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Abstract: In this work, a neural super-twisting algorithm is applied to the design of a controller for a
flywheel energy storage system (FESS) emulator. Emulation of the FESS is achieved through driving
a Permanent Magnet Synchronous Machine (PMSM) coupled to a shaft to shaft DC-motor. The
emulation of the FESS is carried out by controlling the velocity of the PMSM in the energy storage
stag and then by controlling the DC-motor velocity in the energy feedback stage, where the plant’s
states of both electrical machines are identified via a neural network. For the neural identification,
a Recurrent Wavelet First-Order Neural Network (RWFONN) is proposed. For the design of the
velocity controller, a super-twisting algorithm is applied by using a sliding surface as the argument;
the latter is designed based on the states of the RWFONN, in combination with the block control
linearization technique to the control of the angular velocity from both machines in their respective
operation stage. The RWFONN is trained online using the filtered error algorithm. Closed-loop
stability analysis is included when assuming boundedness of the synaptic weights. The results
obtained from Matlab/Simulink validate the performance of the proposal in the control of an FESS.

Keywords: wavelet neural network; block control form; filtered error algorithm; neural super-
twisting control; flywheel energy storage system

1. Introduction

For many years, flywheels made of stone or other primitive materials have been
used for the operation of different mechanisms. Currently, there are mechanisms built
from metal flywheels, powered by electric motors, which can work in both motor and
generator mode and whose main function is to store energy in the flywheel; because of this
property, these mechanisms are known as Flywheel Energy Storage Systems (FESSs) [1].
Induction motors and synchronous motors are some types of electrical machines used in
the application of FESSs. For the proper functioning of the electrical grid, it is essential
to have a balance between consumption and supply of electrical energy. Due to its rapid
response of operation, an FESS has the ability to reduce some of the problems caused by
power variations. The control and comparison between different electrical machines used
in FESSs are shown in [2]. The FESSs have been studied by different authors showing
the performance from different control strategies. Furthermore, in several published
works, a complete FESS has been emulated through the use of electric motors where the
main operation of the flywheel is the storage of mechanical energy in a rotating flywheel,
which can then be converted to electrical energy using an electrical machine with power
inverters [3]. An FESS has several advantages in contrast with other energy storage systems,
including long useful life, and an FESS has multiple applications such as in wind generators,
electric vehicles, etc. [4]. In [5], a vector control strategy was presented to emulate a FESS
using a DC permanent magnet machine, where the machine was coupled to a PMSM to
control the angular velocity of the flywheel in the charging and discharging stages. In [6],
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an integral sliding mode controller with a super-twisting algorithm was presented. In that
work, the rotor side converter in the doubly-fed induction generator is used for controlling
a wind generator, where the sliding surfaces are generated such that these are compatible
with the errors in the stator active and reactive powers. In [7], emulation of an FESS using
reconfigurable hardware test-bed of power converters was presented, where the emulation
was carried out to the acceleration, deceleration and standby modes. The flywheel’s model
is described in the dq domain with relations among voltage, current and rotating speed.
In [8], an adaptive control for high-speed FESSs was proposed where the controller has
the task of controlling the DC-link voltage for the FESS and controlling the active power
exchange between the FESS and the grid, whose advantage of inertia emulation is that
the inertia and damping can be altered in real-time. In [9], under the assumption that
all the states are measurable, a sliding mode control system for a 4-quadrant DC–DC
converter was designed. Furthermore, a low voltage prototype for a flywheel application
was constructed.

Recently, a control scheme applied to an FESS for the improvement of the dynamic
performance of the utility grid, based on a PMSM incorporated into a multi-machine system,
was presented in [10]. In that work, the speed and voltages generated were monitored
by the FESS in order to generate the real and reactive power. Such control strategy was
designed against three-phase faults.

On the one hand, considering that the fundamental parts of an energy storage system
are the electric motors, the PMSM is a kind of synchronous motor that features low inertia,
low noise, high power density and high efficiency, simple structure, and easy control.
PMSMs have been used for the control of robotic movements, electric and aerospace
propulsions, etc. [11]. The nonlinear mathematical model of a PMSM is strongly coupled.
In addition, its parameters are not fixed but are kept within an operating range depending
on the work environment. Angular velocity and torque can fluctuate in some parameter
regions [12]. Recently, a feedback technique of dynamic surface control for a chaotic PMSM,
based on nonlinear mappings using neural networks (NNs) to approximate the system
dynamics as well as to estimate the unknown parameters, has been proposed in [13].
In [14], NNs were implemented in a PMSM for the detection of damage or failure in motor
bearings by analyzing mechanical vibrations, comparing different types of NNs and the
effectiveness of failure detection.

On the other hand, DC machines are generators that convert mechanical energy
into DC electrical energy and motors that convert DC electrical energy into mechanical
energy. Most DC machines are similar to alternating current machines in that they have AC
voltages and currents inside them. DC machines have a DC output only because there is a
mechanism that converts internal AC voltages into DC voltages at their terminals; since
this mechanism is called a commutator, DC machinery is also known as a commutator or
commutator machinery [15].

Implementation of the sliding-mode control to DC motors has been studied by differ-
ent authors. In [16], an adaptive neural controller in discrete-time was proposed, where
a NN was used to identify the plant model, using the Kalman extended filter training
algorithm, when applying the block control in sliding mode for angular velocity con-
trol. A speed control scheme for a DC motor, based on state observers of sliding modes,
was presented in [17]. In that work, the state observers estimate the angular velocity
and the load torque; thus, in this way, it was possible to apply the controller, designed
from the application of the exact linearization technique in combination with the super-
twisting control.

The application of super-twisting control has been recently studied in [18], introducing
the control to roll suppression of marine vessels subjected to harmonic wave excitations,
where some of the main control objectives were to reduce the phenomenon of vibration
over dynamic behaviors such as chaos, due to parametric variation.

The main contribution of this work is the proposal of a methodology to emulate a fly-
wheel energy storage system by driving a motor-generator group formed by two machines,



Energies 2021, 14, 6416 3 of 23

namely, a PMSM coupled with a DC-motor. The state variables of the system are identified
via recurrent wavelet NNs of first-order trained online by the filtered error algorithm. By
using these NNs, it is possible to involve unmodeled dynamics and parameter variations,
avoiding uncertainty in the machine parameters. The PMSM velocity controller is designed
to emulate the stored kinetic energy of the flywheel, while the DC-motor velocity controller
is used to emulate the energy that is discharged towards the utility grid. Both controllers
are synthesized based on the proposed NN model transformed into the block controllable
form to define a sliding surface that is steered to the origin in finite time by the action of
the super-twisting control algorithm.

