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Abstract: Lignite (ulminite reflectance Rr = 0.27%) from the Szczerców deposit (Central Poland) is
dominated by huminite group macerals, containing a high proportion of attrinite and densinite.
Densinite and ulminite are more abundant in small aromatic units than attrinite, which may result
from their stronger gelification. The differences in Raman spectral characteristics between attrinite
and ulminite are more pronounced than between attrinite and densinite. Fusinite, in comparison
with the huminite group macerals, is composed of larger, more varied aromatic systems. The D4
(1190–1200 cm−1) and D5 bands (1280–1290 cm−1), most likely, correspond to different chemical
structures, and their origin should be further investigated.

Keywords: lignite; Raman spectroscopy; huminite; attrinite; ulminite; densinite

1. Introduction

Lignite is an important energy carrier in many countries. Its chemical and technologi-
cal features, which depend to a large extent on the petrographic composition, have been
intensively studied for many years [1–4]. However, the microstructure of lignite macerals
is still poorly known. So far, Raman spectroscopy studies aimed at understanding brown
coal’s microstructure have been conducted almost exclusively on bulk samples [5–11].

The purpose of this work was to reveal, for the first time, and compare the mi-
crostructural features of attrinite, densinite, ulminite, and, additionally, fusinite, based
on the example of the Szczerców deposit. It is one of two deposits currently exploited by
the Polska Grupa Energetczna (PGE) open-pit mine Bełchatów—the largest lignite mine
in Europe.

2. Geological Setting

The Szczerców lignite deposit is located in the Szczecin–Łódź–Miechów synclinorium,
which is located in the western part of the Kleszczów Graben [12] (Figure 1). The Szczerców
deposit is approximately 7 km long and 1.5 to 3 km wide [13]. From the east, it is adjacent
to the Bełchatów lignite deposit. They are separated by the Dębina salt dome [13]. The
Szczerców lignite overlies Upper Jurassic, Upper Cretaceous, and, locally, Paleogene
sediments. The coal-bearing sediment is divided into [13]: a sub-coal complex, a coal
complex, a clay and coal complex, and a clay–sand complex (Figure 1). The thickness of the
coal complex reaches up to 100 m in the central part of the deposit; the average thickness is
approximately 30–40 m [14,15].

The main seam consists of detritic and xylodetritic coal. The average content of
xylites is approximately 20%. Occasionally, paratonstein (clay kaolinite) interbeddings are
observed [14]. The lower part of the seam is of Lower Miocene age. Stratigraphically, it is
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part of the lowest part of the Ścinawa Formation [16]. The hanging wall part of the seam
is of Middle Miocene age [17]. Quaternary deposits are glacial, interglacial, and sandy
sediments with lenses of gravels and glacial clays [13,18].
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Figure 1. Location of Szczerców deposits (a), tectonic map of the deposit (b), and geological cross-sections (c) according to
Czarnecki et al. [13] and Kasiński et al. [19]; modified.

3. Methods

The sample for microscopic and Raman spectroscopic investigation was collected as a
representative channel sample from the seam in the western part of the Szczerców deposit.
Two polished sections—one for each type of examination—were prepared according to
the ISO 7404-2:2009 standard [20]. Petrographic analysis was conducted under incident
white light and blue light excitation (i.e., fluorescence mode) using a Zeiss Axioplan
polarizing microscope.

The random reflectance of ulminite B and other macerals was determined using
monochromatic light with a wavelength of 546 nm and immersion oil (n = 1.518), and a Zeiss
MPM-400 reflectometer according to the ISO 7404-5:2009 standard [21]. The petrographic
composition of coal was determined according to ICCP guidelines [22–24]. The analysis
was performed in accordance with the ISO 7404-3:2009 standard [25].

In addition, proximate and ultimate analyses were performed in an accredited lab-
oratory in accordance with applicable standards for total moisture [26], ash content [27],
volatile matter content [28], sulfur content [29], gross calorific value [30], and carbon and
hydrogen content [31].

