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Abstract: In this study, coconut oils have been transesterified with ethanol using microwave tech-
nology. The product obtained (biodiesel and FAEE) was then fractional distillated under vacuum to
collect bio-kerosene or bio-jet fuel, which is a renewable fuel to operate a gas turbine engine. This
process was modeled using RSM and ANN for optimization purposes. The developed models were
proved to be reliable and accurate through different statistical tests and the results showed that ANN
modeling was better than RSM. Based on the study, the optimum bio-jet fuel production yield of
74.45 wt% could be achieved with an ethanol–oil molar ratio of 9.25:1 under microwave irradiation
with a power of 163.69 W for 12.66 min. This predicted value was obtained from the ANN model
that has been optimized with ACO. Besides that, the sensitivity analysis indicated that microwave
power offers a dominant impact on the results, followed by the reaction time and lastly ethanol–oil
molar ratio. The properties of the bio-jet fuel obtained in this work was also measured and compared
with American Society for Testing and Materials (ASTM) D1655 standard.

Keywords: bio-jet fuel; microwave-assisted transesterification; RSM; ANN; optimization; coconut oil

1. Introduction

Amongst renewable energy technologies the current trend is technology which aims
to optimally utilize clean and sustainable energy sources, based on current and future
economic and societal needs. Social and economic development is always followed with
an increase in energy demand. Currently, most of the energy demand is fulfilled by non-
renewable fossil fuels, including natural gas, coal, and petroleum. The formation of fossil
fuels took hundreds of million years. It is predicted that with the current consumption
rate, fossil fuel will deplete in the near future [1,2]. Furthermore, the burning of fossil
fuels results in negative environmental impacts, such as global warming, acid rain, climate
change, and others. Hence, it is crucial to look for alternative energy resources that are
clean and sustainable to replace the non-renewable fossil fuel.

There are a series of studies that have been done in exploring renewable energy tech-
nologies, such as solar energy, wind energy, tidal energy, and biofuels [3–8]. Among the
available renewable energy, liquid biofuel from biomass resources has received a lot of
attention [9–11], especially in the transportation sector, as it offers an opportunity to replace
petroleum in operating the combustion engine with little to no modification [12,13]. In fact,
over 90% of transportation nowadays is still dependent on non-renewable fossil fuel [14].
Therefore, many works have been done to enhance and improve the biofuel production
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technologies, especially biodiesel, a renewable replacement of diesel fuel [15–18]. Nev-
ertheless, there is only a little information about the production of bio-kerosene (bio-jet
fuel). Bio-jet fuel is a promising alternative fuel for a jet engine. Other than the aviation
sector, bio-jet fuel also can be used in the power generation sector to operate the gas tur-
bine engine. Hence, the bio-jet fuel production technologies should be further explored
and investigated in obtaining a comparable renewable replacement for petroleum-based
kerosene at sufficient volume.

Based on the statistical report, flights produced 859 Mt of carbon dioxide (CO2)
globally in 2017. In the other words, approximately 2% of the CO2 emitted through human
activities is contributed by the global aviation sector. In addition, this 859 Mt of CO2 is
responsible for 12% of CO2 emission from all transports sources [19,20]. CO2 is one of
the greenhouse gases that will trap heat within the Earth’s atmosphere, causing global
warming and climate change. In order to mitigate the CO2 emissions from air transport
and, at the same time, to address the global challenge of climate change, the International
Air Transport Association (IATA) has adopted a set of targets and approaches. One of the
ambitious targets is to achieve 50% reduction in net aviation carbon emissions by 2050 as
compared to 2005, through the deployment of sustainable low-carbon fuels, such as bio-jet
fuel [19].

Generally, aviation liquid fuel can be produced from different biomass feedstock with
different methods [21–23]. Currently, transesterification and hydrotreating are the main
production method of bio-jet fuel [24]. Unlike the hydrotreating process, transesterification
requires an upgrading process to separate bio-jet fuel from the product of transesterification
(biodiesel). Although an additional downstream process is required, however, the trans-
esterification process operates under milder condition as compared to the hydrotreating
process. Hence, its operating cost are relatively lower. The transesterification process
involves three consecutive and reversible reactions (refer to Equations (1)–(3)) that react
triglyceride with alcohol in the presence or absence of a catalyst and produce a mixture of
fatty acid alkyl ester (FAAE or biodiesel) and glycerol as a by-product. In overall, trans-
esterification requires 1 mole of triglyceride and 3 moles of alcohol to produce 3 moles of
biodiesel, as shown in Equation (4). However, practically, the excess amount of alcohol is
usually used to shift the equilibrium to the product side and allow the phase separation of
biodiesel from the glycerol [25].

