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Abstract: Crack extraction of solar panels has become a research focus in recent years. The cracks are
small and hidden. In addition, there are particles of irregular shape and size on the surface of the
polycrystalline solar panel, whose reflection position and direction are random. Therefore, there is a
complex and uneven texture background on the solar panel image, which makes the crack extraction
more difficult. In this paper, a crack extraction method combining image texture and morphological
features is proposed. Firstly, the background texture and multi-scale details are suppressed by the
linear filter and the Laplace pyramid decomposition method. Secondly, the edge can be extracted
based on the modulus maximum method of the wavelet transform. Finally, cracks were extracted
by using the improved Fuzzy C-means (FCM) clustering combining the morphological and texture
features of the cracks. To make the extraction results more accurate and reasonable, an improved
region growth algorithm is proposed to optimize the extraction results. All of the above research is
closely centered on the accuracy and stability requirements of the solar cell crack detection, which is
also the key point of this paper. The experimental results show that various improved or innovative
algorithms proposed in this paper can accurately extract the position of cracks and obtain better
extraction results. The detection results have good stability and can be faithful to the actual situation,
which will promote the application of solar cells in more fields.

Keywords: solar panel; crack extraction; fuzzy C-means (FCM) clustering; Laplace pyramid; re-
gion growing

1. Introduction

With the continuous exploitation and consumption of traditional energy, the energy
crisis has created huge global challenges. Lots of countries start to reinforce research
on the development and utilization of renewable resources. Solar energy, as a clean and
environmentally friendly renewable resource, has been favored by many countries in recent
years. Due to the long-term outdoor exposure, solar panels are subject to the mutual impact
of the temperature difference between daytime and night, wind, and snow erosion and
other harsh environments, which will inevitably cause defects such as cracks, fragments,
and grid breaks [1]. These defects will reduce the efficiency of photovoltaic conversion and
the service life of solar panels [2,3]. Therefore, it is important to accurately extract these
defects during the manufacture and use of solar panels. Among them, crack extraction is
one of the most complex and difficult work.

The cracks are able to damage cells and cause power loss of the modules, and the
mechanism can be described as follows: when the photovoltaic (PV) module is deformed,
the crystalline silicon solar cell will produce stress. Within the elastic range, stress is
proportional to deformation. Outside the elastic range, because silicon is very brittle,
once the macroscopic stress of the cell is lower than the yield strength, the brittle fracture
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will start from the stress concentration, especially the cracks and deep notches. With the
increase of external load, the yield area will gradually expand, and then extend to the
whole section, resulting in the mechanical separation of part of the cell [4]. If such a part
is not connected to any of the cell interconnect ribbons (CIRs), it will no longer supply
power to the module, thus reducing the power consumption of the module [5]. The crack
width can be divided into three stages during the deformation of the cell: in the first stage,
the crack width is zero and the solar cell remains intact. The second stage begins with the
sudden appearance of a crack, after which the crack spreads throughout the chip. Finally,
in the third stage, the width of the crack increases proportionally, leading to more cracks.
Käsewieter et al. measured the changing trend of cell crack resistance in multi-crystalline
silicon solar cells and studied the effect of crack width [6]. The larger the crack width
changes, the higher the deformation of the internal structure of the cell will be, which will
lead to more easily broken cells and more serious power loss.

