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Abstract: This paper presents improved methods to detect cracks and thermal leakage in building
envelopes using unmanned aerial vehicles (UAV) (i.e., drones) with video camcorders and/or
infrared cameras. Three widely used contour detectors of Sobel, Laplacian, and Canny algorithms
were compared to find a better solution with low computational overhead. Furthermore, a scheme
using frame-based location identification was developed to effectively utilize the existing approach by
finding the current location of the drone-assisted image frame. The results showed a simplified drone-
assisted scheme along with automation, higher accuracy, and better speed while using lower battery
energy. Furthermore, this paper found that the cost-effective drone with the attached equipment
generated accurate results without using an expensive drone. The new scheme of this paper will
contribute to automated anomaly detection, energy auditing, and commissioning for sustainably
built environments.

Keywords: drones; frame-based location identification; contour detection; crack inspection; building
thermal leakage detection; energy audit

1. Introduction

The use of unmanned aerial systems (UAS, also called drones) have been growing
because they can be useful in achieving the project goals of sustainably built environments.
Drones can quickly and precisely perform their missions with low operational costs and
safety risks, particularly, when they are used with video recording and photography [1].
As built environments become old, drones play a significant role in detecting anomaly
damages in terms of structure and thermal energy leakage issues in building envelopes such
as walls, windows, and roofs. For example, the Korean Ministry of Land, Infrastructure
and Transport reports that approximately 36% of Korea’s infrastructures was built more
than 30 years ago [2].

Researchers began to actively exploit drones to identify damages through image
processing [3–7]. In the field of crack inspection in concrete walls, researchers worked
mostly on increasing the accuracy of contour detection through exploiting different schemes
with complex pre-processing of the captured image. Choi and Kim [3] suggested a drone-
assisted scheme that allowed users to modify a threshold to adjust an image size through
an image acquisition system. They used the Canny edge detection algorithm to find cracks
inside or outside of a building. Noh et al. [4] suggested a drone-assisted image processing
method to find cracks larger than 0.3 mm on the surface of a bridge. They segmented an
image with fuzzy c-means clustering and removed noise through mask filtering with three
different sizes. Their approach was important because the images taken from a drone is
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not typically close to the concrete surface. Their approach enhanced the accuracy of the
detection from the drone-assisted images. Dixit and Wagatsuma [5] used morphological
component analysis on a manually acquired image of a concrete bridge to identify the
texture features. They used dual tree complex wavelet transform and anisotropic diffusion
to remove noise of the image. Then, they used Sobel edge detector to find the fine cracks.
Their results showed that anisotropic diffusion outperformed dual tree complex wavelet
transform. The results from this study were also important because coarse images taken
from a drone can be accurately detected through this approach.

In addition, Seo et al. [6] suggested a drone-enabled methodology and application for
a bridge inspection. They developed a five-stage methodology using a drone based on an
extensive literature review and demonstrated their efficient and cost-effective approaches
with a filed investigation. Their results showed that drone-enabled methodology can
identify various damage types, such as cracks, spalling, corrosion, and moisture, on
different materials of concrete, steel, and timber, by using a photogrammetric computer
software and a visual inspection. Morgenthal et al. [7] also presented a framework for an
automated drone system to inspect large bridges. Modern cameras of a drone generated
high-resolution image data of the bridge surface. Then, an intelligent flight planning was
developed to consider the quality of the image from the drone. Using photogrammetry
and machine learning, typical damage patterns were identified.

These previous studies used the images from drones to identify anomaly damages
such as cracks. Several studies contributed to an automated detection process or scheme.
However, all the previous studies did not include an automated image location process
and did not compare different detection methods for anomaly damages.

In addition, many studies such as biology [8] and geology [9] have covered the use
of drones with infrared cameras. Moreover, the construction industry needs to increase
the use of infrared drones because there are advantages such as thermal pattern analysis
and 3D photogrammetry modeling [1,10]. Traditionally, infrared thermography has been
widely used in building energy audits [11,12]. Infrared thermography has been used
for qualitative (i.e., walk-through audit) or qualitative/quantitative (i.e., standard and
simulation audit) approaches [11]. Particularly, drone-assisted infrared thermography
approaches are helpful to quantify heat energy losses in the building envelope because
they provide reliable and fast inspection for large areas. Infrared drones can be useful for
the quantitative approach as well as the qualitative approach when the spatial resolution
by the distance of a drone flight and other sensor data by measuring weather conditions
are considered [12–15].