Triglyceride (oil or f at) + ROH (alcohol)↔ Diglyceride + R′COOR (1)

Diglyceride + ROH ↔ Monoglyceride + R′COOR (2)

Monoglyceride + ROH ↔ Glycerol + R′COOR (3)

Triglyceride (oil or f at) + 3ROH (alcohol)↔ Glycerol + 3R′COOR (FAAE) (4)

Commonly, methanol is used for biodiesel production via transesterification reactions.
This is because methanol is cheaper, allows phase separation to be conducted more easily,
and permits the transesterification process to be conducted under milder conditions [26].
However, methanol is very toxic to humans, as in the body methanol is metabolized into
formaldehyde and then formic acid. Therefore, there is the scope of using ethanol for
producing biodiesel. Ethanol has several advantages to methanol, such as offering better
solvent properties and low toxicity relative to methanol [27,28] Furthermore, there is a
study reported that the biodiesel formed using ethanol, the fatty acid ethyl ester (FAEE)
present a higher cetane number, calorific value, oxidation stability, lubricant characteristics,
lower cloud and pour points, and also have lower tailpipe emissions in comparison to the
product collected using methanol, fatty acid methyl ester (FAME) [29,30].

In addition, microwave technology is deployed to replace conventional heating in this
study. Microwave technology is a green processing method that offers several advantages,
such as by being more environmental-friendly, in terms of lower energy consumption. Fur-
thermore, the volumetric heating mechanism of microwave heating also allows rapid heating,



Energies 2021, 14, 295 3 of 17

enhances chemical reaction rate and selectivity, and improves the production quality and
yield [25]. Microwave heating has received a lot of attention since the 1970s, especially in
the chemical research. Conventional heating transfers heat into the reactant through the
reactant vessel via conduction and convection (wall heating). However, microwave heating is
highly dependent on the dielectric properties of the reactant [25,31]. It allows direct heating
of the material without heat-up of the reactant vessel [32]. Hence, microwave heating allows
selective and rapid heating, as mentioned previously.

Numerous studies have been done on the microwave-assisted transesterification pro-
cess for biodiesel production [25,33,34]. Compared to other approaches, transesterification
is the simplest and a widely-accepted method to reduce oil viscosity because it is cost-
effective. Therefore, modeling the process and optimizing the process input variables
involved are important in order to save time, achieve high product yield and reduce the
overall cost to produce biodiesel. Response surface methodology (RSM) and artificial neu-
ral network (ANN) are one of the mathematical methods for modeling transesterification
processes [35–38]. Some of the advantages that RSM has are the durability under optimal
setting conditions and the ability to minimize the number of trials required to provide
sufficient evidence for statistically acceptable results [37].

Artificial neural network (ANN) is an information processing system that has charac-
teristics such as biological neural networks that imitates the behaviour and learning process
of the human brain. An interesting characteristic of this ANN is its ability to learn (learning
and training). The training process at ANN aims to find convergent weights between
layers so that the weights obtained to produce the desired output. ANNs are universal
approximators and their predictions are based on prior available data, have shown great
ability in solving complex nonlinear systems [39].

Ant colony optimization (ACO) is a swarm intelligence technique which is inspired
by natural metaphors, namely communication and cooperation between ants to find the
shortest path from the nest ants to the food. It is desirable to integrate ACO with ANN
model since ACO is capable of optimizing complex process parameters [15,40]. Coupling
ACO with the ANN is desirable since the ACO algorithm is capable of optimizing complex
process parameters [41].

This study proposed the production of bio-jet fuel through microwave-assisted cat-
alytic transesterification from coconut oil. Coconut oil was selected as the raw feedstock
as it consists of a high percentage of medium-chain triglycerides, which made it suitable
to be used for bio-jet fuel production [22,42]. An optimization study was conducted in
this work based on three parameters, including oil to ethanol molar ratio, reaction time
and microwave power, using response surface methodology (RSM) and artificial neural
network (ANN) coupled with ant colony optimization (ACO) algorithm. Additionally, the
relevant characterizations of coconut oil through the application of gas chromatographic-
mass spectrometry and Fourier transform infrared spectrometry analyses of the coconut
oil, FAEE, and bio-jet fuel were conducted and reported. The physicochemical properties
of the bio-jet fuel collected and their comparison with the ASTM standard are also reported
in this paper.

2. Materials and Methods
2.1. Materials and Equipment

Coconut oil was purchased from the local market in Selangor, Malaysia. The co-
conut oil was then analyzed using gas chromatography, GC (Agilent, 7890A, Wilmington,
DE, USA) to obtain its fatty acid profile, as reported in Table 1. Ethanol (C2H5OH) and
potassium hydroxide (KOH) were purchased from Sigma–Aldrich (St. Louis, MO, USA).
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Table 1. Fatty acid composition of coconut oil.