The existing methods of crack extraction could be divided into based on spatial
domain, frequency domain and classification according to their principles. The spatial
domain-based crack extraction method typically used the image brightness, grayscale,
gradient and other spatial features to extract cracks. Samir et al. proposed an extraction
algorithm based on particle swarm optimization (PSO) by analyzing the gradient of the
crack in solar panels [7]. This method first extracts the edges of the image based on the
PSO, then analyzes the features of crack and finger to extract their feature vectors, and
finally completes the crack extraction by classification. This method has a good suppression
effect on noise. Hopkins and Anwar et al. proposed an anisotropic diffusion algorithm
for crack extraction [8,9]. This algorithm analyzes the grayscale and gradient of the image
to adjust the diffusion coefficient to realize the diffusion reconstruction of the solar panel
image. Then, the difference between the reconstructed image after diffusion and the
original image is compared to realize the defect detection of the solar panel image. JinSeok
et al. proposed using local means to detect defects [10]. In this method, the solar panel
image is divided into many small pieces, and the binary mean value of each piece is
calculated, respectively. Compared with other defect detection methods, this method has
the advantages of detecting micro-cracks, fingerprints, pollution, and other low gray defects.
The spatial domain-based crack extraction method is usually applied to the crack detection
of bridges, tunnels, walls, concrete pavements, and metal surfaces. The disadvantage
of this method is that it cannot accurately distinguish cracks and normal regions with
obvious gradients in complex textures. The frequency domain-based crack extraction
method usually filters the crack in the frequency domain and then obtains a reconstructed
image by the inverse transformation. The differences between the reconstructed image
and the original image were used to extract the cracks. Tsai and Mahdavipour et al. uses
frequency domain Fourier image reconstruction technology to extract various defects in
solar panel images [11,12]. This method first performs a Fourier transform on the original
image, then uses the Hough transform to modify the frequency components of the line and
stripe regions in the transformed image to zero, and finally performs an inverse Fourier
transform on the modified spectral image to generate a reconstructed image. Therefore,
the defects in the image can be extracted by the gray difference between the original image
and the reconstructed image. The frequency domain-based crack extraction methods are
widely used in thin-walled pipes, semiconductors, rocks, and textiles. The disadvantage of
this type of method is that it is difficult to detect cracks directly in the frequency domain,
but usually requires a series of forward and reverse operations. As for the classification-
based crack extraction methods, He et al. proposed a crack detection method based on
independent component analysis (ICA) [13]. This method includes two stages: learning
and testing. ICA is used to find a set of independent basic images from the images of
the solar cell panels without defects in the learning phase. Each image to be detected
is reconstructed into a linear combination of the basic images in the testing phase. The
coefficients of a linear combination are used as a feature vector for classification. Finally,
the defect is detected by the difference between the test image and the basic reconstructed
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image. Dihao et al. used the support vector machine (SVM) to extract cracks [14]. In this
method, images are first divided into two categories: defective images and defect-free
images. Then, the features are extracted from the two types of images respectively, which
are trained by the SVM. Finally, the images are tested by using the training results. In
general, the classification-based crack extraction method can only identify whether there
are cracks in the image, but it cannot localize cracks. All in all, in the process of extracting
cracks, the existing methods focus exclusively on the internal characteristics of the cracks,
and so fail to engage with the relationship between the cracks and their neighboring pixels,
which affects the result of the crack extraction to some extent.

Therefore, this paper proposes a crack extraction method that considers both charac-
teristics from cracks and their surrounding spatial information. Figure 1 shows the flow of
crack extraction. As can be seen, the input images include crack-free image and the image
to be tested. The output image is the crack extraction result. The algorithms consist of four
parts: edge extraction based on multi-scale background suppression, feature definition,
crack extraction and crack optimization. First, the feature vectors of the cracks are formed
by combining morphological features based on Haar-like and texture features based on
wavelet transform, and then a feature library is established from crack-free images by
the Fuzzy C-means (FCM) clustering method. Second, inputting images to be tested, the
complex texture background of the image is suppressed by a Hessian-based linear filter,
then the multi-scale detail is suppressed by a Laplace pyramid, and edges are extracted by
the wavelet transform modulus maximum (WTMM) method from the multi-scale detail
suppressed image. Finally, the test images are compared with the FCM clustering results to
judge whether it is a crack or not. In addition, to optimize the fracture problem of some
cracks, this paper simulates the direction of the cracks according to the linear characteristics
of the cracks and optimizes the cracks by using the directional region growing method, in
order to obtain more accurate crack extraction results.
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This paper is organized as follows: Section 2 lists the specific flow of the solar cell
crack extraction algorithm. Section 3 presents the crack extraction experiment of the solar
cell image and analyzed the experimental data and results. Section 4 concludes the paper.

2. Crack Extraction Algorithm for Polycrystalline Solar Cells
2.1. Edge Extraction Based on Multi-Scale Background Suppression

After preprocessing such as distortion correction for the collected images, both cracks
and noises in the images had edge characteristics. Therefore, we proposed to use the
edge extraction method based on multi-scale background suppression to suppress the
noises and extract the edges of the preprocessed images, so as to realize the preliminary
extraction of cracks and provide a basis for subsequent detection. For crack extraction
task in this paper, the texture suppression and the multi-scale detail suppression are the
premise and foundation of edge extraction. In this section, firstly, the Hessian-based linear
filter is used to suppress the complex texture background and highlight the linear crack
area. Secondly, the multi-scale image information is extracted by the Laplacian pyramid to
achieve a balance between noise suppression and crack location accuracy. Finally, edges
are extracted.