Raman spectroscopy of attrinite, densinite, ulminite, and fusinite macerals was per-
formed in 27 to 30 randomly chosen points for each maceral. It should be noted that Raman
spectra measurements were made on pure macerals. The selected measurement points are
shown in the photographs in Appendix A (Figures A1–A4). The spectra were recorded
with a Thermo Scientific DXR Raman (Faculty of Geology, Geophysics and Environment
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Protection, AGH University of Science and Technology, Kraków, Poland) microscope with
a 900 grooves/mm grating and a Charge Coupled Device (CCD) detector. The Olympus
10× (NA 0.25) objectives (spot sizes 2.1 µm and 1.1 µm, respectively) were used. Excitation
was activated with a 532 nm diode laser with a maximum power of 10 mW. Measurements
were performed in a spectral range of 400–3500 cm−1, at a spectral resolution of 1 cm−1,
and an area of 1 µm2. The laser power was set at 1–2 mW. The spectrometer was cali-
brated using a polystyrene standard. The accumulated measurement time was 30 s for
each spectrum. Peak-fitting was conducted in the range of 1000–1800 cm−1 by GRAMS32,
based on the earlier Raman studies of low-rank coal (brown coals) [6–11]). The second
derivative of the spectra was also considered to find the initial positions of the Raman
bands. Lorentzian curves were applied. The goodness of fit was checked by the χ2 test. The
ID1/IG ratio was determined from the D1 and G band intensities. Furthermore, the AD3 +
AD6/AALL, AD4/AALL, and AD5/AALL ratios were calculated from the band areas, where
“AALL” denotes the sum of all band areas in a given spectrum. Raman band separation
(RBS)—i.e., the distance between the G and D1 peak—was also determined.

The nomenclature of the bands was taken from Henry et al. [32]. The additional band
D7 (~1095 cm−1), which was earlier found by Li et al. [6] and labeled as SR, was introduced.

The results of attrinite examinations were compared with those of densinite, ulminite,
and fusinite using Student’s t-test with a significance level of α = 0.05. This was preceded
by the Shapiro–Wilk test to check the normality of distribution, and the Fisher–Snedecor
test to assess the equality of variances.

4. Results and Discussion
4.1. Petrographic Composition

Based on the macroscopic analysis (Table 1), the tested coal is xylodetritic coal with a
xylite content of 22%.

Table 1. Petrographic composition of lignite from the Szczerców deposit.

Component Content (%)

Macerals

Huminite

Textinite 11.7
Ulminite 12.1
Attrinite 29.9
Densinite 23.9

Corpohuminite 1.6
Gelinite 1.5

Liptinite

Sporinite 0.6
Cutinite 0.1
Resinite 1.1

Suberinite 0.2
Alginite 0.1

Liptodetrinite 3.6

Inertinite

Fusinite 1
Semifusinite 0.2

Funginite 0.1
Micrinite 0.0

Inertodetrinite 1.8

Minerals
Pyrite 0.8

Carbonates 0.5
Quartz + Clays 9.2

The coal from the Szczerców deposit is dominated by macerals of the huminite
group (80.7% vol.). The huminite macerals are dominated by attrinite (29.9% vol.) and
densinite (23.9% vol.). The sum of these macerals indicates the dominant share of the
detritic component in coal. Petrographic components of woody remnants, namely textinite
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(11.7% vol.) and ulminite (12.1% vol.), were observed. The huminite components of
the tested coal also include gelinite and corpohuminite (1.5 and 1.6% vol., respectively)
(Table 1).

The content of liptinite macerals is low (on average 5.7% vol.). The most commonly
observed component of this group is liptodetrinite (3.6% vol.). Terpene resinite (on average
1.1% vol.) is mainly an impregnation of sapropelic xylites occurring in a subordinate
amount. The content of sporinite is 0.6% vol. The content of cutinite (0.1% vol.), alginite
(0.1% vol.), and suberinite (0.2% vol.) is very low.

The content of inertinite macerals is 3.1% vol. The most abundant component in this
maceral group is inertodetrinite (1.8% vol.), randomly dispersed in attrinite and densinite.
Less-abundant elements of this group include fusinite (1.0% vol.) semifusinite (0.2% vol.),
and funginite (0.1% vol.).

The mineral matter content of the examined coal is 10.5% vol. (dry basis. The most
commonly observed minerals are clay and quartz, which are dispersed among attrinite and
densinite. The content of these minerals is 9.2% by volume. Pyrite, which accounts for 0.8%
by volume, is less abundant, and is most commonly found in the form of framboidal pyrite.
The presence of carbonates, which are associated with lake chalk, is typical for coal from
the Szczerców deposit [14]. The mineral matter is dispersed in the macerals and locally
impregnates intracellular spaces. Dispersed clay minerals are most commonly observed
in attrinite.