Fatty Acid Composition (wt%)

Caprylic acid, C8:0 6.0
Capric acid, C10:0 5.1
Lauric acid, C12:0 48.5

Myristic acid, C14:0 16.9
Palmitic acid, C16:0 9.6
Stearic acid, C18:0 2.3
Oleic acid, C18:1 8.2

Linoleic acid, C18:2 3.4

2.2. Microwave-Assisted Catalytic Transesterification

The experiments of this work involve the catalytic transesterification of coconut oil
under microwave irradiation. Firstly, coconut oil and ethanol at a specific molar ratio with
0.5 wt% of potassium hydroxide (KOH) catalyst concentration was prepared. Then, the
mixture (reactant) was poured into a 250 mL round bottom flask with a magnetic stirrer bar
and put into the microwave reactor. Next, the reflux system was attached, and the reactant
was then subjected to microwave irradiation with different power settings under different
reaction times at a stirring speed of 200 rpm. At the same time, the temperature of the
reflux system was maintained at −4 ◦C by using a chiller to condense back the vaporized
reactant. After completion, the product of this transesterification process was cooled to
room temperature. The equipment used in producing bio-jet fuel via transesterification
was a modified microwave oven equipped with a reflux system, as shown in Figure 1.
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Then, the product was left in a separating funnel to split the liquid phases. The upper
layer, which is the fatty acid ethyl ester (FAEE), was washed using warm water three times
and dried at 100 ◦C for 1 h in the conventional oven to remove the moisture.

2.3. Distillation

The bio-jet fuel fraction of the FAEE was obtained by fractional distillation process,
which was carried out as shown in Figure 2. The bio-jet fuel with a lower boiling point
(C8-C14 of FAEE) was separated from the FAEE by using a rotary evaporator at 165 ◦C and
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25 mbar for 120 min. The bio-jet fuel was collected, and the percentage yield of bio-jet fuel
was calculated by using the equation below:

%yield o f biojet f uel =
amount o f biojet f uel obtained (g)

amount o f coconut oil f eedstock (g)
× 100% (5)

Energies 2021, 14, x FOR PEER REVIEW 5 of 18 
 

 

Then, the product was left in a separating funnel to split the liquid phases. The upper 
layer, which is the fatty acid ethyl ester (FAEE), was washed using warm water three times 
and dried at 100 °C for 1 h in the conventional oven to remove the moisture. 

2.3. Distillation 
The bio-jet fuel fraction of the FAEE was obtained by fractional distillation process, 

which was carried out as shown in Figure 2. The bio-jet fuel with a lower boiling point 
(C8-C14 of FAEE) was separated from the FAEE by using a rotary evaporator at 165 °C 
and 25 mbar for 120 min. The bio-jet fuel was collected, and the percentage yield of bio-
jet fuel was calculated by using the equation below: %𝑦𝑖𝑒𝑙𝑑 𝑜𝑓 𝑏𝑖𝑜𝑗𝑒𝑡 𝑓𝑢𝑒𝑙 =  𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑏𝑖𝑜𝑗𝑒𝑡 𝑓𝑢𝑒𝑙 𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑 (𝑔)𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑐𝑜𝑐𝑜𝑛𝑢𝑡 𝑜𝑖𝑙 𝑓𝑒𝑒𝑑𝑠𝑡𝑜𝑐𝑘 (𝑔) × 100% (5) 

 
Figure 2. Experimental setup for distillation. 

2.4. Response Surface Methodology (RSM) 
To investigate the optimal condition for bio-jet fuel production through microwave-

assisted catalytic transesterification, response surface methodology (RSM) was applied by 
using Design Expert 11 software (Stat-Ease, Minneapolis, MN, USA). RSM was normally 
used to optimize an experiment based on the selected variables [43–45]. Traditionally, the 
one-factor-at-a-time (OFAT) methodology, which varies one variable at a time while 
maintaining the others as constant, is time-consuming and expensive because many 
experimental runs are required to evaluate the relationship between the studied variables. 
Hence, RSM is recommended as the optimization can be achieved with less experimental 
runs as compared to OFAT by varying different parameters at a time. Moreover, a 
mathematical model can be generated to describe the experiments by using a polynomial 
function that fitted by the least square method: 𝑌 = 𝛽 + 𝛽 𝑋 + 𝛽 𝑋 𝑋 + 𝛽 𝛽 𝑋 𝑋 + 𝑒 (6) 

where Xi indicates the studied variable, while Y symbolize the results to be optimized. β0, 
βi, and βij, however, are the regression coefficient. Finally, e represents the random error. 

In this project, the Box–Behnken design was selected as it able to estimate the 
regression coefficient of a second-degree quadratic equation with less experimental runs 
in comparison to central composite design. In this optimization study, three parameters 
were considered, namely, coconut oil to ethanol molar ratio, reaction time, and microwave 
power. The respective levels of different parameters are summarized in Table 2 and note 

Figure 2. Experimental setup for distillation.