2.1.1. Background Suppression

Due to the randomly distributed crystal particles in the polycrystalline silicon wafer,
there are texture backgrounds with different shapes and random sizes on the surface of
a solar cell panel. The presence of these textures seriously affects the extraction of cracks.
Therefore, it is necessary to suppress the complex texture background before extracting
the edge. In this paper, the Hessian-based linear filter is used to suppress the texture and
enhance the linear crack area [15]. The linear enhancement filter proposed for the crack
extraction in the solar panel is as follows:

ν1(x, y; σ) =

 0 , λ1 ≤ 0

e−
Rα

2

2α2 (1− e
−

Rβ
2

2β2 ) , λ1 > 0
(1)

where

Rα =

(
λ2

λ1

)2
, Rβ =

√
λ1

2 + λ22 (2)

To detect cracks with different width, Gaussian functions with different scales are
utilized for convolution. The parameters α and β are thresholds, which are used to control
the sensitivity of the linear filter to Rα and Rβ. λ1 and λ2 represent the intensity change of
the linear structure in the main direction and the vertical direction, respectively.

Due to the diversity of cracks, the linear filter needs to be extended to adapt itself
to different scales. The filter generates maximum response when the scale is close to the
width of the linear structure to be extracted. Combined with the response results of the
filter at different scales, the final result is as follows:

ν0(x, y) = max
σmin≤σ≤σmax

ν1(x, y; σ) (3)

in which σmin and σmax are the maximum and minimum values of scales, respectively,
through which the range of the crack width can be clarified.

2.1.2. Multi-Scale Detail Suppression

When edges are extracted from an image, the edge signals are more sensitive to low-
scale spatial information, so it is easy to be affected by noise. On the contrary, high-scale
images are relatively insensitive to noise, but, due to their low resolution property, it
may not be accurately obtain edge location. Thus, it is necessary to jointly utilize spatial
information of multiple scales for edge extraction. In this paper, the Laplace pyramid
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decomposition technique is used to extract the effective information from each scaled
image for noise reduction, in order to enhance the performance of later edge detection. The
construction process of the Laplace pyramid is as follows [16]:

G∗l (i, j) = 4×
2
∑

m=−2

2
∑

n=−2
ω̃(m, n)Gl

(
i+m

2 , j+n
2

)
(0 < l ≤ N, 0 ≤ i < Rl , 0 ≤ j < Cl)

(4)

Gl(i, j) =
2
∑

m=−2

2
∑

n=−2
ω̃(m, n)Gl−1(2i + m, 2j + n)

(0 < l ≤ N, 0 ≤ i < Rl , 0 ≤ j < Cl)

(5)

where Gl is the l-layer of the Gaussian pyramid image. G∗l is the interpolated and up-
sampled image of Gl . N is the number of layers of the Gaussian pyramid image de-
composed. Rl and Cl are the length and width of the l-layer Gaussian pyramid image,
respectively. ω̃(m, n) = h(m)·h(n) is a two-dimensional separable window function with
a size of 5 × 5, and the Gaussian density distribution function ω̃ is expressed as follows:

ω̃(m, n) =
1

256
×


1 4 6 4 1
4 16 24 16 4
6 24 36 24 6
4 16 24 16 4
1 4 6 4 1

 (6)

After the image is decomposed by the Laplace pyramid, each layer of the decomposed
image will lose part of the high-frequency information. Therefore, the Laplacian pyramid
image generated by the difference of Gaussian pyramid image in the adjacent scale is
needed to describe this information.

Suppose that

LPl =

{
Gl −G∗l+1, if 0 ≤ l < N

GN , if l = N
(7)

where LPl represents the Laplace pyramid image of the l layer decomposed from the solar
cell image.

