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Abstract: The partial discharge (PD) leads to catastrophic failure of the medium voltage (MV)
switchgear insulation. Determination of the PD source (defect) location in high voltage (HV) equip-
ment is very important in the maintenance procedures and in isolating the root cause of PD generation.
In this paper, the transient earth voltage (TEV) detection method was used to acquire defect-initiated
PD signals in a simulated MV switchgear model. An array of four TEV sensors were placed on the
surface walls outside an MV switchgear tank to acquire the PD signals generated from the known
location(s)/coordinates of sharp needle type defect inside the tank. The time difference of arrival
(TDOA) between signals that are captured by the TEV sensors array was critically analyzed. Estimat-
ing the TDOA between PD signals generated by PD source at a known location with high accuracy is
of great importance for accurate defect localization. The cumulative energy method (CEM) is used to
estimate the onset time point of each TEV signal. The estimated TDOA by the cumulative energy
method is compared with actual and expected TDOA based on known coordinates of PD source and
TEV sensors. Experimental data are used as a basis for determining the TEV method accuracy for PD
source localization. Experimental results show the average error of time difference is about 1.34 ns,
which is equivalent to the propagation distance of 0.4 m.

Keywords: partial discharge; TEV sensor; radiometric; UHF; AE; localization; time difference of
arrival (TDOA), cumulative energy method; medium voltage switchgear

1. Introduction

Medium voltage (MV) switchgear is one of the main components of the power dis-
tribution network, power generation, industrial plants, etc. The safe operation of the
switchgear is crucial to keep the continuity and reliability of the power grid system, as well
as the power quality on the consumer side. Different types of defects such as free or fixed
metallic particles, insulators defects, sharp edges, bad contacts, etc., are present in MV and
HV equipment. Such defects usually generate PDs on the sharp edges of metal electrodes
within gaps or on the surface of insulators that lead not only to aging and losses in power
system, but to failures of equipment as well, without any advance warning. Therefore,
online PD detection and measurements are required to avoid failure of insulation that may
lead to equipment damage, sudden power outages, personal injury, etc.

The evidence of PD occurrence in switchgear is not sufficient unless an indication
to PD location is associated. Therefore, determining and identifying the specific area
where PD has occurred within an air insulation system is required to assess insulation
performance.

In most cases, PD source can be located by the time difference of arrival (TDOA)
method in different power equipment such as electric cable system [1], power transform-
ers [2], air-insulated switchgear [3], gas-insulated substation (GIS) [4], etc. Various known
PD detection methods are the pulse current method, ultrasonic method, radio frequency
method, ultra-high frequency (UHF) method and transient earth voltage (TEV) method [5].
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Sinaga et al. [6] carried out tests in an oil filled transformer tank, with a UHF sensors
array to measure TDOA between captured signals and concluded that first peak method
yielded the best accuracy when compared to other methods. Whereas, Tang et al. [7]
measured the TDOA between captured signals based on the energy accumulation curve
using UHF sensors array in oil filled transformer tank. Kakeeto et al. [8] carried out tests
in a metal tank transformer with UHF sensors to assess the accuracy of PD location by
estimating the time of arrival (TOA) of captured signals. Gohil et al. [9] did experimental
work and measured the TDOA between captured signals by first peak and cumulative
energy methods using four UHF sensors. Ghosh et al. [10] carried out PD tests in an
oil-immersed transformer tank using an acoustic emission (AE) sensors array to determine
the TDOA between captured acoustic signals by finding a cross co-relation function and
proposing a novel approach to TDOA estimation based on the source filter model of
acoustic theory compared with the energy criterion method. Localization accuracy of the
proposed method was high without de-noising.

Kundu et al. [11] present a non-iterative PD source localization algorithm using AE
sensors. Markalous et al. [12] used the acoustic and electromagnetic signal for PD source
detection and its localization in the power transformer using pseudo-times in addition to
permitting the use of robust direct solvers instead of earlier iterative algorithms.

