 0.06216 0.23768 0.10772 0.26237 0.15921 0.22381
Proposed 0.01961 0.00913 0.03355 0.01605 0.05160 0.07127 0.02613 0.03832

(a) 1 h ahead prediction (b) 3 h ahead prediction

Figure 15. The short-term forecast results of PV power generation for 6 consecutive days (RNN layers = 3, time steps = 12,
sampling interval = 30 min).
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(a) 1 h ahead prediction (b) 3 h ahead prediction

Figure 16. Scatter plots of short-term forecast results (RNN layers = 3, time steps = 12, sampling
interval = 30 min).

5. Conclusions

In this paper, we proposed the deep RNN-based short-term forecast algorithm of
PV power generation. For the proposed short-term forecast of PV power generation,
we collect on-site power and weather information using PIoT sensors installed in a PV
power system since on-site accurate weather information is significant for the short-term
prediction accuracy. We performed a correlation analysis between the PV generated power
data and meteorological data collected in a PV system to select the weather parameters.
The correlation analysis confirmed that solar power was affected by solar irradiation,
ambient temperature, and module temperature. Furthermore, we found that humidity and
wind speed are significant meteorological features to the change of the PV power through
experimental investigations. The proposed short-term forecast of PV power generation
is designed based on a deep-RNN model using PIoT data. It consists of one input layer,
three hidden RNN layers, and one fully connected output layer. The sequence inputs are
normalized, and their outputs are denormalized.

To evaluate the performance of short-term forecast PV power, we performed various
experiments according to the number of hidden layers, sampling data interval, and the
time steps of a deep RNN-based forecast model. Experimental results showed that the
prediction accuracy was the best when it consists of 3 hidden RNN layers and 12 time-steps
in each RNN layer. In the experiments for the very short-term forecasting algorithm of PV
power generation, the prediction accuracy was 99.1% (nMAE)/98.0% (nRMSE) regarding 5
min ahead forecast, and 98.6% (nMAE) 96.6% (nRMSE) regarding 15-min ahead forecast.
The R2-scores of them were 0.988 and 0.949, also. In the experiments for the short-term
forecasting algorithm of PV power generation, the prediction accuracy was 94.8% (nRMSE)
and 97.4% (nMAE) regarding 1 h ahead forecast and 92.9% (nRMSE) and 96.2% (nMAE)
regarding 3 h ahead forecast. The R2-scores of 1 h and 3 h ahead prediction were 0.963
and 0.927, respectively. Experimental results showed that the proposed deep RNN-based
short-term forecast algorithm achieved higher prediction accuracy compared with ARIMA
and SVR-RFN models.

To improve the current short-term PV power generation forecast model, we will
develop new deep learning forecast models using other weather features like a cloud image
and dust sensors in the future. We will study an abnormality detection method in the PV
power system based short-term forecast algorithm. We expect that it will be useful for
floating or marine photovoltaics.
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version of the manuscript.



Energies 2021, 14, 436 16 of 17

Funding: This research was supported in part by the New and Renewable Energy Technology
Program of the Korea Institute of Energy Technology Evaluation and Planning granted financial
resources by the Ministry of Trade, Industry and Energy, Republic of Korea (20183010014260) and in
part by the 2017 Open R&D program of KEPCO (Korea Electric Power Corporation) (No. R17XH02).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:
PV Photovoltaic
PIoT Power Internet of Things
RNN Recurrent Neural Network
LSTM Long-Short Term Memory
nRMSE normalized Root-Mean Square Error
nMAE normalized Mean Average Error

References
1. IRENA. Renewable Capacity Statistics 2020; International Renewable Energy Agency: Masdar City, UAE, 2020; p. 66.
2. Lappalainen, K.; Wang, G.C.; Kleissl, J. Estimation of the largest expected photovoltaic power ramp rates. Appl. Energy 2020, 278,

115636. [CrossRef]
3. Bugała, A.; Zaborowicz, M.; Boniecki, P.; Janczak, D.; Koszela, K.; Czekała, W.; Lewicki, A. Short-term forecast of generation of

electric energy in photovoltaic systems. Renew. Sustain. Energy Rev. 2018, 81, 306–312. [CrossRef]
4. Majidpour, M.; Nazaripouya, H.; Chu, P.; Pota, H.; Gadh, R. Fast Univariate Time Series Prediction of Solar Power for Real-Time

Control of Energy Storage System. Forecasting 2019, 1, 107–120. [CrossRef]
5. Eltawil, M.A.; Zhao, Z. Grid-connected photovoltaic power systems: Technical and potential problems—A review. Renew.