The effective information from pyramid images at different scales is fused by using a
fusion algorithm as follows:

LP =
N

∑
i=1

LPi (8)

2.1.3. Edge Extraction

The edge detection algorithm extracts edges based on the pixel value change of the
crack and its adjacent area. The commonly used edge detection algorithms include Canny,
Laplacian of Gaussian (LoG), Soble and other operators, as well as WTMM with modulus
maximized via searching. Because of the high continuity, this paper uses the WTMM
method to extract the edge. When the scale is s, the wavelet transforms formula obtained
by convolving the image with ϕ1(x, y) and ϕ2(x, y) are as follows:

W1,sf(x, y) = f(x, y)∗ ϕ1,s(x, y) (9)

W2,sf(x, y) = f(x, y)∗ ϕ2,s(x, y) (10)

in whichϕ1(x, y) andϕ2(x, y) are partial derivatives of 2D Gaussian functions with respect
to x and y, and the formulas are as follows:

ϕ1(x, y) =
∂g(x, y)

∂x
(11)
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ϕ2(x, y) =
∂g(x, y)

∂y
(12)

In wavelet transform, the maxima of wavelet modulus maxima at different scales have
different propagation characteristics between signal and noise [17]. It can accurately obtain
the singularity information of the signal at a specific point and describe the singularity in
the image.

2.2. Definition of Crack Features

To accurately extract cracks from the complex texture background, the features of
cracks must be effectively defined. According to the definition, multiple features of an edge
pixel are extracted to form a feature vector, which can be utilized to determine whether
the edge pixel belongs to a crack. When features are being defined, not only are internal
characteristics of cracks included, but also external characteristics among cracks and their
surrounding spatial neighborhood background should be considered. Therefore, the
defined crack features in this paper consists of morphological features and texture features.

2.2.1. Morphological Features

The gradient changing of the gray value along with the crack is obvious. According
to the change trend of gray value, cracks can be divided into ridge cracks and step cracks.
There is a large gradient difference between each ridge crack and its adjacent pixels on
both sides, and the gray value of the neighbors on both sides is higher than the crack itself.
The gray values of ridge cracks show a trend from high to low and then to high. There is a
large gradient difference between the step crack and its adjacent pixels on one side, and the
gray value of the neighbors is higher than the crack itself. The gray values of step cracks
show a trend from high to low.

The panel images and 3D images of the grayscale distribution of the ridge crack and
step crack are shown in Figure 2. The resolution of the images is 50 × 107 and the zoom
is 2.5:1.
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Figure 2. Panel images and 3D images: (a) ridged crack; (b) 3D image of the grayscale distribution of
ridged cracks; (c) stepped crack; (d) 3D image of the grayscale distribution of stepped cracks.

Both ridge cracks and step cracks are distributed in multiple directions. Because of
the distribution features of cracks in solar panels, linear features and edge features in the
improved Haar-like feature extraction method by Lienhart et al. were selected to extract
features [18,19]. Figure 3 shows 12 feature templates corresponding to ridge crack and step
crack distribution extracted from horizontal, vertical, and diagonal directions by Haar-like
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features. Each window is divided into a black and white rectangular area, and the feature
value of each template is the difference between the sum of gray values of the black and
white areas. The template in Figure 3a–f is a linear feature template for extracting ridge
cracks; the template in Figure 3g–i is an edge feature template for extracting step cracks.
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Figure 3. Haar-like feature template: (a,d) horizontal direction of linear feature template; (b,e) ver-
tical direction of linear feature template; (c,f) diagonal lines direction of linear feature template;
(g) horizontal direction of edge feature template; (h) vertical direction of edge feature template;
(i) diagonal lines direction of edge feature template.

2.2.2. Texture Features

Wavelet decomposition can reflect the frequency change in multiple directions, so it
is suitable to describe texture features of the panel image [20]. The energy increase rate
within adjacent scales of the non-crack area is lower than that of the crack area, so that
the energy difference inside the sub-image from wavelet transform can be extracted as the
feature of the crack.

Figure 4 shows the process of the wavelet decomposition. To extract the texture
features, a one-dimensional wavelet transform is firstly applied to the input digital image.
The one-dimensional low-pass filter l and the high-pass filter h are used to filter and down-
sample the image f(x, y) along the x-axis direction, to generate the coefficient matrix of
fL(x, y) and fH(x, y). Then, the same filters l and h are used to filter and down-sample
fL(x, y) and fH(x, y) along the y-axis direction to generate four sub-images fLL, fLH, fHL, and
fHH, to complete a two-dimensional wavelet transform, where fLL is the low-frequency part
of the input image, and fLH, fHL, and fHH represent the detail sub-images in the horizontal,
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vertical, and diagonal directions, respectively. The image fLL can be used as the input
image to continue the decomposition of the next scale. As for specific implementation:
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Figure 4. Two-dimensional wavelet decomposition.

