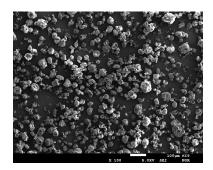


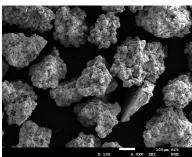
1

5

6

7


Supplementary Materials


 $\begin{array}{l} Supplement \ to \ 3.1. \ Catalyst \ performance \\ WGS \ rate \ equation \ acc. \ to \ Choi \ et \ al. \ with \ reaction \ rate \ rco \ in \ mol/(g \cdot h), \ temperature \ T \ in \ 3 \\ K, \ pressure \ p \ in \ atm, \ and \ equilibrium \ constant \ K_{eq} \ calculated \ from \ Eq. \ (2). \\ 4 \\ r_{CO} \ = \ 2.96 \cdot 10^5 \cdot exp \left(-\frac{47400}{R \cdot T} \right) \cdot \left(p_{H_2O} \cdot p_{CO} - \frac{p_{CO_2} \cdot p_{H_2}}{K_{eq}} \right)$ (S1)

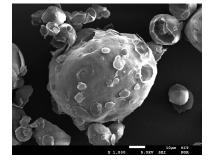
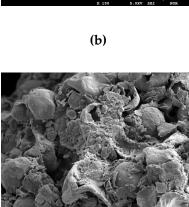

Supplement to 3.2. Structural properties and CO₂ capture performance of sorbent

 Table S1. BET surface area, BJH average pore width and cumulative pore volume.

Sample	surface area / m²/g	pore width / nm	pore volume / cm ³ /g
MG70-400	170	3.95	0.123
MG70-K-400	9	12.5	0.027
MG70-400-K-400	18	9.50	0.042

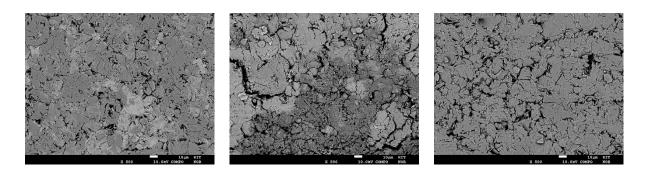


(a)

(c)

(d)

Figure S1. SE image of (a) untreated sample (MG70) (x100), (b) impregnated – calcined sample (MG70-K-400) (x100), (c) untreated sample (MG70) (x1000), and (d) impregnated – calcined sample (MG70-K-400) (x1000).

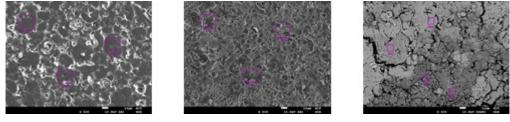

11

8

9

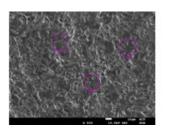
- 12
- 13

(a)


(b)

(c)

Figure S2. BSE image (x500) of pressed powder (a) calcined – impregnated sample (MG70-400-K),14(b) impregnated – calcined sample (MG70-K-400), and (c) calcined – impregnated – calcined sample (MG70-400-K-400).151616


Table S2. EDS results: Mg/Al ratio (average) and potassium content (probe positions in Figure S3). 17

Sample	Mg/Al / -	K 1 / wt%	K 2 / wt%	K 3 / wt%	K 4 / wt%
MG70	3.11 ± 0.03	-	-	-	
MG70-400	3.18 ± 0.02	-	-	-	
MG70-K-400	3.64 ± 0.54	6.55	2.95	23.97	23.14
MG70-400-K	3.19 ± 0.06	12.85	6.52	26.53	
MG70-400-K-400	3.12 ± 0.02	6.89	3.19	6.55	


(a)

(b)

(d)

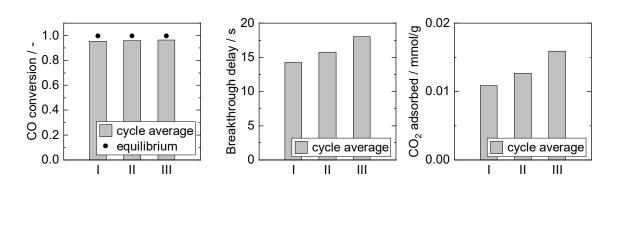
(c)

Figure S3. Probe positions marked for EDS analysis of pressed powder (a) untreated sample (MG70), (b) calcined sample (MG70-400), (c) impregnated – calcined sample (MG70-K-400), (d) calcined – impregnated sample (MG70-400-K), and (e) calcined – impregnated – calcined sample (MG70-400-K). Results are listed in Table S2.