This paper is organized as follows. In Section 2, the mathematical background is
presented, which is related to the kinetic energy storage, identification of the nonlinear
system via recurrent wavelet first order neural network (RWFONN) using the filtered
error training algorithm, and the super-twisting control algorithm; Section 3 presents the
proposed methodology, where the procedures of charge/discharge are explained in detail;
in Section 4, the simulation results are shown, from which the proposed methodology is
validated; some important discussions are presented in Section 5; conclusion and some
remarks about the application of the Neural Super-Twisting Control (NSTC) are drawn
in Section 6. Furthermore, in Appendices A and B, the boundedness of the identification
error and the complete closed-loop stability analysis are shown, respectively.

2. Mathematical Background

This section describes the energy storage in an FESS, the nonlinear mathematical
representation of a permanent magnet synchronous motor and a DC-motor, the mathe-
matical model of the dynamic behavior for an RWFONN and summarizes the filtered
error algorithm, the block control linearization technique, and the super-twisting control
algorithm.

2.1. FESS

The main function of FESSs is to store rotational kinetic energy, which can then be
converted into electrical energy by means of an electric machine. In order to generate
rotational kinetic energy, the flywheel must be driven by an electric machine that meets the
requirement of operating in both motor and generator mode, allowing to convert rotational
kinetic energy into electric energy and vice versa [4]. The main components from an FESS
are the steering wheel, a vacuum containment to avoid loss by air friction, magnetic or
metallic bearings, an electric machine capable of operating in both operation modes, i.e.,
motor and generator mode, and a three-phase converter to connect the FESS with the
utility-grid [1]. The kinetic energy stored in the flywheel can be approximated by the
following equation [19]

Ek =
1
2

Jmω2
m, (1)

where Ek is the stored kinetic energy in J, Jm is the inertial moment in N·m·s2, and ωm is the
rated angular velocity in rad/s. In order to emulate the FESS deceleration, it is considered
the next equation

d
dt

ωm =
−Bmωm

Jm
, (2)

which defines the mechanical behavior of the flywheel when the energy is delivered to the
utility grid [20], with Bm the frictional coefficient in N·m·s.

2.2. Nonlinear Systems

A class of nonlinear multi-input/multi-output system given in the general form

χ̇ = f(χ, t) + B(χ, t)u + g(χ, t) (3)
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where χ ∈ X ⊂ Rn is the state vector of the system, f(χ, t) is the nonlinear system function
vector; u ∈ U ⊂ Rm is the control input vector, B(χ, t) is a non-singular matrix that
characterizes the system, and g(χ, t) is a smooth function vector that represents external
disturbances and parametric variations. It must be noticed that in the present work, both
PMSM and DC-motor mathematical models match with that given in the general form (3).
It is important to mention that due to the purpose of this work, these mathematical models
are not shown here.

2.3. RWFONN

First-order NNs are used for system identification as well as to design neural con-
trollers for some electrical, mechanical or electromechanical systems. A novel neural
identification scheme, namely a Recurrent Morlet Wavelet Neural Network (RMWNN) also
known as RWFONN, based on a recurrent high-order neural network (RHONN) structure
was proposed in [21]. In the NN propose in this work, the classical sigmoid activation
function has been replaced by a Morlet wavelet function. The general structure from an
RWFONN is given by [22]

ẋi
j = −ai

jx
i
j + (wi

jk)
>ψi

jk (4)

where xi
j is the state of the i-th neuron, ai

j > 0 for i = 1, 2, . . ., n is part of the underlying

network architecture and it is fixed during the training process, wi
jk is the k-th adjustable

synaptic weight connecting the j-th state to the i-th neuron, and ψi
jk is a Morlet wavelet

activation function. The dynamic behavior of the whole neural network can be described
by expressing Equation (4) in the vector notation

ẋ =Ax + w>ψ, (5)

where x =
[

x1
j x2

j . . . xn
j

]>
∈ Rn is the state vector of the NN, w =

[
w1

j w2
j . . . wn

j

]>
∈ RL×n

is the synaptic weights vector, with L representing the total number of weights used to iden-
tify the plant behavior, A = diag

[
−a1

j − a2
j . . . − an

j

]
∈ Rn×n is the parameter (Hurwitz)

matrix, and ψ is the regressor vector. In this work, ψ(χ) = e(−χ2/β)cos(λχ) is the Morlet
wavelet function used here as the activation function where χ is the state from the plant
(Equation (3)) and the parameters β, λ are the expansion and dilation terms [22], re-
spectively. Thus, the nonlinear system (3) is identified online by using an RWFONN
(Equation (5)), where the synaptic weights vector w is adjusted via a filtered error algo-
rithm.

2.4. Filtered Error Training Algorithm

For the application of the filtered error algorithm, this study begins under the as-
sumption of an unknown system (3), which can be modeled (identified) by using an
RWFONN structure (5). The synaptic weights are adjusted according to the following
update law [23,24]

ẇi
jk = −Γi

jkψi
jkξ i

jk, (6)

where Γ ∈ RL×L is a definite positive gain matrix, ψ is the Morlet wavelet activation
function, and ξ is the identification error, i.e., the difference between the states from the
RWFONN (Equation (5)) and those from the plant (3), namely, ξ i

j = xi
j− χi

j. The update law
(Equation (6)) corresponds to the filtered error training algorithm [23]. Since the RWFONN
is given in a generalized way from the structure for a RHONN, the following theorem
establishes that identification and parametric errors for the RWFONN are bounded.

Theorem 1. Consider the RWFONN model whose weights are adjustable according to Equation (6)
for each i = 1, 2, . . ., n;
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1. ξi
j, wi

j∈ L∞ (i.e., ξ i
j and wi

j are uniformly bounded);
2. limt→∞ ξi(t) = 0.

Proof. See [24,25].

Appendix A presents the boundedness of the identification error ξ i
j given by the

synaptic weights wi
j.