Firstly, the input image is decomposed by one-dimensional wavelet, as follows:

fL(x, y) =
1
Ll

Ll

∑
i=1

li∗f((2x + i)modM, y) (13)

fH(x, y) =
1

Lh

Lh

∑
j=1

hj∗f((2x + j)modM, y) (14)

x = 0, 1, · · · ,
(

M
2

)
− 1 y = 0, 1, · · · , N− 1 (15)

in which f(x, y) is the input image. M and N are the length and width of the image. Ll and
Lh indicate the vector length of low-pass filter l and high-pass filter h, respectively.

The two-dimensional wavelet decomposition algorithm is as follows:

fLL(x, y) =
1
Ll

Ll

∑
i=1

li ∗ fL(x, (2y + i)modN) (16)

fLH(x, y) =
1

Lh

Lh

∑
j=1

hj ∗ fL(x, (2y + i)modN) (17)

fHL(x, y) =
1
Ll

Ll

∑
i=1

li ∗ fH(x, (2y + i)modN) (18)

fHH(x, y) =
1

Lh

Lh

∑
j=1

hj ∗ fh(x, (2y + i)modN) (19)

In order to extract features more accurately, fLH(x, y), fHL(x, y), and fHH(x, y) at
different scales s can be normalized as follows:

Es
LH(x, y) = fs

LH(x, y)/fs
LL(x, y) (20)

Es
HL(x, y) = fs

HL(x, y)/fs
LL(x, y) (21)

Es
HH(x, y) = fs

HH(x, y)/fs
LL(x, y) (22)

Es
LH(x, y), Es

HL(x, y), and Es
HH(x, y) denote the normalized energy of the detail sub-image

with scale s in horizontal, vertical, and diagonal directions after decomposition, respectively.
Figure 5 shows the energy variation in the horizontal, vertical, and diagonal directions

of crack point and normal point. The columns marked in blue represent the energy of crack
point, the columns marked in red represent the energy of normal point. The data labels
above columns are the corresponding energy value. As shown in Figure 5a, when the scale
s is 0, the energy of the crack points is usually greater than that of the normal point due
to the sharp edge of the crack. In the vertical and diagonal directions, the energy of the
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crack point is about twice that of the normal point. However, in the horizontal direction,
the energy difference is small, which is not very obvious. In order to obtain more distinct
and stable features, we continue to decompose the image with a higher scale. Figure 5b–d
shows the energy variation in three directions of the crack point and normal point at
different scales s. As can be seen, the energy of crack point and normal point both increase
with the decomposition scale s increase, but their trends are quite different. The energy
difference of the crack point in the three directions is 0.41 (1.17–0.76), 0.41 (1.55–1.14), and
0.54 (1.67–1.13), respectively, and the increase is significant. The energy of the normal point
is 0.04 (0.58–0.54), 0.03 (0.62–0.59) and 0.01 (0.65–0.64), which remain basically unchanged.
Therefore, the energy difference between adjacent decomposition scales can be used to
detect cracks.
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Figure 5. Energy variation in the horizontal, vertical, and diagonal directions of crack point and normal point: (a) energy
comparison when the scale s is 0; (b) energy variation of horizontal direction; (c) energy variation of vertical direction;
(d) energy variation of diagonal direction.

The two crack images are decomposed by wavelet at the adjacent scale, respectively,
and the energy differences in three directions are calculated. Figures 6a and 6e are two
images with cracks, and Figure 6b–d,f–h show the energy difference map of them in
horizontal, vertical, and diagonal directions. As can be seen, compared with normal points,
the energy of crack point on the adjacent wavelet transform varies greatly, so its difference
is large. Therefore, the energy differences between two adjacent decomposition scales in
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the horizontal, vertical, and diagonal direction can be taken as three texture features for
detecting cracks.
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2.3. Crack Extraction

This section firstly uses the extracted features to generate a crack-free feature library by
clustering. Then, the distance between the edge point and the cluster centroid is calculated,
and it is compared with a threshold to determine whether the edge point belongs to a crack.