4.2. Random Reflectance and Proximate and Ultimate Parameters of Lignite from the
Szczerców Deposit

The random reflectance was measured on five macerals according to the ISO 7404-5
standard [21]. The measurements on huminite macerals were made on textinite, ulminite,
attrinite, and densinite. In the case of macerals of the inertinite group, the random re-
flectance was measured on fusinite (Table 2). The obtained results correspond well with
the results obtained by Sýkorová et al. (2005). The huminite macerals textinite (0.2%) and
densinite (0.31%) have the lowest and highest random reflectance, respectively. Ulminite
B’s random reflectance is 0.27%.

Table 2. Random reflectance of selected macerals in lignite from the Szczerców deposit.

Maceral
Random Reflectance Standard Deviation

(%] (%]

Textinite 0.20 0.034
Ulminite 0.27 0.056
Attrinite 0.26 0.039
Densinite 0.31 0.060
Fusinite 0.95 0.067

According to the ISO 11760:2005 [33] standard and in-seam coal classification [34], the
investigated lignite was low-rank coal (lignite C)—as the average reflectance of ulminite B is
less than 0.40% (Rr = 0.27%), the total moisture of the coal is >35% (51.3%), and the ash-free
moisture is less than 75% (43.8%). The results obtained are consistent with other chemical
measures of the rank of coal (Cdaf = 67.39%) and the gross calorific value (as received)
(GCVmaf = 13.9 KJ/kg) (Table 3), which classifies the examined coal as ortholignite.
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Table 3. Proximate and ultimate analysis of lignite from the Szczerców deposit.

Proximate Analysis

Total moisture, as received basis, Mt
ar (%) 51.3

Total moisture, moisture, ash free basis of Mt
maf (%) 43.8

Ash, dry basis A db (%) 18.6
Total sulphur, dry basis, St

db (%) 3.89
Gross calorific value, moisture, ash free basis GCV maf KJ/kg 13.9

Gross calorific value, dry, ash free basis GCV daf KJ/kg 24.70
Volatile matter, dry, ash free basis V daf (%) 49.37

Ultimate analysis of lignite

Carbon content, dry, ash free basis C daf (%) 67.39
Hydrogen content, dry, ash free basis H daf (%) 5.18
Nitrogen content, dry, ash free basis N daf (%) 0.89
Oxygen content, dry, ash free basis O daf (%) 21.47

db—dry basis; maf- moisture, ash free basi; as- as received basis; daf- dry, ash free basis.

4.3. Micro-Raman Spectroscopy
4.3.1. General Characteristics of the Raman Spectra

Representative Raman spectra of attrinite, densinite, ulminite, and fusinite from
the studied coal are given in Figure 2. Eight bands of absorption are usually identified
(Figure 3). The G band (~1580 cm−1) is typically assigned to a graphitic lattice mode
E2g [35,36].
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marked SR by Li et al. [6], is found in most of the spectra. It is assigned to C-H on aromatic 
rings [6]. Additionally, a very weak band at ~1700 cm−1, related to the carbonyl group 

Figure 3. Curve-fitting of a representative attrinite spectrum.

However, in the case of lignite, it is mainly related to aromatic ring breathing (Li et al.,
2006). The D2 band (~1615 cm−1) makes a shoulder on the G band, being also attributed
to the graphitic E2g mode [37,38]. It always occurs when the D1 band is present [39]. The
D3 band (~1540 cm−1), also referred to as GR (Li et al., 2006), originates from out-of-plane
vibration due to structural defects and heteroatoms [40,41]. It is assigned to aromatic
systems (composed of three to five rings) and amorphous carbon [6,37,42,43].

The D6 band (~1465 cm−1), also denoted as VL [6], is related to methyl or methylene,
small aromatic systems, and amorphous carbon [6]. The D1 band (~1285 cm−1) is assigned
to in-plane defects or occurrence of heteroatoms and is associated with the breathing mode
(A1g) of sp2 atoms in aromatic rings [35,38,41]. The origin of the D5 band (~1285 cm−1)
or SL band [6] is not fully understood. It is believed to represent aryl–alkyl ethers [6]
or CH in aliphatic chains [44]. The D4 band (~1195 cm−1) (S band—in Li et al., 2006) is
attributed mainly to the occurrence of sp3-rich or sp3–sp2 carbon structures, alkyl–aryl
groups, aliphatic (or aromatic) ethers, as well as CH in aliphatic chains or on aromatic
rings [6,43–45]. Frequently, especially in bituminous coals and cokes, only one band in
the 1200–1240 cm−1 region, named D4, is indicated [43,46–49]. A very weak D7 band at
~1095 cm−1, marked SR by Li et al. [6], is found in most of the spectra. It is assigned to
C-H on aromatic rings [6]. Additionally, a very weak band at ~1700 cm−1, related to the
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carbonyl group (C=O) vibration, was also observed in some of the spectra (not used in the
curve-fitting procedure).