2.5. Nonlinear Block Controllable Form

One of the main characteristics of the block control linearization technique is to
transform a nonlinear system into an equivalent form expressed by first-order subsystems
consisting of r blocks, which can be solved independently one from each other. Such
equivalent form is commonly known as the block controlled form whose representation is
described by [26]

ẋ1 = f1(x1, t) + B1(x1, t)x2 + g1(x1, t),

ẋî = fî(x̄î, t) + Bî(x̄î, t)xî+1 + gî(x̄î, t), î = 2, . . .., r− 1,

ẋr = fr(x̄r, t) + Br(x̄r, t)u + gr(x̄r, t),

(7)

where f(x, t) is a smooth and bounded mapping, x = [x1 x2. . . xr]
> is the state vector

decomposed, x̄î =
[
x1 . . . xî

]>, for î = 2, . . ., r, xî is a nî × 1 vector, and the subscripts
(n1, n2, . . ., nr) define the structure of the system. The matrix Bî, since the fictitious xî+1
for each î-th block has full rank, rank(Bî) = nî, ∀x ∈ X ⊂ Rn and t ∈ [0, ∞], î = 1, . . ., r.
Therefore, in this work, the block control technique is applied to the NN structure (5) to
define a sliding surface, which is the argument of the super-twisting controller.

2.6. Super-Twisting Control Algorithm

The first-order sliding mode has long been used as a robust control technique to
cancel nonlinear terms and uncertainties due to external disturbances in a system, but its
main disadvantage is the presence of the chattering effect, which induces vibrations in
the controlled system. In order to reduce the chattering effect, high-order sliding modes
have been used. A particular case is the super-twisting algorithm (STA), which has been
playing a very important role in sliding mode controllers. The super-twisting control
(STC) algorithm of second-order can be applied to systems where the control appears
in the first derivative of the sliding surface. The application of the STC allows to cancel
perturbations and nonlinearities, forcing the sliding surface toward zero in finite time.
Furthermore, the states that define the sliding surface are directed to zero with asymptotic
motion. The dynamics of the sliding surface are known as sliding mode movement, and it
is characterized by being a reduced-order system [27,28].

The sliding surface for the NSTC is defined from the nonlinear system once the latter
resembles the block controllable form (7) for the variable on which the control input of the
system appears. Therefore, the sliding surface is [29]

s = xr, (8)

where the dynamics of the sliding surface (Equation (8)), involving the STC algorithm and
the system (7), take the form

ṡ = fr(x̄r, t)− Br(x̄r, t)(λs|s|
1
2 sign(s) + us) + gr(x̄r, t),

u̇s = αs sign(s),
(9)
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with λs =

[
λs11 0

0 λs22

]
and αs =

[
αs11 0

0 αs22

]
diagonal matrices. Then, the super-twisting

control law provides finite-time convergence to zero, simultaneously s and ṡ, where the
term λs|s|

1
2 sign(s) commutes its gain at high frequency for giving robustness to annul the

nonlinearities fr(x̄r, t), and to cancel the external disturbances gr(x̄r, t), while the term us
reduces the chattering effect and the steady state error [28].

In order to ensure the stability of the system with the super-twisting control law
(Equation (9)), the control matrix gains λ and α are holding to the following restrictions:

ki > 2δi, ki >
1
2

k2
i (δi − ki)

ki − 2δi
(10)

where the disturbance norm is defined as |fr(x̄r, t) + gr(x̄r, t)| = δ|s|1/2, for δ > 0. The
inequalities in Equation (10) are defined in the stability analysis presented in Appendix B.

3. Proposed Methodology

This section describes the procedure for emulating the FESS through a group motor-
generator formed by two electrical machines mechanically coupled. The angular velocity
of the PMSM, when it is working in motor mode, is controlled in order to emulate the
storing of energy, whereas the velocity for the DC-machine is controlled emulating the
discharge of the flywheel where the PMSM is now working in generator mode. The FESS’s
emulator scheme is shown in Figure 1. The procedure followed to the emulation of the
FESS is explained next:

• The charging procedure (storing kinetic energy in the flywheel). This procedure
consists of the PMSM in the dq coordinate frame [30] working in motor mode to the
control the angular velocity through the RWFONN using the block control lineariza-
tion technique. In this scenario, the kinetic energy is stored in the flywheel (dotted
red block in Figure 1);

• Discharging procedure (releasing energy). In this stage, the stored energy is now
transferred to the PMSM working in generator mode. This scenario is considered in
the case when there exists an electrical failure in the utility grid or when the flywheel
is required to compensate with active power to the utility grid to solve a problem of
the power management office, and the velocity controller for the DC-motor emulates
the deceleration of the flywheel through the use of Equation (2). The flywheel energy
discharge is emulated by the DC-machine (dotted blue block in Figure 1).

In this work, the sliding surface defined in Equation (8) is designed through the
transformation of the RWFONN to the block controllable form involving the dynamics
of the tracking error, such that this transformation resembles the structure described in
Equation (7). By applying the super-twisting algorithm to the system (7) and using the
RWFONN (Equation (5)), trained with the filtered error halgorithm (6), the result is the
NSTC system, which is uniformly ultimately bounded (UUB). The stability proof is carried
out in Appendix B.

Note that from Figure 1, the dotted blue block contains the motor-side converter gray
block, where such block represents a future real-time implementation, while the dotted red
block contains the gray blocks of the SVPWM and 3-phase inverter, which also represent a
future real-time implementation.
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Figure 1. FESS’s emulator scheme.

Additionally, Figure 2 shows a general flowchart of the proposed algorithm applied
to the control of both electrical machines, namely, the PMSM and the DC-motor. Both
identification and control processes are indicated separately. Note that in this figure, there
are particular notations for the PMSM (ξi, x1, u1s, and ε1) and for the DC-motor (ξidc, x1dc,
usdc, and ζ1). The particular notations and the processes of identification and control will
be explained in the following subsections.

Figure 2. General flowchart of the proposed control algorithm.

3.1. Flywheel Storage System

In this section, the mathematical analysis of the stored kinetic energy from the flywheel,
emulated by the DC-motor, is developed. Under the assumption that the mass is uniformly
distributed and the axis of rotation passes through the mass center, the mass moment of
inertia for a solid disk is given by [31]

Jm =
1
2

mr2, (11)
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where Jm is the mass moment of inertia and m, r are the mass and radius of the disk,
respectively. Then, for the numerical calculation of the mass moment of inertia of the disk,
when considering m = 2 kg and r = 0.3 m, Equation (11) yields

Jm = 0.09 kg ·m2. (12)

Now, the kinetic energy storage equation is calculated when substituting Equation (12)
into (1). Therefore, considering the angular velocity as ωm = 130 rad/s, the energy stored
in the flywheel results

Ek = 760.5 J (13)

when considering that the deceleration caused by the kinetic energy stored in the flywheel
is emulated by the DC-motor and its drive. To calculate the deceleration of the emulated
flywheel, from the knowledge of the mass moment of inertia in Equation (12), replacing Jm
in Equation (2), it is then possible to calculate the reference angular velocity ωmre f for the
DC-motor and, consequently, to be able to apply the NSTC.