Recently, Rakha and Gorodetsky reviewed drone-assisted applications in thermog-
raphy and 3D photogrammetry to analyze building performance [1]. They found that
infrared images from the use of a drone can significantly improve traditional energy audit-
ing methods. Their case study showed that infrared drones can provide useful images on
thermal leakage. However, several conditions should be carefully controlled for the better
inspection for the pre-flight, during-flight, post-flight steps. Entrop and Vasenev developed
a protocol for the building thermography research based on a literature study and several
test flights [10]. Thermal leakage in the building envelope and a photovoltaic panel on
the roof was investigated using the protocol. From the multiple test flights, they found
that the distance between a drone and a building, the velocity of a drone, and the flight
paths of a drone should be carefully adjusted based on the research conditions. They also
found that inside and outside temperatures, wind, and precipitation would be influential
factors for the drone research results. Ellenberg et al. showed that infrared drones can
detect a delamination from the thermography in bridge decks [16]. They developed a post-
processing algorithm using the Canny edge detector combined with the Hough transform.
They also suggested a method to identify the location of delamination. However, many
images were required to find the location. They concluded that their method provided a
rapid screening, but this approach should be supported by other refined methods such as a
ground inspection method. Infrared drones can be used for the calibration of urban scale
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microclimate models [17]. Fabbri and Costanzo proposed a novel calibration approach us-
ing the measurements of urban-scale surface temperatures through drone-assisted infrared
images. They compared the measured surface temperatures with the simulated surface
temperatures from ENVI-met simulations.

In summary, although the previous studies showed rapid and improved drone-
assisted approaches for their research purposes using experimental data, they did not
provide a fully automated and easy-to-use procedure through an image from a drone,
including an automated location identification approach for anomaly detection in building
envelopes. In addition, most of their approaches were not simplified; thus, they required
additional steps and/or manual steps. Furthermore, the drones (e.g., DJI Inspire 1, DJI
Phantom 2 and 4, etc.) and cameras (e.g., Go Pro 4, 1080P HD/12 Megapixel camera, Sony
Alpha 7R, etc.) used for the previous studies were not cost-effective, and the cost was not
detailed. The battery usage and computational loads were also not studied during the
flight. Finally, they did not compare different detecting methods for anomaly damages.

Therefore, in this paper, using the cost-effective drone and attached equipment, an
automated drone-assisted image processing scheme was developed to probe a building en-
velope. The following objectives were achieved: (1) Considering battery usage with respect
to the direction, the most battery efficient routing path was decided. (2) Three different
contour detectors (i.e., Sobel [18], Laplacian [19,20], and Canny [21]) were compared to find
an accurate scheme with low computational overhead. (3) Using FPS (frames per second),
and angle of view of the camcorder of the drone, the relative position of frame and image
was identified.

An overview of the developed scheme for this paper is presented in the second section.
The drone developed for this paper, the most battery efficient routing path, the frame-based
location identification, and the three different contour detectors is also introduced. In
the third section, the results from the developed scheme of this paper are discussed. In
Section 4, the cost of the drone with the attached equipment is summarized. Section 5
presents the discussion and Section 6 concludes this paper.

2. Methods

This section includes a brief description of the drone used for this study and an overall
procedure of the drone-assisted image scheme. The framework proposed in the paper is
illustrated in the Figure 1. The components are ground control system, drone with camera,
wall inspection program, and report generator. Ground control system manages the routes
of a drone. Once the route information is fed into the drone, it flies against the wall and
takes video. The video feed is used as input to the inspection program. The program
generates the report, including the image of crack and the location of the crack.
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2.1. Hardware Design