Sustain. Energy Rev. 2010, 14, 112–129. [CrossRef]
6. Moreno-Muñoz, A.; De La Rosa, J.J.G.; Posadillo, R.; Pallarés, V. Short term forecasting of solar radiation. In Proceedings of the

IEEE International Symposium on Industrial Electronics, Cambridge, UK, 30 June–2 July 2008. [CrossRef]
7. Kardakos, E.G.; Alexiadis, M.C.; Vagropoulos, S.I.; Simoglou, C.K.; Biskas, P.N.; Bakirtzis, A.G. Application of time series and

artificial neural network models in short-term forecasting of PV power generation. In Proceedings of the Universities Power
Engineering Conference, Dublin, Ireland, 2–5 September 2013. [CrossRef]

8. Graditi, G.; Ferlito, S.; Adinolfi, G. Comparison of Photovoltaic plant power production prediction methods using a large
measured dataset. Renew. Energy 2016, 90, 513–519. [CrossRef]

9. Li, Y.; Zhang, J.; Xiao, J.; Tan, Y. Short-term prediction of the output power of PV system based on improved grey prediction
model. In Proceedings of the International Conference on Advanced Mechatronic Systems (ICAMechS), Kumamoto, Japan, 10–12
August 2014. [CrossRef]

10. Shang, X.X.; Chen, Q.J.; Han, Z.F.; Qian, X.D. Photovoltaic Super-Short Term Power Prediction Based on BP-ANN Generalization
Neural Network Technology Research. Adv. Mater. Res. 2013, 791–793, 1925–1928. [CrossRef]

11. Al-Amoudi, A.; Zhang, L. Application of radial basis function networks for solar-array modelling and maximum power-point
prediction. IEE Proc. Gener. Transm. Distrib. 2002, 147, 310–316. [CrossRef]

12. Cervone, G.; Clemente-Harding, L.; Alessandrini, S.; Delle Monache, L. Short-term photovoltaic power forecasting using Artificial
Neural Networks and an Analog Ensemble. Renew. Energy 2017, 108, 274–286. [CrossRef]

13. Sobri, S.; Koohi-Kamali, S.; Rahim, N.A. Solar photovoltaic generation forecasting methods: A review. Energy Convers. Manag.
2018, 156, 459–497. [CrossRef]

14. Wang, J.; Ran, R.; Zhou, Y. A Short-Term Photovoltaic Power Prediction Model Based on an FOS-ELM Algorithm. Appl. Sci. 2017,
7, 423. [CrossRef]

15. Eseye, A.T.; Zhang, J.; Zheng, D. Short-term photovoltaic solar power forecasting using a hybrid Wavelet-PSO-SVM model based
on SCADA and Meteorological information. Renew. Energy 2018, 118, 357–367. [CrossRef]

16. Abdel-Nasser, M.; Mahmoud, K. Accurate photovoltaic power forecasting models using deep LSTM-RNN. Neural Comput. Appl.
2019, 31, 2727–2740. [CrossRef]

17. Ospina, J.; Newaz, A.; Omar Faruque, M. Forecasting of PV plant output using hybrid wavelet-based LSTM-DNN structure
model. IET Renew. Power Gener. 2019, 13, 1087–1095. [CrossRef]

18. Eseye, A.T.; Lehtonen, M.; Tukia, T.; Uimonen, S.; John Millar, R. Adaptive Predictor Subset Selection Strategy for Enhanced
Forecasting of Distributed PV Power Generation. IEEE Access 2019, 7, 90652–90665. [CrossRef]

http://doi.org/10.1016/j.apenergy.2020.115636
http://dx.doi.org/10.1016/j.rser.2017.07.032
http://dx.doi.org/10.3390/forecast1010008
http://dx.doi.org/10.1016/j.rser.2009.07.015
http://dx.doi.org/10.1109/ISIE.2008.4676880
http://dx.doi.org/10.1109/UPEC.2013.6714975
http://dx.doi.org/10.1016/j.renene.2016.01.027
http://dx.doi.org/10.1109/ICAMechS.2014.6911606
http://dx.doi.org/10.4028/www.scientific.net/AMR.791-793.1925
http://dx.doi.org/10.1049/ip-gtd:20000605
http://dx.doi.org/10.1016/j.renene.2017.02.052
http://dx.doi.org/10.1016/j.enconman.2017.11.019
http://dx.doi.org/10.3390/app7040423
http://dx.doi.org/10.1016/j.renene.2017.11.011
http://dx.doi.org/10.1007/s00521-017-3225-z
http://dx.doi.org/10.1049/iet-rpg.2018.5779
http://dx.doi.org/10.1109/ACCESS.2019.2926826