3.2. Nonlinear Identification and NSTC Applied to PMSM

To convert the electrical energy applied to the PMSM into kinetic energy, the PMSM is
activated in motor mode with the inputs vd and vq. In the following subsections, the neural
identification and the NSTC applied to the PMSM in motor mode are presented.

3.2.1. PMSM Neural Identification

In this work, the mathematical model of the PMSM is taken from [30], which consists
of a third order nonlinear system given in the general form (3), which is modeled in a dq
coordinated frame rotating at the rotor velocity. Then, the RWFONN with structure (5),
proposed to identify the dynamic system of the PMSM mathematical model, is defined as

ẋ1 =− a1x1 + b1w1ψ1(χ1) + x2 + x3,

ẋ2 =− a2x2 + b2w2ψ2(χ2) + vd,

ẋ3 =− a3x3 + b3w3ψ3(χ3) + vq,

(14)

where the RWFONN’s states x1, x2, and x3 identify the states ωr = χ1 (angular velocity),
id = χ2 (d-current), and iq = χ3 (q-current) from the PMSM, respectively. a1, a2, a3, b1,
b2, and b3 are positive fixed parameters; w1, w2, w3 are the synaptic weights; ψ1(χ1) =

e(−χ2
1/β1)cos(λ1χ1), ψ2(χ2) = e(−χ2

2/β2)cos(λ2χ2), and ψ3(χ3) = e(−χ2
3/β3)cos(λ3χ3) are

Morlet wavelet activation functions. The RWFONN’s inputs are the same as PMSM, vd
and vq. The filtered error algorithm used for training the RWFONN (Equation (14)) is
performed as w1 = γ1ψ1(χ1)ξ1, w2 = γ2ψ2(χ2)ξ2 and w3 = γ3ψ3(χ3)ξ3, with γ1, γ2,
γ3 adjustable parameters, where ξ1 = x1 − χ1, ξ2 = x2 − χ2 and ξ3 = x3 − χ3 are the
respective identification errors. According to Equation (5), i = j = k = 1, 2, 3.

It should be noticed that the proposed structure (14) has only one neuron for each
state, which represents a low computational burden in contrast with that from structures
for high-order neural networks (HONNs). The parameters from the PMSM mathematical
model are mentioned in [30], and the values are shown in Table 1 [32].

3.2.2. NSTC Application to PMSM

In order to control the angular velocity ωr of the PMSM, a first step toward that goal
consists of transforming the RWFONN (Equation (14)) into the form (7) by using a recursive
transformation of the tracking error εi [29]. For this, the structure of the system (14) is
rewritten in the vector form

ẋ1 =− a1x1 + b1w1ψ1(χ1) + a1x2,

ẋ2 =A2x2 + A3b1 + B2v,
(15)
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with a1 =
[
1 1

]
, A2 =

[
−a2 0

0 −a3

]
, A3 =

[
b2w2ψ2(χ2) 0

0 b3w3ψ3(χ3)

]
, b1 =

[
1 1

]>,

B2 =

[
1 0
0 1

]
, x2 =

[
x2 x3

]>, and v =
[
vd vq

]>. Now, by applying the recursive

transformation to the structure (15) to resemble it into the block control form, the tracking
error ε1 is defined by

ε1 =ωrre f − x1, (16)

where ωrre f is the reference angular velocity to the PMSM, and x1 represents the state of
the neural network (15). Therefore, the tracking error dynamics are given as

ε̇1 =ω̇rre f − ẋ1. (17)

Table 1. Values and parameters of PMSM [32] and DC-motor [33].

PMSM Parameters Value

Stator Resistance R 1.4 Ω
Inductance Ld 6.6 mH
Inductance Lq 5.8 mH

Inertial Moment J 0.00176 kg·m2

Damping Coefficient B 0.00038818 N·m ·s/rad
Flux Linkage λa f 0.1546 V·s/rad

Pair Poles P 3

DC-motor Nameplate Data and Parameters Value

Field Voltage 120 V
Field Current 0.5 A

Armature Voltage 120 V
Armature Current 3.0 A

Rotor Velocity 1750 rpm
Armature Resistance Ra 12.5 Ω
Armature Inductance La 0.075 H

Motor Constant Km 2.602
Inertial Moment Jm 0.0036 N·m·s2

Frictional Coefficient Bm 0.002 N·m·s

Substituting ẋ1 Equation (15) into (17), and assigning the desired dynamics k1ε1,
it yields

ε̇1 =ω̇rre f − (−a1x1 + b1w1ψ1(χ1) + a1x2) = −k1ε1, (18)

where k1 is adjusted to vanish the tracking error. In this way, it is possible to synthesize a
control law through the vector state x2, where the reference vector is defined as

x2re f = apinv
1 [ω̇rre f + a1ωrre f − a1ε1 − b1w1ψ1(χ1) + k1ε1], (19)

where the superscript “pinv” denotes the pseudo-inverse. Furthermore, the second error
in vector form is defined as

ε2 = x2re f − x2 (20)

with dynamics

ε̇2 =ẋ2re f − ẋ2. (21)
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Substituting Equation (15) into (21) yields

ε̇2 =ẋ2re f −A2x2re f + A2ε2 −A3b1 − B2v. (22)

Moreover, using Equations (18) and (22), the representation in the block control form
from Equation (15), in terms of the tracking error εi, is obtained as

ε̇1 =− k1ε1 + a1ε2,

ε̇2 =apinv
1 [ω̈rre f + a1ω̇rre f − b1w1ψ1(χ1)]

−A2

(
apinv

1 [ω̈rre f + a1ω̇rre f − b1w1ψ1(χ1)]
)

+ 0.5
[

a1k1 − k2
1 + a1a2k1 − a2k2

1
a1k1 − k2

1 + a1a3k1 − a3k2
1

]
ε1 + A2ε2 −A3b1 − B2v,

(23)

Furthermore, defining the sliding surface s = ε2, with the relative degree from
Equation (23) equals to 1, and applying the NSTC Equation (9) in (23) results

ε̇1 =− k1ε1 + a1ε2,

ε̇2 =apinv
1 [ω̈rre f + a1ω̇rre f − b1w1ψ1(χ1)]