2.4. Response Surface Methodology (RSM)

To investigate the optimal condition for bio-jet fuel production through microwave-
assisted catalytic transesterification, response surface methodology (RSM) was applied by
using Design Expert 11 software (Stat-Ease, Minneapolis, MN, USA). RSM was normally
used to optimize an experiment based on the selected variables [43–45]. Traditionally,
the one-factor-at-a-time (OFAT) methodology, which varies one variable at a time while
maintaining the others as constant, is time-consuming and expensive because many experi-
mental runs are required to evaluate the relationship between the studied variables. Hence,
RSM is recommended as the optimization can be achieved with less experimental runs as
compared to OFAT by varying different parameters at a time. Moreover, a mathematical
model can be generated to describe the experiments by using a polynomial function that
fitted by the least square method:

Y = β0 + ∑ βiXi + ∑ βijXiXj + ∑ βiβiXiXi + e (6)

where Xi indicates the studied variable, while Y symbolize the results to be optimized. β0,
βi, and βij, however, are the regression coefficient. Finally, e represents the random error.

In this project, the Box–Behnken design was selected as it able to estimate the re-
gression coefficient of a second-degree quadratic equation with less experimental runs
in comparison to central composite design. In this optimization study, three parameters
were considered, namely, coconut oil to ethanol molar ratio, reaction time, and microwave
power. The respective levels of different parameters are summarized in Table 2 and note
that the center point was repeated three times to determine the experimental errors. The
3-levels-3-parameters Box–Behnken Design was implemented and showed that a total
15 experimental runs with different reaction conditions (refer to Table 3) are required to
conduct the optimization study. From there, bio-jet fuel was produced, and the result
obtained was inserted into software for further analysis. Analysis of variance (ANOVA)
was conducted to generate a mathematical model for the studied response, in this case, the
biokerosene yield.
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Table 2. Experimental level of studied parameters.

Experimental Level Coconut Oil to Ethanol
Molar Ratio, F1

Reaction Time, F2 (min) Microwave Power,
F3 (W)

Low level, L (−1) 1:6 5 100
Medium level, M (0) 1:9 10 300

High level, H (+1) 1:12 15 500

Table 3. Fit summary table.

Source Sequential
p-Value

Lack of Fit
p-Value

Adjusted
R-Squared

Predicted
R-Squared Remarks

Linear 0.0418 0.0211 0.3787 0.2289
2 Factors

Interaction 0.9898 0.0143 0.1574 −0.4111

Quadratic <0.0001 0.4277 0.9792 0.9130 Suggested
Cubic 0.4277 0.9839 Aliased

2.5. Artificial Neural Network (ANN)

MATLAB’s Neural Network in MATLAB R2011b (MathWorks Inc., Natick, MA, USA)
was used to train the backpropagation ANN developed in this study. The hyperbolic
tangent sigmoid (Equation (7)) and the purelin (Equation (8)) transfer function was used for
the input layer to the hidden layer and the hidden layer to the output layer, respectively.

tangent sigmoid (x) =
2

(1 + e−2x)
− 1 (7)

A = purelin (x) = x (8)

The proposed ANN has an input layer with three neurons (coconut oil to ethanol
molar ratio, reaction time and microwave power), a hidden layer and an output layer with
one neuron (bio-jet fuel yield). The ANN model was trained until the mean square error
(MSE) was minimized and the average correlation coefficient was close or equal to 1. The
optimum number of hidden neurons was selected by heuristic procedure. The dataset
containing the bio-jet fuel yield and the process input variables were divided into three
subsets: training (70%), validating (15%), and testing (15%).

2.6. Ant Colony Optimization (ACO)

Ant colony optimization (ACO) is also known as a swarm intelligence technique,
which is inspired by the foraging pattern of ant colonies. Ants can find the shortest path
from a food source to their nest, without having to see it directly. The ants have a unique
and very advanced solution, namely using a pheromone trail on a path to communicate
and building a solution, the more pheromone traces are left, the other ants will follow that
path. These pheromones too relate to the previous good element solutions formed by the
ants. Equation (9) describes the probability of an ant move from one node (i) to another (j):

Pi,j =

(
τα

i,j

) (
nβ

i,j

)
∑
(

τα
i,j

) (
nβ

i,j

) (9)

where τi,j indicates the amount of pheromone on edge i,j (refer to Equation (10)) and the
α symbolizes the factors selected to regulate the impact of τi,j. τi,j. Meanwhile, ni,j is the
desirability of edge i,j (commonly 1/di,j) and the β implies the factors selected to regulate
the impact of ni,j.

τi,j = 1 − ρτi,j + ∆τi,j (10)
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where ρ is the rate of pheromone evaporation and ∆τi,j is the amount of pheromone
deposited.

If ant k travels on edge i,j, the amount of pheromone deposited is given by Equation (11):

∆τk
i,j =

{
1
Lk

, if ant k travels on edge i, j
0, Otherwise

(11)

where Lk is the cost of the kth ant’s tour (typically length).