The distance measurement method proposed by Akbarinia is combined with the FCM
for clustering [21]. This method normalizes the Euclidean distance between each data
point, and the cluster centroid by using the distance variation between the data points in
the same cluster, which is called FCM-σ. This method considers both the distance between
classes and the variation of the distance within the class. Therefore, the clustering effect
will not decrease as the number of clustering increases. To better apply FCM-σ to PV
images which will form a large number of clusters and the test data are suffering from
poor uniformity, an FCM-σ clustering algorithm combined with dichotomy (DFCM-σ)
is proposed to extract cracks. Firstly, the data sets are divided into two classes by the
clustering. Then, we measure the uniformity of data in each class and further cluster the
classes with poor uniformity. Repeat clustering until the number of classes meets the set
value, and the generation of crack-free feature library is completed.

Suppose B = {Bc, c = 1, 2 · · ·C} is the clustering result of all edge points, and Bc =
{xc,1, xc,2, · · · xc,nc} is a class c containing nc edge points. Calculate the Euclidean distance
from each data point xc,i in cluster Bc to the cluster centroed vc:

dc,i = ‖ xc,i − vc ‖, xc,i ∈ Bc (23)

Since the clustering density and sample spacing of each class are different, it is neces-
sary to set different adaptive distance thresholds for each class. Assuming that µc and σ∗c
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are the mean value and standard deviation of distance dc,i between all data in cluster Bc
and the center, the threshold of cluster Bc is defined as follows:

Tc = µc + t·σc, c = 1, 2, · · · , C (24)

where t is a constant.
In the detection, the distance between the feature vector x′ of edge points and each

cluster centroid is calculated, respectively, and then compared with the threshold of each
cluster. If the distance is less than the threshold of one of the categories, the edge points are
classified as non-crack points; otherwise, the edge points are marked as crack points, and
this procedure can be formulated as follows:

tagc =

{
1, dc > Tc

0, else
(25)

2.4. Optimization of Results Using Directional Region Growing Algorithm

To address the issue that the detected crack incompleteness and the misdetection are
caused by noise, the small break of cracks is firstly complemented by the closed operation of
expansion and refinement in morphology. Then, by analyzing the linear characteristics and
simulating the direction of the cracks, a directional region growing method was designed
to complement the large break.

As shown in Figure 7, a 3 × 3 window is designed in this paper, where O represents
the seed point of the region growth, that is, the endpoint of the connected component. A
represents the point adjacent to seed point O in the connected component, which is used to
determine the direction of the growing point, and B represents the possible growth point.
According to the position relation between O and A, the linear characteristic of the crack,
and the approximate pixel value of the crack edge in the image, the possible position of the
growth point B is simulated from different growing directions. Then, by comparing the
pixel value of possible growth points with the mean value of all pixels in the connection
component, the point with the smallest difference is the growth point.
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The specific steps of the directional region growing algorithm are as follows:

(1) The endpoint of the crack connected component region is determined as the seed
point O of the region growth, and the point A adjacent to the point O is marked.

(2) For the seed point O and the adjacent point A determined in the first step, the seed
point is judged to be the left or right end according to its position relationship, and
then the direction of the growing point B is judged according to Figure 6 to ensure
the angle between the adjacent points, seed points, and growth points ∠AOB > 90◦

is formed.
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(3) In the input image, the gray value of each B-point is compared with the gray mean
value of the connected component pixels to find the point with the smallest difference.

(4) To judge whether the point satisfies the growth stop condition, such as whether the
difference between the pixel value of the point and the mean value of the connected
component is less than the threshold value or the point is a boundary point or the
point is a point in other connected components and so on. If the growth stopping
condition is met, the growth is stopped; otherwise, this point is the growth point B,
and the gray value of this point is set to 1.

(5) Update O to a new adjacent point A, update B to a new seed point O, and return
to step 2.

3. Experimental Results and Analysis
3.1. Image Preprocessing

At present, the photoluminescence (PL) and the electroluminescence (EL) methods
are widely utilized for capturing solar panel images. The cracks in the EL image appear
clearer than those in the PL image, so this paper mainly studies the acquisition of EL
images. Direct current is used to provide voltage to the photovoltaic module, and a large
number of unbalanced carriers are injected to make the photovoltaic module emit infrared
light. At the same time, a near-infrared charge-coupled device (CCD) camera is used to
capture these infrared lights. To reduce noise and improve the signal/noise ratio, we use a
cooling-type CCD camera to obtain EL images in a darkroom environment [22].