−A2

(
apinv

1 [ω̈rre f + a1ω̇rre f − b1w1ψ1(χ1)]
)

+ 0.5
[

a1k1 − k2
1 + a1a2k1 − a2k2

1
a1k1 − k2

1 + a1a3k1 − a3k2
1

]
ε1 + A2ε2 −A3b1 − B2(λs|s|

1
2 sign(s) + u1s),

(24)

where u1s represents the control vector. Note that in Equation (23), the control input vector
v =

[
vd vq

]> is replaced by the STC resulting Equation (24) under the fact that the tracking
error variables ε1 and ε2 are decoupled. This latter will guarantee that the tracking errors
be steered to zero in finite time. From Equation (24), selecting the sliding surface s = x2
arises the system given by [29]

ṡ =apinv
1 [ω̈rre f + a1ω̇rre f − b1w1ψ1(χ1)]

−A2

(
apinv

1 [ω̈rre f + a1ω̇rre f − b1w1ψ1(χ1)]
)

+ 0.5
[

a1k1 − k2
1 + a1a2k1 − a2k2

1
a1k1 − k2

1 + a1a3k1 − a3k2
1

]
ε1 + A2ε2 −A3b1 − B2(λs|s|

1
2 sign(s) + u1s),

u̇1s =αs sign(s).

(25)

where Equation (25) is the NSTC applied to the PMSM through the RWFONN structure.

3.3. Nonlinear Identification and NSTC Applied to DC-Motor

In order to convert the kinetic energy stored by the flywheel into electrical energy,
the PMSM must be operated in generator mode. The discharge of the kinetic energy is
controlled by the angular velocity of the DC-motor, this can be achieved by decelerating
the angular velocity taking into account the reference velocity generated by Equation (2).

3.3.1. DC-Motor Neural Identification

The mathematical model of the DC-motor is taken from [16], which consists of a
three state nonlinear system with structure (3). Note that due to the linearity between the
effective field current and its constant magnetizing flux, the mathematical model of the
DC-motor becomes a linear system of two differential equations. Therefore, the RWFONN
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here proposed, following the structure (5), to identify the dynamics of the DC-motor
mathematical model is defined as

ẋ1dc =− a1dcx1dc + b1dcw1dcψ1dc(χ1dc) + x2dc,

ẋ2dc =− a2dcx2dc + b2dcw2dcψ2dc(χ2dc) + uadc,
(26)

where the RWFONN’s states x1dc and x2dc identify the states ωm = χ1dc (angular velocity)
and ia = χ2dc (armature current) from the DC-motor, respectively. a1dc, a2dc, b1dc, and b2dc
are positive constant parameters; w1dc and w2dc are the synaptic weights; ψ1dc(χ1dc) =

e(−χ2
1dc/β1dc)cos(λ1dcχ1dc) and ψ2dc(χ2dc) = e(−χ2

2dc/β2dc)cos(λ2dcχ2dc) are Morlet wavelet
activation functions. The RWFONN’s input uadc is the same as ua (armature voltage) to
the DC-motor. The filtered error algorithm used for training the RWFONN (Equation (26))
is performed through w1dc = γ1dcψ1dc(χ1dc)ξ1dc and w2dc = γ2dcψ2dc(χ2dc)ξ2dc with γ1dc,
γ2dc adjustable parameters, and ξ1dc = x1dc − χ1dc, ξ2dc = x2dc − χ2dc are the respective
identification errors. From Equation (5), i = j = k = 1, 2.

It must be noticed that the proposed RWFONN (Equation (26)) has only one neuron
for each state, in a similar way as in Equation (14), which represents a low computational
burden in contrast with HONN. The parameters of the DC-motor mathematical model are
mentioned in [16], whose values are shown in Table 1.

3.3.2. NSTC Application to DC-Motor

By following the methodology as that in Section 3.2.2, the recursive transformation is
now applied to the structure (26), where the generation of the tracking error ζ1 is defined by

ζ1 = ωmre f − x1dc (27)

where ωmre f represents the reference angular velocity of the DC-motor and x1dc is the state
variable from Equation (26). The dynamics of the tracking error ζ1 is given by

ζ̇1 = ω̇mre f − ẋ1dc. (28)

By substituting Equation (26) into (28) yields

ζ̇1 =ω̇mre f − (−a1dcx1dc + b1dcw1dcψ1dc(χ1dc) + x2dc) = −k1dcζ1, (29)

where k1dcζ1 constitutes the desired dynamics to vanish the tracking error. In this way, it is
possible to synthesize a control law through the state x2dc, so, to such an end consider

x2dcre f =ω̇mre f + a1dcωmre f − a1dcζ1 − b1dcw1dcψ1dc(χ1dc) + k1dcζ1. (30)

Furthermore, the second error is defined as

ζ2 = x2dcre f − x2dc, (31)

with error dynamics

ζ̇2 = ẋ2dcre f − ẋ2dc. (32)

By substituting Equation (26) in (32) it yields

ζ̇2 = ẋ2dcre f − (−a2dcx2dc + b2dcw2dcψ2dc(χ2dc) + uadc). (33)
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Moreover, using Equations (29) and (33), the block control form for Equation (26) is
defined as

ζ̇1 =− k1dcζ1 + ζ2,

ζ̇2 =ẋ2dcre f + a2dcx2dc − b2dcw2dcψ2dc(χ2dc)− uadc.
(34)

Thus, based on the error dynamics ζi, the Equation (34) represents the block control
transformation with structure (26). Furthermore, from the system (26) with relative degree
equals to 1, the NSTC is given by

ζ̇1 =− k1dcζ1 + ζ2,

ζ̇2 =ω̈mre f + (−a1dc + a2dc)ω̇mre f + (a1dca2dc)ωmre f

− (a1dck1dc + k2
1 + a1dca2dc − a2dck1dc)ζ1 − a2dcζ2 − a2dcb1dcw1dcψ1dc(χ1dc)−

b2dcw2dcψ2dc(χ2dc)− (λsdc|sdc|
1
2 sign(sdc) + usdc)

(35)

It should be noticed from Equation (35), regarding the tracking error variables ζ1 and
ζ2, that the control input usdc = uadc guarantees that these errors will be steered to zero in
finite time.

4. Simulation Results

This work presents the simulation results of the NSTC for controlling the angular
velocity of a PMSM and a DC-motor to emulate an FESS. The angular velocity of the PMSM
is controlled to store kinetic energy in the flywheel, meanwhile the angular velocity of the
DC-machine is controlled to emulate the deceleration of the flywheel by transferring kinetic
energy to the PMSM working in generator mode, where it is converted into electrical energy
and delivered to the utility grid. The used parameters of the motors are shown in Table 1.
The simulation was performed using Matlab/Simulink (MatlabTM) with a Runge–Kutta
solver and a step size of 100 µs.