In all the above cases, the sensors were placed inside the high voltage setup, which
means these are a destructive approach, and the medium of PD propagation was through
oil where the environmental interferences were few in order to not distort the results.
However, the entire MV switchgear system is mainly compact gas/air insulated; therefore,
AE and UHF sensors will not be appropriate sensors to be placed within the switchgear.
Further, this PD signal generated in gas is more susceptible to noise than in oil insulation.

The external acoustic detection method is a well-known non-destructive technique.
It has the advantages of having no interruption of operation and having no response to
electromagnetic interferences, but its sensitivity decreases greatly when apparatuses have
a more complex structure and metallic shield like a switchgear. Kannappan et al. [13]
developed a method to detect and determine the location of PD within the 3-D space of an
MV switchgear using TDOA and using the external radiometric antennas array. One of
the main factors affecting PD localization accuracy is the arrangement of the sensors or
antennas outside the switchgear panel or inside the transformer tank [14,15]. Permal
et al. [16] carried out an experimental study for PD detection and localization in the MV
switchgear to improve the localization accuracy in reference [13] by determining the best
arrangement of radiometric antennas.

Chakravarthi et al. [17] carried out PD tests on the electrode test cell using UHF
sensors to measure the TDOA between captured signals and to evaluate the PD source
localization using the particle swarm optimization (PSO) algorithm.

Xavier et al. [18] studied PD tests at four different positions using UHF printed
monopole antennas (PMA) model, developed by [19], to measure the TDOA between
captured signals by first peak and cumulative energy methods. In order to locate the PD
source more accurately, filtering techniques and sampling error compensation were applied
to the measurements.

However, the most existing methods cannot provide both good sensitivity and conve-
nient installation at the same time.

High and medium-voltage switchgears are usually totally enclosed and the access
through its components cannot be reached when the switchgear is energized. Fortunately,
an electromagnetic wave, which is generated by local PD source when occurring inside
switchgear, can leak out from apertures in the switchgear [20]. Therefore, among online PD
detection methods, TEV method is the most convenient for PD detection of the switchgear
because of its high sensitivity, uninterrupted power supply, strong anti-interference perfor-
mance, easy installation and non-instructive method.
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TEV is widely used for the condition monitoring of insulation in MV and HV equip-
ment. However, the research still lacks on its applications in PD source localization inside
MV or HV equipment.

Therefore, the goal of this paper is to detect and measure PD source location accurately
within the 3-D space of simulated MV switchgear based on the online TEV detection
method.

In order to achieve this goal, i.e., the online localization of PD source using TEV
sensors, it involves following these key steps.

• Place the PD source at known coordinates (locations) inside the switchgear chamber
as well as TEV sensors at known coordinates outside the switchgear chamber.

• Acquire TDOA measurements using TEV sensors.
• Solve the nonlinear TDOA equations using the Cumulative Energy method (CEM) as

an initial assessment to determine the arrival time of multiple TEV signals simulta-
neously to measure the PD source location within the 3-D space of a simulated MV
switchgear.

• Verify the obtained results (in step 2, above) with the known coordinates of the PD
sources (step 1, above).

2. Principles of Transient Earth Voltage (TEV) Method

When PD occurs inside switchgear, electromagnetic (EM) waves are emitted. The EM
waves propagate and leak to the external surface of the metal tank wall from the dielectric
discontinuities (insulator defects, joint, isolated area, bushing, etc.). Then, the surface
current generated by EM waves is excited and flows to the ground. Such propagating
electromagnetic waves can be obtained by capacitive sensor and recorded as TEV sig-
nals [21–23]. These sensors pick-up the high frequency (radio frequency) pulses in the
frequency range of 4 MHz to 100 MHz. Figure 1 illustrates the mechanism of generation
and detection of transient earth voltage.

Figure 1. Mechanism of generation and detection of transient earth voltage.