Similar Raman bands were observed in the earlier Raman investigations of low-rank
coal (lignite and sub-bituminous coal) [6–8,10,11,44]. However, the VR band at ~1380 cm−1

indicated by Li et al. [6] and Xu et al. [11] was not found.
The G band in the attrinite spectra appears at ~1579 cm−1, whereas the D1 band

appears at ~1376 cm−1 (Table 4). The full width at half maximum (FWHM) of these bands
is ~79 cm−1 and ~138 cm−1, respectively. The Raman Band Separation (RBS) value is
~203 cm−1 (Table 5).

In the case of densinite, the G band is found at ~1580 cm−1, and the D1 band at
~1374 cm−1. The FWHM of these bands is ~78 cm−1 and ~140 cm−1, respectively (Table 4).
The RBS reaches a value of ~206 cm−1 (Table 5).

The G band in the ulminite spectra occurs at ~1581 cm−1, while the D1 band occurs at
~1369 cm−1, with FWHM values of ~80 cm−1 and ~147 cm−1, respectively (Table 4). The
RBS value is ~213 cm−1 (Table 5).

Considering fusinite spectra, the G band position is ~1584 cm−1, whereas the D1
band position is ~1367 cm−1; the FWHM of these bands is ~73 cm−1 and ~151 cm−1,
respectively (Table 4). The RBS reaches ~217 cm−1 (Table 5). The G band FWHM is higher
and the RBS lower than those determined for fusinite and semifusinite in bituminous (hard)
coals [47,50]. Fusinite spectra have a weak or absent D7 band at ~1095 cm−1.

The values of other spectral parameters are summarized in Tables 4 and 5.
The sum of the AD4/AALL + AD5/AALL ratio calculated herein is similar to the value

of the AD4/AALL ratio (derived from a typical five-band curve fitting method) obtained for
semifusinite, but lower than that of fusinite in bituminous coals [47,50]. Furthermore, the
sum of the AD3/AALL + AD6/AALL ratios determined in this study corresponds well to the
value of the AD3/AALL ratio (one band was indicated in the valley between the D1 and G
bands) in the spectra of semifusinite from bituminous coals [47,50].

Table 4. Band positions and full width at half maximum (FWHM) in the spectra of the studied macerals.

Maceral
D2
pos.

cm−1

D2
FWHM
cm−1

G
pos.

cm−1

G
FWHM
cm−1

D3
pos.

cm−1

D3
FWHM
cm−1

D6
pos.

cm−1

D6
FWHM
cm−1

D1
pos.

cm−1

D1
FWHM
cm−1

D5
pos.

cm−1

D5
FWHM
cm−1

D4
pos.

cm−1

D4
FWHM
cm−1

D7
pos.

cm−1

D7
FWHM
cm−1

Attrinite 1613.3 76.3 1578.7 78.7 1541.1 93.3 1471.5 127.0 1375.9 138.0 1287.7 137.5 1191.9 105.6 1101.7 74.7
n = 28 2.3 5.0 2.6 4.6 4.2 10.6 6.6 13.8 2.9 14.1 4.8 18.2 4.2 15.9 6.3 25.00
Densinite 1614.6 74.0 1579.7 77.8 1541.6 95.8 1468.1 139.7 1374.1 140.7 1289.9 138.0 1197.1 126.9 1098.8 105.0
n = 30 2.4 4.3 2.9 4.0 3.9 10.5 8.5 13.5 3.2 16.3 5.0 20.5 7.3 37.9 8.3 77.3
Ulminite 1616.8 73.6 1581.5 79.7 1539.2 103.3 1461.4 142.1 1368.5 146.8 1289.4 131.9 1199.0 134.6 1094.6 87.1
n = 28 3.0 5.2 2.7 4.5 3.1 6.9 7.00 14.4 4.2 17.3 5.8 17.1 7.6 34.5 11.1 37.8
Fusinite 1612.0 52.9 1583.7 72.8 1538.4 123.8 1458.4 132.8 1366.6 151.4 1278.5 153.6 1189.2 124.5 1088.4 108.0
n = 27 2.2 6.5 2.7 4.8 5.7 15.4 10.9 26.7 5.3 10.6 8.7 23.8 9.3 31.8 8.8 29.5

Explanation: n—number of measurements; the standard deviation of the measurements is given in italics.