2.7. Statistical Evaluation of the Developed Models

Different statistical measures, including correlation coefficient (R), coefficient of deter-
mination (R2), root mean absolute error (RMSE), standard error of prediction (SEP), mean
absolute error (MAE) and Chi-square were used to test the developed models, as described
in Equations (12)–(17) [39]:

R =
∑n

i=1
(

Mp −Mp,avg
)
×
(

Me −Me,avg
)√[

∑n
i=1 (Mp −Mp.avg)

2
][

∑n
i=1 (Me −Me.avg)

2
] (12)

R2 = 1− ∑n
i=1 (Me −Mp)

2

∑n
i=1 (Me,avg −Mp)

2 (13)

RMSE =

√
1
n ∑n

i=1 (Me −Mp)
2 (14)

SEP =

√
1
n ∑n

i=1 (Me −Mp)
2

Me,avg
× 100 (15)

MAE =
1
n

(
n

∑
i=1

∣∣(Me − Mp
)∣∣) (16)

Chi− square =
n

∑
i=1

(
Me −Mp

)2

Me
(17)

where n shows the number of points, and Mp, Me, Mp,avg and Me,avg are the predicted value,
experimental value and the average of the predicted and experimental values, respectively.

2.8. Sensitivity Analysis

The importance of the studied variables (coconut oil to ethanol molar ratio, reaction
time, and microwave power) was explored through conducting the sensitivity analysis. In
this analysis, Equation (18) is used with the “sum of squares” values obtained from the
ANOVA table generated from response surface methodology (RSM).

sensitivity% =
Sx

Sy
× 100 (18)

where Sx and Sy indicate the sum of square of the individual variable and total sum of
squares of all the variables, correspondingly.

The significance input variables for ANN, were calculated based on Equation (19) [37]:

Fk =

∑
j=Mo
j=1

(( ∣∣∣Wag
kj

∣∣∣
∑

My
h=1

∣∣∣Wac
hj

∣∣∣
)
×
∣∣∣Wgl

jm

∣∣∣)

∑
h=My
h=1

{
∑

j=Mo
j=1

((∣∣∣Wan
qr

∣∣∣ ∣∣∣Wag
hj

∣∣∣
∑

Mp
d=1

∣∣∣Wag
hj

∣∣∣
)
×
∣∣∣Wgl

jm

∣∣∣)} (19)
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where, Fk is the relative significance of the kth input variable on the output variable.
Mo is the number of input neurons and My is the number of hidden neurons. W is the
connection weight. The superscript a, g, and l represent the input, output, and hidden layer,
respectively, whereas the subscript h, j, and m represent the input, output, and hidden
neuron, respectively.

2.9. Optimization of Transesterification Process Variables

RSM and ANN-ACO were used to evaluate the optimal value of the three respective
studied parameters in order to obtain the highest bio-jet fuel yield. The bio-jet fuel yield
and the studied parameters were set at “maximum” and “in the range” individually in the
case of RSM. ACO was used to determine the optimal values with the maximum bio-jet
fuel yield for ANN. By conducting triplicate experiments, the optimal values determined
by each approach were validated and the average values obtained were compared with the
expected values.

2.10. Bio-Jet Fuel Properties

The bio-jet fuel isolated from biodiesel (FAEE) was then analyzed and compared with
the standard requirements for aviation turbine fuels (ASTM D1655) of the American Society
for Testing and Materials. In this work, according to the respective ASTM test process,
physicochemical properties including density at 15 ◦C, kinetic viscosity at −20 ◦C, flash
point, and freezing point were calculated. Using a bomb calorimeter, the lower heating
factor, also known as calorific value, was calculated as well.

3. Results
3.1. RSM

Based on this result, a fit summary table was generated to evaluate the suitable
model for the optimization study. The fit summary table is shown in Table 3, and the
outcomes indicate that the quadratic model is adequate to model the studied response
(bio-jet fuel yield). This finding is based on the sequential p-value of the quadratic model,
which is less than 0.05. In other words, the quadratic model consists of more than 95%
confidence in modeling the experiments. Besides that, inclusion of cubic model terms
might cause the model to be aliased and hence, the quadratic model is the best with the
highest polynomial order.

The model used in this quadratic equation using a notation such as F1 for the coconut
oil ethanol molar ratio, F2 for the reaction time, and F3 for microwave power. The exper-
imental and predicted results in this work are summarized in Table 4 and the uncoded
quadratic equation is shown in the following equation:

Bio− jet fuel yield (%) = 21.84F1 + 2.419F2 + 0.0416F3 − 0.00717F1F2 + 0.00227F1F3 − 0.000165F2F3
−1.18644F2

1 − 0.082917F2
2 − 0.00016F2

3 − 50.84552
(20)

Table 4. Experimental runs in RSM design with the different operating conditions and their respective experimental and
predicted bio-jet fuel yield.