In this paper, we chose DJI F450 quadcopter drone as the base frame with four 920 KV
motors because of its small form factor and reliability. The CATIA software (CATIA V5,
Dassault Systèmes, Vélizy-Villacoublay, France) [22] was used to create the 3D models of
the drone as well as propeller guards and landing gears (Figure 2). The propeller guards
and landing gears were created using a 3D printer to protect the four propellers of the
drone arms and to protect the battery and camcorder located at the center of the drone,
respectively. Finally, the drone equipped with the battery and camcorder was produced
with the propeller guards and landing gears, as shown in Figure 3. The camcorder angles of
horizontal and vertical views were 170 and 60◦, respectively, and the camcorder had video
resolution of 2.7k@30FPS. In addition, a FLIR thermal camera was additionally equipped
with the drone. Hardware components are described in Section 4.
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Since the drone used in the experiment was custom made, the reliability and safety of
the drone had to be analyzed. The total load of the drone was 1.497 kg, and by calculation
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the thrust generated by four motors was able to lift up to 3.8 kg. Another important
analysis that had to be carried out was stress and deformation of the frame because the
thrust deforms the arms of the drone. We used SAMCEF [23] to analyze the deformation
of the four arms and the stress of the center when the drone was in flight (Figure 4). The
simulation results showed that the maximum deformation of the four arms was 0.39 mm,
and the maximum stress of the center was 0.95 MPa. The arm was able to withstand stress
of 270 Mpa. The result of deformation and stress test assured the safety of the drone. In
addition, the stability during the drone flight was also tested. The test results showed that
the drone was returned to a hovering flight status within one second after the roll/pitch
was maximized. The cost for the development of the drone used in this study is also
identified in Section 4, which shows that the total cost was significantly lower than the
previous studies.
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2.2. Software Components

Video captured by the drone was transferred to a ground station PC composed of Intel
3205U@1.5GHz, 4GB DRAM, and Windows 10. The anomaly detection system was built on
Visual C++. Xbee explorer dongle communication was used in the drone. We used APM as
the flight controller and it was connected to Ground Control System through Mavlink [24].

Camera module captured the video image of a wall, then Raspberry Pi transfers the
image to the ground workstation. The ground station PC ran automated framework to
process the image and generate the report. The average run time to process and generate the
report was about 0.7 s. Within the report, we made a list of coordinates of identified cracks
along with the captured images of cracks and thermal leakages for further investigation.

Figure 5 illustrates an automated framework for the anomaly contour detection. First,
once the video data of building envelope was acquired, the captured data is processed
by the contour detection algorithms after pre-processing images to remove noises using
the Gaussian blur and binarization. Then, the contour detector identified cracks on a wall
and/or window. Since all contours may not be cracks, based on the guideline provided
by Korea Land Housing Corporation, cracks on a concrete wall with a width larger than
0.3 mm were identified as cracks. For infrared thermal images, the highest temperature
contours were considered as thermal leakage because it was assumed that the weather
conditions when the research was conducted did not introduce acknowledgeable bias in
detecting the thermal leakage in the building envelope using the highest temperature.
In addition, it was assumed that the building surface temperature was not significantly
affected by the building wall structure.
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Figure 5. Flowchart for the overall anomaly contour detection.

Second, a frame-based location identification for the contours was developed. Using
the images with cracks and/or thermal leakage, a relative position of the frame captured
via video frame rate was identified. Then, the location information was embedded on to
the image.

Min and max value for hysteresis thresholding in Canny was heuristically determined to
120 and 350, respectively. Threshold and kernel size of Sobel and Laplacian algorithms were
also determined heuristically (i.e., threshold 70 and 150, and Kernel size 3 and 5, respectively).

2.3. Contour Detection for Efficient Battery Utilization

The battery power is one of the most important factors in operating a drone for any
missions. However, to the best of our knowledge, no previous studies have considered
battery usage in executing a flight plan. The average flight time given by the manufacturer
is based on hovering of a drone in fixed position; thus, this is the idle use case. Since the
building wall is a two-dimensional surface, we have four different ways of exhaustively
and completely inspect the wall. We can fly the drone (1) horizontally, (2) vertically,
(3) diagonally, and (4) randomly. The battery power is drained at different rate depending
on how it is operated. In the case of wall crack inspection, it is inevitable that a drone has
to travel upwards. However, thrust and acceleration are the two motions that drains the
battery quickly. Thus, it is critical to minimize the thrust and acceleration motions while
navigating and inspecting walls. To reach the goal of making a drone travel its maximum
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distance with lowest possible battery usage, we developed a flight plan as in Figure 6 to
minimize the prolonged upward thrust motion.
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2.4. Frame-Based Location Identification

Once a frame with the anomaly detection is identified, users need to know where this
frame is taken from in relative coordinates, i.e., (x, z). We set the base point (0, 0) as the
lower left corner of a building as shown in Figure 6. In order to calculate the position of
a frame, we consider of distance moved per frame and x-axis coordinates with respect to
odd and even orders of the routing turn. It was assumed that a drone is flying in a constant
speed at 1 m perpendicularly away from the wall, and the dimension of a building (W, H)
is given.