3. Experimental Setup and Method

Experiments were conducted by using an experimental setup using the TEV PD
detection system shown in Figure 2. The system consists of,

(I) an enclosed steel tank of (100 × 100 × 150 cm) dimensions,
(II) a PD source (needle electrode) placed in 18 different locations inside tank (one location

at a time),
(III) an array of TEV sensors,
(IV) a HVPD digital oscilloscope,
(V) a 50 kVA step-up transformer and
(VI) a current limiting resistor.

Four TEV sensors were mounted on the surface walls outside the simulated switchgear
tank to detect and capture the PD signals generated by the PD source inside tank. Their
outputs were connected to a 5 GS/s four-channel HVPD® digital oscilloscope having a
400 MHz bandwidth via 5 M long coaxial cables of identical electrical length so that any
difference in arrival time between two signals can only be caused by different path lengths
inside switchgear tank. The HVPD TEV sensors used has bandwidth of 4~100 MHz.
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Figure 2. Experimental setup.

A needle electrode with tip radius 1 mm (approx.) mounted at the end of a MV power
cable was used as the PD source. Eighteen different locations were selected for the needle
electrode to generate PD signals. The applied voltage was gradually increased at steps of
about 2 kV/sec until the first PD signal was detected by TEV sensor and was recorded on
the HVPD digital oscilloscope. The measured partial discharge inception voltage (PDIV)
was 21.5 kV, representing the RMS value.

The coordinates of the TEV sensors (S1~S4) and PD sources with respect to the axis as
defined in Figure 3 are given in Tables 1 and 2, respectively. The X-axis indicates the position
parallel to the length of switchgear panel and the Y-axis indicates the position parallel to
the width of switchgear panel, whereas the Z-axis indicates the height of switchgear panel.

Figure 3. Coordinate system diagram illustrating the TEV sensors (outside the tank) and PD source
locations (inside) simulated MV switchgear panel.

Table 1. TEV sensor coordinates.

Sensor x (cm) y (cm) z (cm)

S1 −50 −43.5 −40
S2 −45 −50 49
S3 50 44 −42
S4 45 50 48
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Table 2. PD source coordinates.

Placement No. x (cm) y (cm) z (cm)

1 −34 30 −10
2 −35 0 −8
3 −35 −30 −8
4 −2 30 −7
5 0 0 −10
6 −1 −30 −9
7 34 30 −10
8 31 0 −8
9 32 −30 −8
10 −34 30 52
11 −34 0 51
12 −34 −30 51
13 −15 30 55
14 −1 0 55
15 −2 −30 57
16 32 30 51
17 33 0 51
18 33 −30 52

The experiments were performed at the High Voltage laboratory of King Saud Univer-
sity (KSU), which is completely covered with faraday mesh that has very minor/negligible
external noise effects.

Each PD test was repeated at least 10 times for each PD source location and were
recorded and used in the analysis.

Figure 4 shows an example of captured TEV signals of data sampled. PD waveforms
were recorded from four TEV sensors in 18 different locations. Consequently, 720 sets
(= 18 × 4 × 10) of PD signals were obtained. The comma-separated values (CSV) in excel
files of these waveform sets were imported to MATLAB program 2017 b to determine the
TDOA for each PD location.

Figure 4. An example of time domain waveform of the PD signals generated at PD source location
No.9 captured by different TEV sensors

4. PD Data and its Analysis Technique

Figure 3 shows the 3-D view of the test switchgear panel that indicated 18 PD needle
shaped defect sources and four TEV sensors (S1−S4) mounted on the walls outside the
switchgear for triangulation. The method of locating signals in each axis starts from the
X-axis and Z-axis, and is followed by Y-axis.

TEV signals describe the degree of partial discharge activity by providing information
about the signal amplitude against time. Therefore, two approaches can be used for
PD localization. One is signal amplitude or received signal strength detection and the
second is the measurements of time of arrivals of signals from different locations known
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as triangulation [6,10]. It is based on the TDOA measurement of the PD signals from the
known locations of the TEV sensors. It will result in the ability to locate the target node of
the PD source. Trilateration is the measurement of the signal time of flight from various
locations to locate the source of the PD signal.