(a)

Sample	k _F / mmol/(g·bar ^{1/n})	n / -	$R^2 / -$		
MG70-250	0.008	4.687	0.966		
MG70-400	0.071	5.280	0.984		
MG70-500	0.022	4.399	0.985		
MG70-K-400	0.174	9.512	0.97		
MG70-400-K-400	0.141	8.924	0.967		

Table S3. Freundlich equation (Eq. (S2)) parameters kF and n, and fitting parameter R².


Freundlich model equation for CO2 adsorption isotherm with nads being the specific 26 amount of moles CO₂ adsorbed in mmol/g, Freundlich constant k_F in mmol/(g·bar^{1/n}), par-27 tial pressure of CO2 pco2 in bar, and adsorption intensity n.

$$n_{ads} = k_F \cdot p_{CO_2}^{1/n} \tag{S2}$$

Supplement to 3.3 SEWGS performance

Supplement to 3.3.2 Long term stability

The sorbent in Figure S4 has seen a higher water content (in other experiments at different conditions) between the reproduced experiments (II and III), what resumed in an increase in both, breakthrough time and sorption capacity. This might be due to adsorption site activation caused by steam, see section 3.3.3 and 3.3.4. However, the sorbent in the example depicted in Figure S5 had a comparable time on stream but was not exposed to different conditions between the repetitions, and no noteworthy difference in breakthrough delay or in adsorbed CO2 could be detected.

(b)

Figure S4. Adsorption cycle average (a) CO conversion, (b) breakthrough delay, and (c) adsorbed 39 amount of CO2 for reproduced experiments after different sorbent "histories". Adsorption: 15 min, 40 8 bar, 2000 ml/min, 2.5 % CO, S/G = 4. Desorption: 40 min, 1 bar, 1000 ml/min, 40 % H2O. PBMR, 41 Mode B, 250 °C. 42

(c)

24

3 of 5

25

28

29

30

31

32

33

34

35

36 37

38

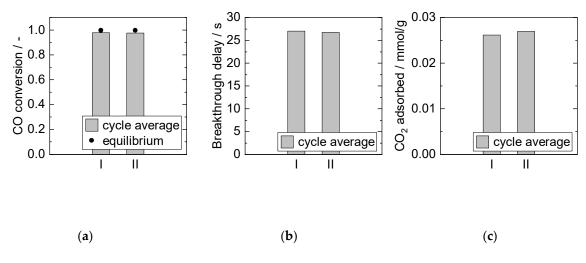
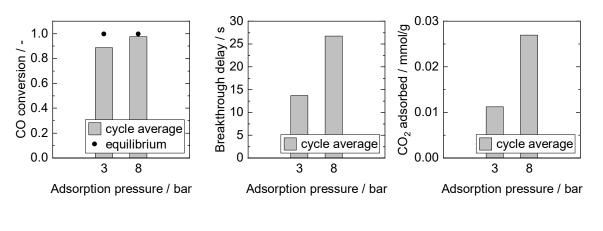



Figure S5. Adsorption cycle average (a) CO conversion, (b) breakthrough delay, and (c) adsorbed44amount of CO2 for reproduced experiments after comparable sorbent "histories". Adsorption: 1545min, 8 bar, 2000 ml/min, 2.5 % CO, S/G = 4. Desorption: 40 min, 1 bar, 1000 ml/min, 40 % H2O.46PBMR, Mode C, 250 °C.47

Supplement to 3.3.3 Variation of adsorption parameters

(b)

(a)

Figure S6. Adsorption cycle average (a) CO conversion, (b) breakthrough delay, and (c) adsorbed49amount of CO2. Adsorption: 15 min, 2000 ml/min, 2.5 % CO, S/G = 4. Desorption: 40 min, 1 bar,501000 ml/min, 40 % H2O. PBMR, Mode C, 250 °C.51

(c)

Supplement to 3.3.5 Variation of reactor configuration

52 53

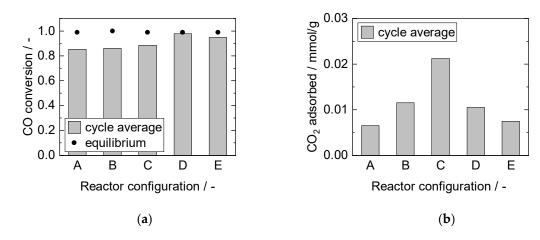


Figure S7. Adsorption cycle average (a) CO conversion, and (b) adsorbed amount of CO2. Adsorption: 15 min, 8 bar, 2000 ml/min, 10 % CO, S/G = 2. Desorption: 40 min, 1 bar, 1000 ml/min, 40 %54H2O. PBMR, 250 °C.56