Figure 8a shows a group of solar cells images obtained. Due to the large size of the solar
panels, the camera cannot completely obtain a solar panel image horizontally; therefore,
the camera needs to be tilted at an angle to the solar panel. However, the image captured
from this angle is distorted, so, in this paper, a perspective transformation is firstly utilized
to correct the distorted image, and the corrected image is shown in Figure 8b [23,24].
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Figure 8. Perspective distortion correction results: (a) perspective distortion image; (b) perspective
distortion correction image.

The corrected image is composed of 6× 10 solar cells arranged neatly and stitched
together. The size of each solar cell is 0.16 m× 0.16 m, and the size of solar panel shown in
Figure 8 is 0.96 m× 1.6 m. To improve the extraction accuracy, the corrected image needs to
be segmented into multiple solar cell images. First, a median filter was used to smooth the
corrected image, then the difference between the original image and the smoothed image
was calculated, and the difference image was projected horizontally and vertically [25].
Because the pixel value at the junction of two adjacent solar cells is low, the segmented
position was determined by finding the local minimum position of the pixel value. The
result after segmentation is shown in Figure 9.

3.2. Edge Extraction Based on Multi-Scale Background Suppression

The edge was extracted from the pre-processed image as the basis for subsequent
crack extraction. First, the complex texture background is suppressed by the Hessian-based
linear filter to highlight the linear cracks. Then, the multi-scale image information was
extracted by the Laplacian pyramid algorithm. Finally, edges were extracted.
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To demonstrate the effect of background suppression on the extracted edge, 60 solar
cell images were tested, including 42 crack-free images and 18 crack images with 26 cracks.
Tables 1 and 2 tabulate the results of crack extraction without background suppression and
with background suppression, respectively.

Table 1. Crack extraction results without suppression.

Sample Type Total Number Correct Count Error Count Correct Extraction Rate False Extraction Rate

Crack-free image 42 1 41 0.024 0.976
Crack image 18 18 0 1 0

Crack 26 26 68 1 2.615

Table 2. Edge extraction results with suppression.

Sample Type Total Number Correct Count Error Count Correct Extraction Rate False Extraction Rate

Crack-free image 42 14 28 0.330 0.670
Crack image 18 18 0 1 0

Crack 26 26 32 1 1.231

As shown in Tables 1 and 2, the background suppression helped to retain more crack
information and reduced false extraction of crack-free images. Figure 10 shows the results
of edge extraction with the WTMM method, Canny, and Sobel operators, respectively.

The edge extraction results of the WTMM are shown in Figure 10, from which can
be seen that edge extraction with WTMM method can not only retain a lot of crack in-
formation but also reduce false detection. This provides a good basis for the subsequent
crack extraction.

3.3. Crack Extraction Based on Crack Features and Fuzzy Clustering

In this section, multiple features of the edge points were extracted to form a feature
vector, according to the definition of the crack feature, and then the extracted features from
the defect-free image are utilized for clustering, and finally the crack was extracted from
the clustering result.
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Definition of Crack Feature

The cracks that exist on the solar cell scenes have different sizes; therefore, to extract
cracks from the scene, different parameters have to be previously setup. Suppose that the
size of the Haar-like feature is h×w, in which h and w are the height and width of the
Haar-like feature, respectively. In this paper, the height of Haar-like feature is fixed to 18,
but the widths are set differently, and texture features are also appended. In this paper, two
different types of feature descriptors are defined, and the first one is obtained by setting
the width value to 6, 12, and 18. Because there are 12 Haar-like feature templates as shown
in Figure 3, and each Haar-like feature template is formed using three different widths,
36 morphological features can be extracted. The second type of feature descriptor is defined
to take advantage of textural information to enhance the extraction performance; therefore,
three types of texture features are extracted from the horizontal, vertical, and diagonal
components of the first and second wavelet decomposition. These three texture features
are appended to the first type of feature descriptor, which has 36 morphological features,
to produce a descriptor containing 39 features which includes those that can extract both
morphological features and texture features. These two feature descriptors were utilized to
extract cracks and compare their feature extraction effects. Figure 11, Tables 3 and 4 show
the effect of texture features on the crack definition. As can be seen, in the detection results,
comparing the 39 feature descriptors who contained texture features to the 36 feature
descriptors, the noise suppression effect is relatively weak, and the false extraction rate
is high.