4.1. Neural Identification

This subsection presents the simulation results of the neural identification of the PMSM
state variables, as well as the DC-motor state variables using the RWFONN structure.

4.1.1. PMSM States Identification

For the neural identification of the PMSM states, the parameter values are: a1 = 6000,
a2 = a3 = 4000 and b1 = 6000, b2 = b3 = 4000; the parameters for the Morlet Wavelet
activation functions are: β1 = 75 × 103, β2 = 22 × 103, β3 = 35 × 103, λ1 = λ2 =
λ3 = 0.001; the parameters of the filtered error are: γ1 = γ2 = γ3 = 855× 102. In
Figures 3–5, the neuronal identification of the PMSM states is shown, where, in Figure 3
the identification of the angular velocity is the red dashed line that represents the angular
velocity of the PMSM (ωr) and the blue continuous line represents the state of RWFONN
(x1). In order to show the convergence of these results, the initial conditions are given as:
ωr = 0 and x1 = −1. Note that in the detail of the figure, the identification convergence is
given in 0.0002 s, approximately. The transient is shown when the PMSM is started in the
energy storage, where the velocity response has a settling time of 0.15 s, approximately.

The identification of current id is presented in Figure 4, where the red dashed line
represents the current of the PMSM (id) and the blue continuous line represents the state of
RWFONN (x2); the initial conditions are given as: id = 0 and x2 = 0.5. The identification
convergence is given in 0.0003 s approximately, as is shown in the detail of the Figure 4.
In the transient response, the inrush current id achieves a maximum value of the 132 A
with an oscillation frequency of 0.0014 Hz. As it is shown, the identification process is
effectively realized.

In Figure 5 the identification of current q is shown, where the red dashed line repre-
sents the current iq of the PMSM, and the blue continuous line represents the state of the
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RWFONN (x3), and where the initial conditions are given as: iq = 0 and x3 = −0.5. The
identification convergence is given in 0.0003 s, approximately. Figure 5 shows the transient
when the PMSM is started, and in the process of energy storage, the inrush current iq
achieves a maximum value of the 153 A with an oscillation frequency of 0.0489 Hz. In the
transient, the identification procedure is more demanding and is effectively realized.
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Figure 3. Angular velocity and neural identification behavior: ωr and x1.
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Figure 4. Current and neural identification behavior: id and x2.
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Figure 5. Current and neural identification behavior: iq and x3.

4.1.2. DC-motor States Identification

In this section, the neuronal identification of the DC-motor states is carried out, where
the values of the parameters used in the RWFONN are defined as follows: a1dc = a2dc =
6000 and b1dc = b2dc = 6000; the parameters for the Morlet Wavelet activation functions
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are: β1dc = 85× 103, β2dc = 75× 103, λ1dc = 0.001, λ2dc = 0.01; the parameters of the
filtered error are: γ1dc = γ2dc = 855× 102.

In Figure 6, the neural identification of the angular velocity of the DC-motor is shown.
In this figure, ωm is a state variable of the motor, and x1dc is a state variable of the NN. As
it can be seen in the detail of the figure, the NN identifies the state of the motor with a
convergence time of 0.0003 s. The initial conditions are: ωm = 0 and x1dc = 1. The figure
shows the transient when the DC-motor is starting. The velocity response in the transient
has an overshoot of 1.13% and a settling time of 0.05 s.
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Figure 6. Angular velocity and neural identification behavior: ωm and x1dc.

Figure 7 shows the neural identification of the armature current of DC-motor, where
ia is the current of the motor and x2dc is the state of the network; the initial conditions are:
ia = 0 and x2dc = 0.5, and obtaining the neural identification with a time of convergence
0.0004 s, approximately. In this figure, the transient presents the typical inrush current of a
DC-motor when it is fed with nominal voltage. The current has a maximum value of 21.7 A
and achieves the steady-state value of 0.53 A at 0.08 s.
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Figure 7. Armature current and neural identification behavior: ia and x2dc.

In order to make a comparison of the performance of the RWFONN used in this
work, numerical simulation results about the identification process from both Recurrent
Sigmoid First-Order Neural Network (RSFONN) and RHONN have been obtained. This
comparison consists of using the RHONN and RSFONN structures, instead of that for the
RWFONN, to the dynamics identification of the plant, training them via a filtered error
algorithm. Then, from the data obtained by the identification process, the root mean square
(RMS) error is computed, which represents the difference between the actual state and the
estimated state when using approaches with different NNs. The comparison is made by
estimating the states from both PMSM and DC-motor, where Tables 2 and 3 show the RMS
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for each state from both motors, respectively. It can be seen in Table 2 that the lowest RMS
values (bold values) are for ωr and id from the RSFONN and for iq from the RHONN. In
Table 3, the results show that the lowest RMS values (bold values) are for ωm from the
RSFONN and for ia from the RWFONN.

Table 2. RMS error for PMSM.

Neural Network Structure ωr id iq

RWFONN 0.1496 0.0311 0.0263
RSFONN 0.0105 0.0015 0.0286
RHONN 0.0386 0.0032 0.0128

Table 3. RMS error for DC-motor.

Neural Network Structure ωm ia

RWFONN 0.0018 0.00004
RSFONN 0.0004 0.00005
RHONN 0.0206 0.0009

Even when different NNs obtain the lowest RMS in the identification process, there
are different reasons to consider when choosing the NN structure. Such is the case with the
RWFONN, having a very single structure, for which it is easy to apply the STA, contrary
to the case with the RHONN or even the RSFONN. Another important thing is that the
computational burden is lower for simple structures such as the RWFONN but not for the
RHONN or when increasing the high-order terms of the latter.

4.2. PMSM and DC-motor Controller-Emulation of Flywheel

In this subsection, the NSTC for PMSM and a DC-motor controller for emulating the
complete system of the flywheel are presented. For the case of the PMSM, the controller is
designed to control the angular velocity (ωm) indirectly through the states of the NN, where
the parameters and gains for the NSTC of PMSM are defined as: k1 = 8000, λ1s = 0.1,
λ2s = 2.5, and α1s = 0.1, α2s = 2.5.