Experimental
Run

Coconut Oil to
Ethanol Molar

Ratio, F1

Reaction Time,
F2

(min)

Microwave
Power, F3

(W)

Experimental
Bio-Jet Fuel

Yield (%)

Predicted Bio-Jet
Fuel Yield (%)

RSM

Predicted Bio-Jet
Fuel Yield (%)

ANN

1 1:6 10 500 40.92 40.07 41.10
2 1:9 15 100 70.86 71.12 70.73
3 1:12 5 300 56.05 56.11 56.18
4 1:6 5 300 48.21 49.32 47.97
5 1:12 15 300 63.88 62.77 64.13
6 1:9 15 500 55.73 56.64 55.69
7 1:9 5 100 64.83 63.92 64.84
8 1:9 5 500 50.36 50.10 50.38
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Table 4. Cont.

Experimental
Run

Coconut Oil to
Ethanol Molar

Ratio, F1

Reaction Time,
F2

(min)

Microwave
Power, F3

(W)

Experimental
Bio-Jet Fuel

Yield (%)

Predicted Bio-Jet
Fuel Yield (%)

RSM

Predicted Bio-Jet
Fuel Yield (%)

ANN

9 1:6 10 100 57.14 56.94 56.64
10 1:12 10 500 49.16 49.36 49.19
11 1:12 10 100 59.94 60.79 59.96

12 * 1:9 10 300 69.82 68.85 69.81
13 1:6 15 300 56.47 56.41 55.96

14 * 1:9 10 300 69.15 68.85 69.81
15 * 1:9 10 300 67.59 68.85 69.81

* The center points of the experiments are replicated for 3 times.

The effect of the studied parameters as linear, quadratic, and interaction coefficients
on the studied responses was determined for their significance through analysis of variance
(ANOVA). The ANOVA results of this work are reported in Table 5. The studied parameters
coconut oil to ethanol molar ratio, reaction time and microwave power represent as F1, F2,
and F3 terms particularly. It is noted that the model used was statistically significant with a
confidence level of 95%. From the table, it observed that parameters F1, F2, and F3 have a
significant influence on bio-jet fuel production (p-values < 0.0500). Furthermore, note that
the “lack of fit” of the model consists of a p-value of 0.4227 (not significant as >0.05). In the
other words, the model is fit to be used for further analysis.

Table 5. Analysis of Variance for the modeling of bio-jet fuel production.

Source Sum of Squares df Mean Square F-Value * p-Value Remarks

Model 1127.25 9 125.25 74.3 <0.0001 significant
F1-Ethanol 86.4 1 86.4 51.25 0.0008

F2-Time 94.46 1 94.46 56.04 0.0007
F3-Power 400.45 1 400.45 237.55 <0.0001

F1F2 0.0462 1 0.0462 0.0274 0.875
F1F3 7.4 1 7.4 4.39 0.0903
F2F3 0.1089 1 0.1089 0.0646 0.8095

F2
1 420.99 1 420.99 249.74 <0.0001

F2
2 15.11 1 15.11 8.96 0.0303

F2
3 150.55 1 150.55 89.31 0.0002

Residual 8.43 5 1.69
Lack of Fit 5.81 3 1.94 1.48 0.4277 not significant
Pure Error 2.62 2 1.31
Cor Total 1135.68 14

* The F value for a term shows the test in order to compare the variance of that particular term with the residual variance.

Effect of the Parameter
Effect of the Ethanol to Oil Molar Ratio

Figure 3a shows the effect of ethanol to oil molar ratio and reaction time for the bio-jet
fuel production. It is shown, from the ANOVA analysis (Table 5), that ethanol to oil molar
ratio has the positive effect for bio-jet fuel production (p value < 0.05). Increasing the
ethanol to oil molar ratio from 1:6 to 1:9.36, the bio-jet fuel yield increases until an optimal
point and then decreases. Similar trends have been reported in several studies [46]. As
stated before, the stoichiometry of the transesterification requires three moles of alcohol to
react with one mole of triglyceride. However, since it involves a reversible reaction, so, an
excessive amount of alcohol is usually needed to shift the reaction equilibrium toward the
production of biodiesel. In the work done by Encinar et al. [47], the conventional alkali-
catalyzed transesterification was reported to be incomplete for the molar ratio of methanol
to Cynara oil that was less than 4.05. As expected, the methyl esters yield increases with the
methanol molar ratio and achieve an optimal yield at a molar ratio of 5.67. However, for the
methanol molar ratio higher than 5.67, the methyl esters yield drops. This result tallies with
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current work. This phenomenon is observed because the separation and recovery process
of glycerol has been interfered by the high alcohol molar ratio [48]. The high amount of
ethanol, in this case, has increased the solubility of the glycerol in the ester phase and shifts
the reaction equilibrium towards the reactant side. As the result, biodiesel yield decreases
as well as bio-jet fuel.
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Effect of the Reaction Time

The relationship between reaction time and microwave power is shown in Figure 3b.
The p-value = 0.0007 of the reaction time parameter suggested that there was a reasonably
large impact of reaction time on the production of bio-jet fuel yield (Table 5). With the
increase in reaction time from 5 to 14.34 min followed by the increase in microwave power
from 100–189.53 W, bio-jet fuel yield improved, which may be due to the explanation that
more reaction time causes a more productive reaction time. It can be noticed that the bio-jet
fuel yield increases as the reaction time increases, similar to the studies done by other
researchers [42].