Table 5. Spectral ratios and Raman Band Separation (RBS) derived from the curve fitting procedure.

Maceral ID1/IG AD3+D6/AALL AD5/AALL AD4/AALL RBS cm−1

Attrinite 1.05 0.21 0.18 0.05 202.8
n = 28 0.08 0.03 0.04 0.01 4.2

Densinite 1.04 0.23 0.16 0.06 205.6
n = 30 0.14 0.03 0.04 0.02 4.1

Ulminite 0.95 0.27 0.14 0.07 212.9
n = 28 0.12 0.04 0.04 0.03 5.4

Fusinite 1.09 0.15 0.15 0.05 217.0
n = 27 0.16 0.03 0.04 0.02 6.6

Explanation: n—number of measurements; the standard deviation of the measurements is given in italics.
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4.3.2. Comparison of the Microstructural and Chemical Properties of the
Analyzed Macerals

Comparisons were performed for the following pairs of macerals: attrinite–densinite,
attrinite–ulminite, and attrinite–fusinite. To find out if the differences in spectral parameters
between the macerals were statistically valid, the Shapiro–Wilk, Fisher–Snedecor, and,
finally, Student’s t-test were performed.

The Shapiro–Wilk test shows that all data sets of individual Raman-derived spectral
parameters obtained from the curve fitting procedure have normal or close to normal
distribution. The Fisher–Snedecor test demonstrates that variances are equal in all analyzed
pairs of spectral parameters.

Considering this, Student’s t-test was conducted for all parameters. Each time that the
difference in spectral parameters is mentioned in the text, it is statistically significant, as
inferred from the t-test (p value < 0.05).

Attrinite and densinite show the highest similarity of microstructural properties
among all of the analyzed macerals, which is in line with the results of the FTIR investi-
gations revealing that the chemical composition of detrohuminite subgroup macerals is
largely independent of its degree of gelification [51]. However, there are some statistically
significant (p < 0.05) differences between their spectral parameters. This applies to the
position of the D1 band, which appears at lower wavenumbers in the densinite spectra,
whereas the D4 band falls at higher wavenumbers (Figure 4a,b). The densinite spectra also
reveal higher D6 and D4 band FWHMs and higher AD3+D6/AALL and AD4/AALL ratios
(Figure 4c–f). This reflects higher amounts of small aromatic units and alkyl–aryl and CH
groups in the chemical structure of densinite compared with attrinite [6,43–45], probably
resulting from stronger gelification of densinite. An increase in aromaticity of the humi-
nite group macerals with increasing gelification was earlier reported, based on the FTIR
examination [5,52–54]. This is also in line with the difference in Rr value between densinite
(0.31%) and attrinite (0.26%). Similarly, the difference in D1 band position observed herein
corresponds with a shift of the D1 band to lower wavelengths with increasing reflectance,
as reported by Kelemen and Fang [55] and Guedes et al. [8]. The RBS value, which cor-
relates well with the Rr value [32,55–59], is higher for densinite, which also corresponds
with higher reflectance values of this maceral (Tables 2 and 5). Where detrohuminite’s
microstructure is concerned, it should be remembered that the primary plant material
and the initial peat-forming conditions have a great impact on the features of macerals
belonging to this subgroup.

Statistical analysis shows that the microstructural features of attrinite and ulminite
differ significantly. The position of some of the Raman bands (D2, G, and D4) in ulminite
spectra is moved to higher wavenumbers, whereas the D6, D1, and D7 bands fall at lower
ones (Figure 5a,b; Table 4). Ulminite exhibits a higher FWHM of the D3, D6, D1, and
D4 bands and higher AD3+D6/AALL and AD4/AALL ratios in comparison with attrinite
(Figure 5c–e; Tables 4 and 5). On the other hand, the AD5/AALL ratio is lower in ulminite
than in attrinite (Figure 5f). Taking the origin of the D3, D4, and D6 bands [6,43–45], the
differences in the values of the spectral ratios imply that the chemical structure of ulminite
is more abundant in small aromatic systems composed of three to five rings, Caromatic–
Calkyl systems, and CH groups. This may be due to gelification of ulminite, as aromaticity
increases with increasing gelification [5,52–54]. Ulminite spectra also exhibit higher Raman
band separation (RBS) values (Table 5) than those of attrinite. The differences observed
may also result from different origins of starting materials; attrinite may come from the
soft, cellulose-rich tissues of plants, and ulminite may come from lignin-rich xylem. Lignin
remnants may affect the aromaticity of lignite at the early stage of coalification [60].
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Figure 4. Comparison of Raman spectral parameters obtained for attrinite and densinite: D1 band position (a), the D4
band position (b), the D6 band FWHM (c), the D4 band FWHM (d) the AD3+D6/AALL ratio (e) and AD4/AALL ratio (f).
Explanation: pos.—position; A—attrinite; D—densinite.
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Figure 5. Comparison of Raman spectral parameters obtained for attrinite and ulminite: G band position (a), the D1
band position (b), the D1 band FWHM (c), the AD3+D6/AALL ratio (d), AD4/AALL ratio (e) and the AD5/AALL ratio (f).
Explanation: pos.—position; A—attrinite; U—ulminite.