Energies 2021, 14, 436 17 of 17

19. Sheng, H.; Xiao, J.; Cheng, Y.; Ni, Q.; Wang, S. Short-Term Solar Power Forecasting Based on Weighted Gaussian Process
Regression. IEEE Trans. Ind. Electron. 2018, 65, 300–308. [CrossRef]

20. Rupnik, B.; Westbrook, O. Ambient temperature correction of photovoltaic system performance data. In Proceedings of the 2014
IEEE 40th Photovoltaic Specialist Conference (PVSC), Denver, CO, USA, 8–13 June 2014. [CrossRef]

21. Kim, G.G.; Choi, J.H.; Park, S.Y.; Bhang, B.G.; Nam, W.J.; Cha, H.L.; Park, N.; Ahn, H.K. Prediction Model for PV Performance
with Correlation Analysis of Environmental Variables. IEEE J. Photovolt. 2019, 9, 832–841. [CrossRef]

22. Choi, J.H.; Hyun, J.H.; Lee, W.; Bhang, B.G.; Min, Y.K.; Ahn, H.K. Power performance of high density photovoltaic module using
energy balance model under high humidity environment. Solar Energy 2020. [CrossRef]

23. Schwingshackl, C.; Petitta, M.; Wagner, J.E.; Belluardo, G.; Moser, D.; Castelli, M.; Zebisch, M.; Tetzlaff, A. Wind effect on PV
module temperature: Analysis of different techniques for an accurate estimation. Energy Procedia 2013, 40, 77–86 [CrossRef]

24. Graves, A. Supervised Sequence Labelling with Recurrent Neural Networks; Springer: Berlin/Heidelberg, Germany, 2012.
25. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536.

[CrossRef]
26. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
27. Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. arXiv 2015,

arXiv:1502.03167.
28. Ba, J.L.; Kiros, J.R.; Hinton, G.E. Layer Normalization. arXiv 2016, arXiv:1607.06450.
29. Diederik, P.K.; Ba, J.L. Adam: A Method for Stochastic Optimization. arXiv 2015, arXiv:1412.6980.
30. Das, U.K.; Tey, K.S.; Seyedmahmoudian, M.; Mekhilef, S.; Idris, M.Y.I.; Van Deventer, W.; Horan, B.; Stojcevski, A. Forecasting of

photovoltaic power generation and model optimization: A review. Renew. Sustain. Energy Rev. 2018, 81, 912–928. [CrossRef]
31. Atique, S.; Noureen, S.; Roy, V.; Subburaj, V.; Bayne, S.; MacFie, J. Forecasting of total daily solar energy generation using ARIMA:

A case study. In Proceedings of the 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC),
Las Vegas, NV, USA, 7–9 January 2019. [CrossRef]

32. Das, U.K.; Tey, K.S.; Seyedmahmoudian, M.; Idna Idris, M.Y.; Mekhilef, S.; Horan, B.; Stojcevski, A. SVR-based model to forecast
PV power generation under differentweather conditions. Energies 2017, 10, 876. [CrossRef]

33. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;
et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

http://dx.doi.org/10.1109/TIE.2017.2714127
http://dx.doi.org/10.1109/PVSC.2014.6925312
http://dx.doi.org/10.1109/JPHOTOV.2019.2898521
http://dx.doi.org/10.1016/j.solener.2020.10.022
http://dx.doi.org/10.1016/j.egypro.2013.08.010
http://dx.doi.org/10.1038/323533a0
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1016/j.rser.2017.08.017
http://dx.doi.org/10.1109/CCWC.2019.8666481
http://dx.doi.org/10.3390/en10070876

	Introduction
	Collecting PV Power Datasets Using Power IoT Sensors
	Photovoltaic Power Generation System with Power IoT Sensors
	The Correlation Analysis of PIoT Data in the Photovoltaic System

	Short-Term PV Power Generation Forecast Based on Deep-RNN Using PIoT Data
	The Review of RNN and LSTM
	Deep RNN-Based Short-Term Forecasting

	Experimental Results
	Experimental Environments and Performance Evaluation
	Experiment Results and Discussion

	Conclusions
	References