Effect of the Microwave Power

It is observed that the interaction of the microwave power and ethanol molar ratio
have positively approached the bio-jet fuel yield. From Figure 3c, it observed that increasing
the microwave power from 100 to 189.53 W, and the ethanol to oil molar ratio from 1:6
to 1:9.36, will increase the bio-jet fuel into maximum point and then it will decrease. The
bio-jet fuel yield was decreasing when the microwave power reached above 189.53 W, with
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an ethanol molar ratio of more than 1:9.36. This might be due to the possibility of high
microwave power causes the destruction of triglycerides [49]. Hence, less triglycerides
were reacted with alcohol, and resulting in lower yield.

3.2. Analysis of the Developed ANN Model

The design of the ANN architecture chosen for this work was based on the minimum
mean square error (MSE) and the highest coefficient correlation value (R). The ANN
network modeling output plots (predicted values) versus target (actual values) for training,
validation, testing and entire datasets with R values of 0.997, 1, 1, and 0.99785, respectively,
are shown in Figure 4. In this study, the best topology was found to be 3-8-1, (Figure 5).
The architecture consists of a three-neuron input layer.
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3.3. Comparison of the Predictive Capability of Models

Table 6 displays the findings obtained from different statistical metrics used to test
the built models. For both developed models (RSM and ANN), the high R values (Table 6)
indicate that there is a strong link between the real and the predicted yields of bio-jet fuel.
For both RSM and ANN, the R and R2, were 0.9963, 0.9926, and 0.9979,0.9957, respectively.

Table 6. Statistical analysis.

Statistical Analysis RSM ANN

R 0.9963 0.9979
R2 0.9926 0.9957

RSME 0.5619 0.4048
SEP (%) 0.9563 0.6889

MAE 0.0414 0.0220
Chi-square 0.0096 0.0061

The good fit of the models is representative of these high values. RMSE is a test of
the dataset adherence to the regression line. For both RSM and ANN models, the values
of RMSE that were obtained were all low, confirming the models’ good fit. To calculate
the residuals (deviation from actual objective) of the built models, SEP (percent) and MAE
were used. The ANN model had less divergence from experimental values of SEP (0.6889
percent) and MAE (0.022) than the RSM model, as seen in Table 6. In comparison, lower
chi-square (0.782) values confirmed that the most reliable was the ANN model with the
lowest error term values and highest R and R2 values. It was noted in this analysis that
ANN was found to be superior than RSM.

3.4. Sensitivity Analysis Results of the Input Variables on the Developed Models

The sensitivity analysis findings for both RSM and ANN are shown in Figure 6. The
result for both models have the same pattern in that the most influential response input
variable (bio-jet fuel yield) was seen to be microwave power, followed by reaction time
and finally by ethanol to oil molar ratio. The degrees of significance distributions, however,
differed between the methods of modeling. The significance level of 68.89% microwave
power, 16.25% reaction time and 14.86% ethanol to the molar ratio for RSM. While for
ANN, the important microwave power rating was 42.29%, the reaction time was 29.03%
and the ethanol oil molar ratio was 28.68%.
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3.5. Optimization of the Process Variables for Bio-Jet Fuel

To obtain the highest value of bio-jet fuel yield, the optimization of the studied
variables was carried out using RSM and ANN-ACO. In the case of RSM, the in-build
optimization method in the Design Expert software was used for the optimisation study. On
the other hand, the ANN models acted as the fitness functions when combined with ACO in
the case of optimization using the ANN-ACO method. Table 7 shows the optimum values
expected by each system. For each model bio-jet fuel validated by triplicate experiments
in the laboratory, the expected optimal condition and the average bio-jet fuel yields were
reported (Table 7). From the result, it was observed that RSM predicted 72.49% of bio-fuel
jet yield. While for ANN-ACO, the predicted yield was 74.45% with process variables
(9.25:1 ethanol oil molar ratio, 12.66 min reaction time and 163.69% microwave power) was
higher than most RSM values.

Table 7. Optimization of RSM and ANN-ACO.