Table 3. Crack extraction results with 36 feature descriptors.

Sample Type Total Number Correct Count Error Count Correct Extraction Rate False Extraction Rate

Crack-free image 42 36 6 0.857 0.143
Crack image 18 18 0 1 0

Crack 26 26 8 1 0.308
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Table 4. Crack extraction results with 39 feature descriptors.

Sample Type Total Number Correct Count Error Count Correct Extraction Rate False Extraction Rate

Crack-free image 42 37 5 0.881 0.119
Crack image 18 18 0 1 0

Crack 26 26 4 1 0.154
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Figure 11. Comparison of extraction results. (a) crack image; (b) extraction result with texture feature;
(c) extraction result without texture feature.

In this paper, different clustering algorithms are used to generate a crack-free feature
library for crack extraction. Figure 12 lists the crack extraction results of four solar cell
images, which are respectively obtained by FCM, FCM-σ, DFCM, and DFCM-σ. As can
be seen from Figure 12, when DFCM-σ is utilized to extract cracks, the least loss of crack
information is obtained and the false detection can be significantly reduced.

3.4. Optimization of Results Using Directional Region Growing Algorithm

It can be seen that, although DFCM-σ can get good results in crack extraction, there
are still incomplete crack extraction and false detection caused by noise and other factors.
In this section, the results were optimized by the directional region growth algorithm.
Figure 13 specifically shows the optimization effect of one of the cracks.
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Figure 12. Crack extraction results: (a) crack image 1; (b) extraction result of (a) using FCM; (c) extraction result of (a) using
FCM-σ; (d) extraction result of (a) using DFCM; (e) extraction result of (a) using DFCM-σ; (f) crack image 2; (g) extraction
result of (f) using FCM; (h) extraction result of (f) using FCM-σ; (i) extraction result of (f) using DFCM; (j) extraction result
of (f) using DFCM-σ; (k) crack image 3; (l) extraction result of (k) using FCM; (m) extract ion result of (k) using FCM-σ;
(n) extraction result of (k) using DFCM; (o) extraction result of (k) using DFCM-σ; (p) crack-free image; (q) extraction result
of (p) using FCM; (r) extraction result of (p) using FCM-σ; (s) extraction result of (p) using DFCM; (t) extraction result of
(p) using DFCM-σ.
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Figure 13. (a) crack image; (b) extraction result of (a); (c) optimization result of (a).

To quantify the optimized performance of the directional area growth algorithm,
26 cracks from 60 solar cells were counted, and the total number of cracked pixels is 7953.
As shown in Table 5, the pixel number of cracks increased significantly after optimization,
and the false detection rate decreased. It shows that the directional region growing algo-
rithm can effectively compensate the crack and solve the problem of the detected crack
incompleteness and the false detection caused by noise.

Table 5. Crack extraction results of Solar cell.

Sample Type Total Number Correct Count Error Count Correct Extraction Rate False Extraction Rate

Crack-free image 42 42 0 1 0
Crack image 18 17 1 0.944 0.056

Crack 26 25 1 0.962 0.038
Pixel of crack 7953 7419 534 0.933 0.067

4. Conclusions

This paper combines the morphological and texture features of solar cell images to
extract features from crack-free images for clustering. To make the clustering algorithm
suitable for solar cell images with more clustering numbers, and ensure the uniformity of
data in each category, the distance variation and dichotomy of data points in the same clus-
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tering are added to the traditional fuzzy c-means clustering algorithm. The experimental
results show that the extraction results of adding texture features and the new clustering
algorithm are able to obtain better performance. Textural background suppression and
multi-scale information extraction are added to the edge extraction of the test image. It
can be seen from the extraction results that the non-crack areas in edge extraction are
significantly reduced. For the problem in which fractures still exist in the initial extraction
results, the directional region growing algorithm proposed in this paper can complement
the crack well and achieve the ideal crack extraction effect. The method proposed in this
paper will bring great convenience to the crack detection of solar cells and provide quality
assurance in the production and use of solar cells. This will promote the wider use of solar
cells in the field of industrial testing and control. It has positive significance in improving
the work efficiency of crack detection, energy conservation, and emission reduction.
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