In Figure 8, the behavior of the PMSM in motor and generator modes is shown. In the
case of motor mode, the velocity tracking performances from 0 to 10 and from 30 to 52 s are
shown, where the blue dashed line represents ωrre f , and black continuous line is ωm. In this
time, the tracking is to ωrre f = 130 rad/s, and there is kinetic energy storage during this
operation mode. A detail of the transient is shown where a fast convergence can be seen.
Due to consideration of a grid failure, the case of PMSM as a generator mode is plotted
during the period of time from 10 to 30 and from 52 to 70 s. In this time, the deceleration of
the flywheel is emulated by controlling the angular velocity of the DC-motor (see Figure 9
on the sign named Discharge of flywheel) and in this figure, the velocity reference ωmre f
(blue dashed line) is described by Equation (2) and meanwhile, ωm is the gray continuous
line; a detail is shown in the middle of the figure where the very good results of the tracking
can be noted. To ensure the NSTC of the DC-motor, the parameters and gains are defined
as: k1dc = 8000, λsdc = 3 and αsdc = 3.
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Figure 8. PMSM velocity tracking to emulate the energy storage.
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Figure 9. DC-motor velocity tracking to emulate the flywheel deceleration.

Figure 10 shows the PMSM velocity controller performance, where tracking velocity
error ε1 (Figure 10a) is steered to zero effectively by the super-twisting control law vq
(Figure 10a). Note that the transient response at 30 s corresponds to the change from the
generator to motor mode. The error diminishes to zero in 0.015 s, as can be seen in the
detail of Figure 10a.

Figure 11 shows the DC-motor velocity controller performance. Figure 11a displays
the tracking error signal in the intervals (10–30 s) and (52–70 s), which is steered to zero
in finite time by the action of the super-twisting control law shown in Figure 11b. When
the tracking error is zero, then the velocity control of the DC-motor is achieved, and the
control goal is fulfilled, which consists of emulating the deceleration of the flywheel.

4.3. Power Delivery

In Figure 12, the kinetic energy stored in the flywheel is shown from 0 to 10 s and from
30 to 52 s due to the fact that PMSM is in motor mode, generating 760.5 J in steady-state.
From 10 to 30 s and from 52 to 70 s, the PMSM is in generator mode, and it shows the
discharge of the energy when considering a fault in the utility grid or when the flywheel
is required to compensate for the utility grid with active power to solve a problem of the
electrical office.
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Figure 10. PMSM velocity controller performance: (a) velocity error ε1, (b) control signal vq.
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Figure 11. DC-motor velocity tracking performance: (a) velocity error ζ1. (b) control signal usdc
(10–30 and 52–70 s).
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Figure 12. Storage and discharge kinetic energy.

5. Discussion

There exists a variety of three-phase electrical machines that can be implemented in
an FESS, such as wound squirrel cage [34] and doubly-fed asynchronous machines [35].
In this work, we used the PMSM to emulate a flywheel storage system because, based
on the literature, the small and medium capacity applications of the flywheels make it
more convenient to use the PMSM since it is more efficient and less difficult to control.
The doubly-fed induction generator is used more in large capacities because the control
is carried out by the rotor circuit, where the power flow is proportional to the slip of the
machine. Consequently, the electronic power drive is of lower capacity, near 30% of the
flywheel capacity, which allows a considerable economic saving in the converter.

This proposal can be extended to other applications in energy storage systems such
as power compensators in wind generators as well as wind diesel power systems, electric
vehicles, direct electrical grid applications, i.e., applications where it is possible to involve
charge/discharge cycles.

Regarding the advantages, this work can be used as a general methodology where
it is possible to work as a motor/generator, such as wound squirrel cage, doubly fed
asynchronous machines, and of course the PMSM. It is clear that this is possible by making
the corresponding changes for the mathematical model of the machine to be used, which
all depends on the range of speeds that it is going to operate at, and taking advantage of
the benefits offered by the material with which the machine is built (low-speed FESS, or
high-speed FESS [35]), and the particular features (electrical, mechanical) of the three-phase
machine, etc. It is possible to control nonlinear and linear systems using the NSTC based
on RWFONNs trained via a filtered error algorithm. These plants to be controlled are
considered unknown regarding the parameters, and only the state-space variables are
measured. This work can be extended to other three-phase machines, such as doubly fed
asynchronous machines or wound squirrel cage motors.

The main limitation is that this work is an emulated system in simulation, and even
when different real scenarios are considered, a real system will always show all the benefits
of the proposal. Furthermore, this work is limited by the structure of the RWFONN, as
even when the obtained numerical results are good, the computational process can be
degraded.

The following interpretation of the results are made: the identification (Figures 3–7)
results offer a good approximation of the plants by the RWFONN, and the filtered error
algorithm that causes the tracking results in Figures 8 and 9 is good, including the tracking
error maintained at zero for ε1 and ζ1, Figures 10 and 11, respectively. This demonstrates
that the proposed methodology is viable for use in the applications already mentioned. It is
clear that they are considered ideal switching processes when the grid failure is presented
and there is the change from motor to generator in the PMSM also in the DC-motor, such as
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in the case in Figures 8 and 9, from which a good tracking is noted when there is a change
in the storage–discharge modes.

The perspective of this work is obtaining results when considering more real scenarios
in order to have a better approximation of a real-system. This will contribute to making
real-time experiments with this proposal considering different structures of NN with the
same or even other control algorithms.

6. Conclusions

Simulation results from this work show the emulation of the FESS through identifica-
tion and control of the states from the models for two different electrical machines, namely,
the PMSM and the DC-motor. This is achieved through the use of a RWFONN, the block
control linearization technique, and the NSTC, by controlling the velocity of the PMSM
in the energy storage stage and controlling the velocity of the DC-motor in the energy
feedback stage. The stability analysis demonstrates the convergence of the whole system in
a closed-loop using the boundedness of the identification error. It is worth mentioning that
the authors intend to continue with the study of this work in real-time until laboratories
can be accessed and tests can be performed.
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The following abbreviations are used in this manuscript:

AC Alternating-Current
DC Direct-Current
dq Direct-Quadrature
FESS Flywheel Energy Storage System
HONN High Order Neural Network
NN Neural Network
NSTC Neural Super-Twisting Control
PMSM Permanent Magnet Synchronous Machine
RMS Root Mean Square
RHONN Recurrent High Order Neural Network
RSFONN Recurrent Sigmoid First-Order Neural Network
RWFONN Recurrent Wavelet First-Order Neural Network
STA Super-Twisting Algorithm
STC Super-Twisting Control
SVPWM Space Vector Pulse Width Modulation
UUB Uniformly Ultimately Bounded

Appendix A. Identification Error Boundedness

Theorem A1. Suppose that the system (3) and the model (5) are initially at the same state
x(0) = χ(0); then, for any ε > 0 and any finite T > 0 there exist an integer L and a matrix
w∗ ∈ RL×n such that the state x(t) of the RWFONN model (5) and weight values w = w∗ satisfies
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sup
0≤t≤T

|x(t)− χ(t)| ≤ ε.