The distance between the PD source and the jth sensor may be represented by the
Pythagorean theorem as per Equation (1), where

(
xj, yj, zj

)
are the coordinates of the jth

sensor and (xPD, yPD, zPD) are the coordinates of the know PD source location.

rj =
√
(xPD − xj)

2 + (yPD − yj)
2 + (zPD − zj)

2. (1)

According to [24,25], the PD source coordinates can be expressed in terms of the
distance between the reference sensor and the PD source when the PD signals are captured
at multiple sensors.

For a four-TEV sensors system, where the number of measurements is equal to the
number of unknowns, considering the TEV sensor 4 as the reference sensor, the location of
PD source can be estimated and written as in Equation (2): xPD

yPD
zPD

 = −

 x14 y14 z14
x24 y24 z24
x34 y34 z34

−1

×



 r14

r24
r34

 r4 +
1
2

 r2
14 − K1 + K4

r2
24 − K2 + K4

r2
34 − K3 + K4

 (2)

Kj = x2
j + y2

j + z2
j . (3)

In Equation (2),
(
xj4, yj4, zj4

)
is the coordinates distance of the jth sensor to reference

sensor 4 (j = 1, 2, 3). rj4 is the TDOA between the jth sensor and reference sensor 4 multiplied
by the propagation speed of light (3 × 108 m/s). r4 is the distance of reference sensor 4 to
the PD source.

As described in the principles of the TEV method in Section 2, when the PD occurs
inside the switchgear tank, electromagnetic waves are emitted and generated. The electro-
magnetic waves propagate from the PD source to the external surface of the metal tank wall
and arrive at the different TEV sensors at different instants of time. This is demonstrated in
Figure 5 with the support of a four-TEV sensors system. The PD source is located nearer to
sensor 4 as compared to Sensor S3, S2 and S1. Consequently, the PD signal arrives at S4
first. The time of arrival (TOA) of the TEV signal, which taken from the PD source to S4,
has been denoted as t4 , t3 denotes the TOA from the PD source to S3, t2 denotes the TOA
from the PD source to S2 and t1 denotes the TOA from the PD source to S1. The TDOA
between the two sensors S4 and Sj is tj4 and is given by Equation (4).

tj4 = tj − t4 (j = 1, 2 and 3). (4)

Figure 5. TOA and TDOA in TEV PD detection with four sensors

The time taken from PD source to nearest TEV sensor is denoted
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is so fast that a minor error can result in great errors in the localization of the PD source.
Hence, it is difficult to determine the arrival time precisely as well as PD location based
on the first peak or knee point method. In order to avoid the errors in the arrival time’s
estimation, CEM is used in the analysis; it has two steps.

1. The voltage waveform for each TEV sensor was converted to cumulative energy form
as shown in Figures 6 and 7 using the Equation (5):

E =
∆t
Z

×
N

∑
i=0

Vi
2 (i = 0, 1, 2, 3, . . . . . . , N) (5)

where ∆t is the time between the samples of output amplitude voltage Vi, Z is the
input impedance of the measurement system (50
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corresponds to five percent (0.05) of the maximum value of V2 or cumulative energy.

Figure 6. Plot of V2 against time for (4 TEV) sensors for PD source at location 9.

Figure 7. The cumulative energy curves with Zoom for (4 TEV) sensors for PD source at location 9.

The results are shown in Figures 6 and 7, below:
Non-linear TDOA equations are solved according to Equations (1)–(5) above, to

estimate the coordinates of PD source and compare the results with the actual PD source
coordinates.

The MATALAB Code is built to find the PD location based on Equations (1)–(4).
Figure 8 illustrates the flow chart diagram that demonstrates the program procedures.
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Figure 8. Flowchart of the steps to determine the PD location and its accuracy.

5. Results and Discussions

Table 3 shows the expected TDOA between each TEV sensor pair when the PD source
is placed at different locations inside switchgear tank. The expected TOA is calculated for
each TEV sensor using Equation (6).

tsj =
rj =

√
(xPD − xj)

2 + (yPD − yj)
2 + (zPD − zj)

2

3 × 108 m/s (speed of light)
, (6)

Table 3. Expected TDOA (ns).