Modeling Method Ethanol Time Power Predicted Observed

RSM 9.35 14.34 189.53 72.49 73.02
ANN 9.25 12.66 163.69 74.8 74.45

3.6. FTIR

The results obtained from the FTIR study of the spectrum of coconut oil, FAEE and
bio-jet fuel are given in Figure 7. The peaks shown in between 3000 to 2800 cm−1 indicate
the stretching vibration of = C-H (alkene) and C-H (alkane) functional groups [50], which
contributed by the esters chain of the samples. The characteristics peak at wavenumber of
1743 cm−1, 1742 cm−1, and 1740 cm−1 in the spectrum of coconut oil, FAEE and bio-jet fuel,
respectively, show the occurrence of C=O stretching. Although this peak is shorter in the
bio-jet fuel as compared to FAEE, however, the presence of this peak showing that there
is a need for deoxygenation process to remove the oxygen content in the jet fuel. Besides,
blending of the bio-jet fuel with the conventional fossil-based jet fuel is also recommended
to balance the bio-jet fuel property deficiency. Furthermore, it is noted that an extra peak
at 1437 cm−1 in the spectrum of FAEE and bio-jet fuel in comparison to the spectrum of
coconut oil. This peak can be explained by the bending vibration of C-H groups in the
samples. In addition, it confirms the transesterification process was successfully conducted
and converted triglycerides in the coconut oil into ethyl esters in biodiesel (FAEE) and
bio-jet fuel [44,51,52].
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3.7. Bio-Jet Fuel Properties

To evaluate the suitability of the bio-jet fuel produced in this work as alternative
jet fuel, some of the major properties of bio-jet fuel were analyzed and compared with
American Society for Testing and Materials (ASTM) D1655, the standard specification for
aviation turbine fuels. The test results and the standard limit are summarized in Table 8.

Table 8. Comparison of properties between bio-jet fuel of the current work with ASTM D1655 standard.

Properties Unit ASTM D1655 This Work Soybean [53] Palm [42]

Density at 15 ◦C kg/m3 775–840 788 776 866.3
Kinetic viscosity at −20 ◦C cSt <8 6.52 3.30 -

Flash point ◦C >38 55 48.5 105
Freezing point ◦C <−47 −16 - −50

Lower heating value MJ/kg >42.8 43.5 - -

It can be seen that the kinematic viscosities and densities of the bio-jet fuel is lower than
the maximum value provided by the ASTM D1655 standard (<8 cSt and 775–840 kg/m3,
respectively). The measurement of kinematic viscosity and density of fuel are important
and should be within the acceptable limits established in the standard to avoid clogging in
the fuel injectors and to achieve good fuel atomization. From the table, it is noticed that
the density and kinematic viscosity of the bio-jet fuel in this study is higher compared to
soybean, but lower than palm. The lower heating value of the bio-jet fuel in this study is
43.5 MJ/kg, which is well below the limit given in the ASTM D1655 standard, slightly lower
than that for diesel (>42.8 MJ/kg). The flashpoint of the bio-jet fuel from FAEE coconut oil
is 55 ◦C, which is significantly higher than the limit given in the ASTM D1655 (>38 ◦C). The
flashpoint is higher than soybean, and much lower than the palm. As shown, bio-jet fuel
obtained in the current study does not meet the criteria for the freezing point. A similar
result has been reported by [42]. This showed that freezing point is the biggest challenge for
bio-jet fuel technologies. This might be because bio-jet fuel consists of nearly no aromatics
or cycloalkanes that are required for jet fuel [54]. Freezing point is one of the properties
that affects the operability of bio-jet fuel at low temperature. Hence, further upgrading or
blending is needed to bring down the freezing point and improve its jet fuel characteristics.
Cheng and Brewer [55] suggested that blending of bio-jet fuel with alkyl-benzens might be
the best, as it has a low molecular weight and emit less soot combustion as compared to
other aromatics compounds. However, the effect of different aromatic compounds on the
freezing point of bio-jet fuel has not been explored. As this objective is beyond the scope of
this paper, it is suggested as a future work.

4. Conclusions

Other than the depletion issue of non-renewable fossil fuel, the increasing greenhouse
gas emission has also driven the aviation industry toward sustainable development, such
as exploration and commercialization of alternative renewable aviation fuels. This paper
has investigated the effect of three parameters, including coconut oil to ethanol molar ratio,
reaction time, and microwave power, on bio-jet fuel production. Bio-jet fuel production
data was modeled using RSM and ANN. Statistical analysis proved that the ANN modeling
was better than RSM. The optimal parameters predicted using ANN- ACO were, ethanol
to oil molar ratio: 1:9.25, reaction time: 12.66 min and microwave power 74.8 W. Optimal
yield of 74.45% were obtained experimentally in this optimal parameter conditions. Lastly,
it was found that the bio-jet fuel collected in this work had comparable properties with the
ASTM D1655, except freezing point. Hence, the aromatic additive is suggested to be added
for properties enhancement. Besides, future work on evaluating the effect of catalyst and
deoxygenation method on the improvement of bio-jet fuel properties will be conducted.
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