As should be expected, there are major differences in microstructure between attrinite
and fusinite. Most of the Raman bands occur at lower wavenumbers when fusinite is
considered, but the position of the G band moves to higher wavenumbers (Figure 6a,b;
Table 4). Fusinite spectra also have lower FWHM values of the D2 and G bands and a higher
FWHM of the D3, D1, D5, and D7 bands in comparison with attrinite (Figure 6c,d; Table 4).
However, the D3, D6, and D5 bands reveal low height; thereby, the AD3+D6/AALL and
AD5/AALL ratios are lower for fusinite (Figure 6e,f; Table 5). The RBS value determined for
fusinite is also higher (Table 5). The lower G band FWHM indicates better organization of
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the fusinite microstructure in relation to the attrinite microstructure [8,32,39,47,48,55,61,62].
The higher D1 band FWHM in the fusinite spectra reveals that aromatic clusters in fusi-
nite are more varied in terms of their order and dimensions [63]. The higher RBS value
determined for fusinite corresponds with the higher mean random reflectance (Rr) of this
maceral (Tables 2 and 5) [32,55–59]. The lower AD3/AALL, AD6/AALL and AD5/AALL ratio
values determined for fusinite (when compared with attrinite) are a consequence of the
lower content of smaller aromatic systems—aliphatics as well as mixed structures and
alkyl–aryl groups [6,37,42–44]. Instead, larger aromatic ring systems dominate the chemical
structure of fusinite.
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position (b), the G band FWHM (c), the D1 band FWHM (d), the AD3+D6/AALL ratio (e), and the AD5/AALL ratio (f).
Explanation: pos.—position; A—attrinite; F—fusinite.
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Ferralis et al. [44] found a linear relationship between the (ID4+ID5)/(IG+ID2) Raman
band area ratio (Symbols taken from Ferralis et al. [44]) and the elemental H:C ratio.
Considering the above, a similar calculation of the (ID4 + ID5)/(IG + ID2) ratio was performed
here, which shows much lower values obtained for fusinite (0.26) than for attrinite (0.37),
densinite (0.46), or ulminite (0.50). This reflects the much lower hydrogen content in the
chemical structure of fusinite in comparison with other examined macerals. However,
no positive correlation between the AD4/AALL and AD5/AALL ratios is observed—which
should be expected if the D4 and D5 bands are related to the same chemical structures in
coal. This may suggest that the origin of the D4 and D5 bands is different.

5. Conclusions

Lignite (ulminite reflectance Rr
o = 0.27%) from the Szczerców deposit (Central Poland)

was subjected to micro-Raman spectroscopy examination. The study revealed differences
in the microstructure of the huminite group macerals (attrinite, densinite, and ulminite).
Densinite and ulminite are more abundant in small aromatic units than attrinite, which may
result from their gelification or the kind of starting material. The differences in the Raman
spectral characteristics between attrinite and ulminite are more pronounced than between
attrinite and densinite. As expected, fusinite, in comparison with the huminite group
macerals, is composed of larger, more varied aromatic systems. Similarities to semifusinite’s
microstructure in bituminous coals are observed. The D4 band (1190–1200 cm−1) and D5
band (1280–1290 cm−1) most likely correspond to different chemical structures, and their
origin should be further investigated.

On the basis of petrographic analysis, the directions of use and the best ways of
exploitation can also be determined. The presence of fibrous xylites is particularly unfavor-
able during mining and grinding. Therefore, in practice, the best solution is to determine
the xylite content as early as possible, even at the stage of deposit exploration. The pet-
rographic composition of coal has a direct impact on its suitability for the gasification
process, where the degree of coal gelification and the concentration of carbonate and quartz
minerals are of particular importance.
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Danych Geologicznych. Gór. Odkryw. 1992, 3, 12–22.
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