PD No. S1–S4 S2–S4 S3–S4 S1–S2 S1–S3 S2–S3

1 −0.635 −0.001 −0.302 −0.634 −0.333 0.301
2 −1.790 −1.110 −0.271 −0.681 −1.520 −0.836
3 −2.950 −2.170 −0.284 −0.780 −2.660 −1.880
4 0.624 1.050 −0.361 −0.431 0.985 1.420
5 −0.536 0.022 −0.498 −0.558 −0.038 0.519
6 −1.630 −1.100 −0.424 −0.532 −1.210 −0.675
7 1.770 2.150 −0.797 −0.380 2.570 2.950
8 0.699 1.030 −0.587 −0.333 1.290 1.620
9 −0.315 −0.022 −0.504 −0.294 0.188 0.482

10 1.240 −0.026 1.510 1.270 −0.267 −1.530
11 0.286 −1.410 1.310 1.700 −1.020 −2.720
12 −0.637 −2.990 1.100 2.350 −1.740 −4.090
13 2.050 0.734 1.800 1.320 0.250 −1.070
14 1.570 −0.048 1.660 1.620 −0.090 −1.710
15 0.528 −1.500 1.360 2.030 −0.834 −2.870
16 3.960 2.900 2.390 1.060 1.570 0.510
17 2.640 1.370 1.760 1.270 0.878 −0.387
18 1.450 −0.014 1.330 1.470 0.127 −1.340
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Table 4 illustrates the estimated TDOA by CEM method as discussed in Section 4,
whereas Table 5 compares the expected TDOA with the estimated TDOA by measuring the
TDOA error between them using Equation (7) to determine the PD location accuracy of the
TEV detection system.

TDOAerror = ( TDOAoriginal − TDOAest). (7)

Table 4. Estimated TDOA (ns) by CEM.

PD No. S1–S4 S2–S4 S3–S4 S1–S2 S1–S3 S2–S3

1 −3.60 1.00 −3.40 −4.60 −0.20 4.40
2 −3.00 −1.80 −4.60 −1.20 1.60 2.80
3 −3.80 −2.40 −6.40 −2.40 0.40 2.80
4 −3.20 −2.80 −3.20 −0.40 0.00 0.40
5 −4.00 1.00 −3.20 −5.00 −0.80 4.20
6 −4.20 −3.00 −7.00 −1.20 2.80 4.00
7 −3.20 1.00 −2.80 −4.20 −0.40 3.80
8 −3.00 −2.60 −2.60 −0.40 −0.40 0.00
9 −2.00 −2.60 −1.00 0.60 −1.00 −1.60

10 −3.40 1.80 −2.80 −5.20 −0.60 4.60
11 1.00 −2.00 −3.60 1.20 4.60 3.40
12 −5.80 −2.00 −7.40 −3.80 1.60 5.40
13 −3.40 1.40 −2.00 −4.80 −1.40 3.40
14 −6.00 −3.60 −6.60 −2.20 0.00 2.20
15 −5.80 −3.20 −6.40 −0.20 1.60 1.80
16 −3.40 1.40 −2.80 0.00 5.20 5.20
17 −3.00 −1.80 −2.80 −1.20 −0.20 1.00
18 −4.20 −1.20 −5.00 −3.00 0.80 3.80

Table 5. Error Produced by comparing expected TDOA with CEM estimated in (ns).