Then, using the Bellman–Gronwall Lemma [36], it is obtained that the identification
error ξ = x− χ is bounded by

‖ξ‖ ≤ ε

2
. (A1)

Proof. See Reference [37].

Appendix B. Closed-Loop Stability Analysis

In order to analyze the stability of Equations (25) and (35), a representation in scalar
form is made as follows [29]:

ṡh =− kh|sh|
1
2 sign(sh) + uh + fh

u̇h =− khsign(sh), h = 1, 2, .., d
(A2)

Considering µ>h =
[
|x1|

1
2 sign(x1), x2

]
as the state vector of the super-twisting algo-

rithm, µh can be rewritten in terms of sh, then µ>h =
[
|sh|

1
2 sign(sh) uh

]
and considering

that the matrix P is positive definite, the derivative of µh is defined as [38]:

µ̇h =

 1
2

1

|sh |
1
2
((−k1h)|sh|

1
2 sign(sh) + uh)

−k2hsign(sh)

 =
1
|sh|

Ahµh (A3)

Equation (A3) can be expressed as the following linear system:

µ̇h = Ahµh + ρh (A4)

From Equation (A2), fh is bounded with the following restrictions:

| fh| ≤ δh|sh|
1
2 , | fh| ≤ δh|µh|, δh ≥ 0 (A5)

Assuming that fh in (A2) is an external disturbance bounded by:

fh = δh|sh|
1
2 sign(sh) = δhµh (A6)

To construct a complete family of strong Lyapunov functions for Equation (A2) of the
form (A8) the matrix P = P> > 0, the Lyapunov function can be reduced to the solution of
an algebraic Lyapunov equation (ALE) [38] as:

A>P + PA = −Q (A7)

Lyapunov’s candidate function can be written as follows [29,38]:

Vh(µ) = µ>h Phµh (A8)

Considering that the matrix A = 1
|µh |

[
− 1

2 kh
1
2

−kh 0

]
and ρh =

[
1

2|µh |
fh

0

]
where kh > 0,

then A is Hurwitz. For every symmetric and positive definite matrix Q = Q> > 0,
and P = P> > 0 is the unique symmetric and positve definite solution of the ALE
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(Equation (A7)). Moreover, the derivative V̇ of the Lyapunov function satisfies the differen-
tial inequality almost every where:

V̇ ≤ −γ(Q)V
1
2 (s) (A9)

where

γ(Q) =
λmin(Q)λ

1
2
min(P)

λmax(P)
(A10)

is a scalar depending on the selection of the Q matrix [38].

Proof. The Lyapunov function (A8) is continuous, positive definite and radially un-
bounded in R2, it is differentiable everywhere, except on the line s1 = 0. As the trajectories
of Equation (A2) cannot stay on this set, before reaching the origin, the derivative of V(µ)
can be written from Equation (A3) as follows:

V̇h(µ) =
1
|µh|

µ>h (A>h Ph + Ph Ah)µh + 2µ>h Phρh (A11)

Involving Equation (A6) in the term ρ of Equation (A11), it yields:

V̇h(µ) = −
1
|µh|

µ>h Qhµh (A12)

Now, defining P =

[ 1
2 k2

h + 2kh − 1
2 kh

− 1
2 kh 1

]
and using the standard inequality for

quadratic forms

λmin{P}‖µ‖2
2 ≤ Vh(µ) ≤ λmax{P}‖µ‖2

2 (A13)

where ‖µ‖2
2 = µ2

1 + µ2
2 = |s1|+ s2

2 is the Euclidean norm of µ. Equation (A11) along the
solutions of the system (A2) can be rewritten as follows:

V̇h(µ) = −
1

|s1|
1
2

µ>Qµ ≤ − 1

|s1|
1
2

λmin{Q}‖µ‖ (A14)

V̇h(µ) is negative definite if Q > 0, which is the case when kh > 0.

Where Q = kh
2

[
k2

h + 2kh − δh(kh + 4 kh
kh
) −kh

−(kh − δh) 1

]
, therefore the matrix Q is positive

definite if kh satisfies the following condition: kh > 2δh also kh > 1
2

k2
h(δh−kh)
kh−2δh

. Using

Equations (A13) and (A14) and the fact that |s1|
1
2 ≤ ‖µ‖2 ≤

V
1
2 (s)

λ
1
2
min{P}

, the inequality (A9)

is satisfied.
Now, the convergence of ξ i

j should be considered, involving in this way the identifica-
tion error boundedness (Equation (A1)), then, the Lyapunov function (A8) can be rewritten
as follows:

V(µ, ξ) = µ>Pµ +
1
2
(ξ i

1)
2 (A15)

where the time derivative of Equation (A15) is:

V̇(µ, ξ) = − 1
|µh|

µ>h Qhµh + ξ i
1ξ̇ i

1 (A16)
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substituting the time derivative of ξ i
1 = xi

1 − χi
1, which is obtained through the filtered

error algorithm (6) and is applied in Equation (A16)

V̇(µ, ξ) = − 1
|µh|

µ>h Qhµh + ξ i
1

[
(−ai

1xi
1 + bi

1wi
1ψi

1 + xi
2 + xi

3)− χ̇i
1

]
(A17)

In order to guarantee that Equation (A17) is negative definite, the desired dynamics
for x2d is

xi
2d = −c1ξ i

1 + ai
1xi

1 − bi
1wi

1ψi
1 − xi

3 + χ̇i
1 (A18)

thus,

V̇(µ, ξ) =− 1
|µh|

µ>h Qhµh+

ξ i
1(−ai

1xi
1 + bi

1wi
1ψi

1 + (−c1ξ i
1 + ai

1xi
1 − bi

1wi
1ψi

1 − xi
3 + xi

3 + χ̇i
1)− χ̇i

1)

=− 1
|µh|

µ>h Qhµh − c1ξ2
1

(A19)

with c1 > 0 real value. In this way, by Theorem (1) and Equation (A1), the uniformly
ultimately bounded stability of the complete system is ensured.
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