PD No. S1–S4 S2–S4 S3–S4 S1–S2 S1–S3 S2–S3

1 2.960 −1.000 3.090 3.960 −0.130 −4.090
2 1.210 0.690 4.320 0.519 −3.120 −3.630
3 0.850 0.230 6.110 1.620 −3.060 −4.680
4 3.820 3.850 2.830 −0.031 0.980 1.020
5 3.460 −0.970 2.700 4.440 0.760 −3.680
6 2.570 1.900 6.570 0.660 −4.010 −4.670
7 4.970 1.150 2.000 3.820 2.970 −0.850
8 3.690 3.630 2.010 0.067 1.690 1.620
9 1.680 2.570 0.490 −0.894 1.180 2.080

10 4.640 −1.820 4.310 6.470 0.333 −6.130
11 −0.710 0.590 4.910 0.500 −5.620 −6.120
12 5.160 −0.990 8.500 6.150 −3.340 −9.490
13 5.450 −0.660 3.800 6.120 1.650 −4.470
14 7.570 3.550 8.260 3.820 −0.089 −3.910
15 6.320 1.700 7.760 2.230 −2.430 −4.670
16 7.360 1.500 5.190 1.060 −3.630 −4.690
17 5.640 3.170 4.560 2.470 1.070 −1.380
18 5.650 1.180 6.330 4.470 −0.670 −5.140

Average
Error 4.02 1.12 4.65 2.63 −0.85 −3.49

The lowest average errors of time difference were (0.85 ns) between signals captured
by S1−S3 and were (1.12 ns) between signal captured by S2−S4. This is because the signals
of sensors 1 and 3 and the signals of sensors 2 and 4 have similar waveform patterns to
each other and, thus, produce similar cumulative energy curves. This means the PD signals
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patterns are very much affected by the sensor locations. The sensors 1 and 3 are located in
the bottom level of tank and sensors 2 and 4 are located in the upper level of tank.

As indicated in Table 5 above, the highest average errors of time difference was about
4.65 ns, followed by 4.018 ns, 3.49 ns and 2.63 ns between signals captured by sensors
S3−S4, S1−S4, S2−S3 and S1−S2, respectively. This is because sensors are located at
different levels of the tank, which produce the dissimilarity in waveform patterns and
leads to increased error.

In addition, sensors S1−S3 produce less error than sensors S2−S4 because S1−S3
sensors are near the MV cable entrance hole on the bottom side of the tank that leads them
to get PD signals before the S2−S4 sensors, as well as the initial wave front of the field
radiated by the PD source is not uniform in all directions.

Furthermore, the experiments have been applied on a simple empty switchgear tank,
which made the task of measuring arrival times more complicated since there are no
internal components to diversify the orientation of the electric field. In addition, it may be
due to the occurrence of the electromagnetic waves reflections occurrence with the internal
tank walls during the propagation that caused distortion to PD signal waveform.

With the assumption that the PD signal travels in the shortest path (a straight line),
the closest sensor should receive the signal first and the furthest sensor should pick up
the signal last. Thus, for the PD signal generated at location No.9 as an example, sensor 3
should receive the signal first, followed by sensor 1, 2 and finally by sensor 4. Nevertheless,
the estimated sequence for PD signal generated at location No.9 indicates that S2 received
the signal earlier than S1, followed by S3 and S4. For PD signals in 18 locations, cumulative
energy curves give incorrect sequences in all the PD locations except PD location No.1 and
PD location No.5.

The average error produced by using the CEM method to estimate the arrival time of
a TEV signal was ±1.34 ns, approximately. This is equivalent to a propagation distance of
40.2 cm or (0.40 m), in air, where the velocity of the signal in air is equivalent to the speed
of light (0.3 m/ns).

Based on the obtained results mentioned above, Table 6 illustrates the estimated
coordinate of the PD source location in the 3-D space inside the switchgear tank and its
comparison with known coordinates of the PD source location (Table 2) to measure root
mean square error (RMSE) using Equation (8).

RMSE =
√

(xoriginal − xest)
2 + (yoriginal − yest)

2 + (zoriginal − zest)
2. (8)

Table 6. Estimated coordinates of the PD source and the average errors of the PD localization.

PD No.
Coordinates (x,y,z) cm Error (cm)

Actual Source (Table 2) Estimated Source Deviation Error in (x,y,z) RMSE

1 (−34,30,−10) (−23.4, 33.7, 25.7) (10.5, 3.7,35.7) 37.5
2 (−35,0,−8) (−8.2,−14, 7, 6.5) (26.7, −14.7, 14.5) 33.77
3 (−35,−30,−8) (15.8, −22.6, 3.2) (50.8, 7.3, 11.2) 52.57
4 (−2,30,−7) (4.1, −3.2, 11.3) (6.1, 33.2, 18.3) 38.49
5 (0,0,−10) (2.6, 15.3, 5.1) (2.6, 15.3, 15.1) 21.7
6 (−1,−30,−9) (−27.6, −28.5, 6.3) (−26.6, 1.4, 15.3) 30.78
7 (34,30,−10) (−14.1, 25.8, 12.2) (−48.1, −4.1, 22.2) 53.16
8 (31,0,−8) (11.6, −4.6, 11.3) (−19.3, −4.6, 19.3) 27.76
9 (32,−30,−8) (17.9, −17.9,−2.8) (−14., 12, 5.1) 19.22

10 (−34,30,52) (−14.3, 34.5, 27) (19.6, 4.5, −24.9) 32.11
11 (−34,0,51) (5.2, −6.9, −24.3) (39.2,−6.9,−26.6) 47.92
12 (−34,−30,51) (−22.9, −23.8, 21.8) (11, 6.1, −29.1) 31.79
13 (−15,30,55) (4.2, 18.8, −.27) (19.2,−11.1, −55.2) 59.56
14 (−1,0,55) (23.2, −24.5, 35.9) (24.2, −24.5, −19) 39.4
15 (−2,−30,57) (−.62, −12.8, 4.3) (1.3, 17.1, −52.6) 55.40
16 (32,30,51) (18.1, 10.9, 5.02) (−13.1, −19, −45.9) 51.65
17 (33,0,51) (22, −19.3, 21.3) (−10.9, −19.3, −29.6) 37
18 (33,−30,52) (−2.9, −14.7, 19.8) (−35,9, 15.2, −32.1) 50.64

Average RMSE 40.2
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As shown in Table 6, different PD source locations show coordinates inside the
switchgear tank. The minimum RMSE was 19.22 cm for the PD signal generated at location
No.9, and the highest RMSE was 59.5 cm for the PD signal generated at location No.13.
The overall average error produced by using the CEM method to estimate the arrival time
of a TEV signal for 18 locations was 40.2 cm (0.40 m) and corresponds to 1.34 ns in the
signal propagation time. Figures 9 and 10 illustrate the PD localization error that shows the
coordinates of the actual PD source as well as the location estimates obtained from CEM in
the 3-D space inside the switchgear tank for the PD signal generated at location No.9 and
for PD location No.13, respectively.

Figure 9. Actual and estimated PD source at position No.9 in (x,y,z) plane,

Figure 10. Actual and estimated PD source at position No.13 in (x,y,z) plane.

6. Conclusions

This paper discussed the accuracy of the PD source localization method inside a
switchgear tank by using an array of TEV sensors. The Cumulative Energy Method was
used for estimating the time difference of arrival of the PD signal generated by a needle
shaped electrode mounted at 18 different locations inside a simulated tank. These signals
were captured by four TEV sensors mounted at four different locations on the walls of
the tank. The onset time using the CEM method was determined corresponding to five
percent (0.05) of the maximum value of V2 or cumulative energy. This method was effective
for estimating the onset time of the TEV signals producing values that differs from the
expected ones by 1.34 ns on average. The average RMSE error was 40.2 cm and corresponds
to the average error of TDOA, 1.34 ns.

The results show that TDOA are affected by sensor positions where the error in TDOA
increased when sensors were installed in different levels of the tank and reduced when
sensors were installed in the same level.

In addition, the results have shown an incorrect sequence of receiving signals in all PD
locations except locations No.1 and 5. This means distortion occurred to signal waveforms
because of the electromagnetic waves reflections during its propagation since the tank is
empty and there are no internal components to diversify the orientation of the electric field.

In the future research, a study will be carried out to measure the accuracy of PD
localization inside a switchgear tank by the receiving signal strength (RSS) method and
compare it with the TDOA method.
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