The horizontal and vertical length is represented by Equations (1) and (2), respectively.

w =
px

PPI × 0.0254
(1)

h =
pz

PPI × 0.0254
(2)

Here, PPI (pixels per inch) is used to measure the dimension of the wall visible in
a frame. The number of pixels in the x- and z-axis is denoted as px and pz. 0.0254 is
multiplied to convert the pixels to meters.

The dimension of the wall visible in a frame is (w, h), and the start point of taking
video is (0.5 w, 0.5 h). The moving distance in the x- and z-axis is measured by (W-w) and
h, respectively. Thus, the drone moves (W-w) m in the x-axis and upward h m in the z-axis
as a one-time turn.

The distances moved per frame in x- and z-axis, which are denoted as Dx and Dz, can
be obtained by dividing the moving distance by the total number of frames, which are
Equations (3) and (4), respectively.

Dx =
(W − w)

Fx
(3)

Dz =
h
Fz

(4)

Here, the total number of frames on x- and z-axis are denoted as Fx and Fz, respectively,
which is the product of the number of FPS and the seconds moved in each axis direction.
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To calculate the position using the number of frames, it was considered that the
direction of drone moves as it travels back and forth in x-axis as shown in Figure 6. The
number of turns, T, was counted to find whether a frame is in even or odd turn, that is
Equation (5).

T =
N

Fx + Fz
+ 1 (5)

Here, N denotes the current frame number.
C was used to denote the number of frames within a turn, which is Equation (6).

C = N mod (Fx + Fz) (6)

Thus, if T mod 2 = 0 then the order of turn is in an even number and use Equation (7);
if T mod 2 = 1 then the order of turn is in an odd number and use Equation (8). z can be
identified regardless of which order of a turn, which uses Equation (9).

x = Dx × (Fx − C) (7)

x = Dx × C (8)

z = h× T + Dz (9)

2.5. Contour Detector Methods

Sobel [5,18], Laplacian [19,20], and Canny [21] contour detectors were compared using
the crack images from a drone. In addition, Canny contour detector was applied to infrared
thermal images in the building envelopes. The three contour detectors were built on Visual
C++, and the results from the three contour detectors are shown in the Section 3.3. For
completeness of the paper, we have summarized the concepts of each algorithm used in
the paper. The details of the algorithms can be found in [5,19,21].

Sobel operator can smooth the presence of random noise in an image using an aver-
age factor and can improve the elements of the edge appearing bright and thick. Sobel
operator uses an orthogonal gradient operator and first order differential operator. Sober
operator convolves an image in horizontal and vertical direction with an integer valued,
small, and separable filter. The orthogonal gradient operator can be calculated using
Equations (10) and (11).

Sx = { f (x + 1, y− 1) + 2 f (x + 1, y) + f (x + 1, y + 1)} − { f (x− 1, y− 1) + 2 f (x− 1, y) + f (x− 1, y + 1)} (10)

Sy = { f (x− 1, y + 1) + 2 f (x, y + 1) + f (x + 1, y + 1)} − { f (x− 1, y− 1) + 2 f (x, y− 1) + f (x + 1, y− 1)} (11)

At the position (x,y), the pixel value of an image can be shown in a continuous
function f (x,y). The gradient of a continuous function can be expressed using a vector in
Equation (12).

∇f(x, y) =
[

Sx Sy ]T =[ ∂ f
∂x

∂ f
∂y ] (12)

Magnitude and directional angle of the vectors can be expressed using Equation (13).

mag(∇f) =
∣∣∣∇ f(2)

∣∣∣ = [ S2
x S2

y ]
1
2 (13)

Equation (13) can be simplified using Equations (14) and (15) for a digital image. ∅ is
the directional angle between the vectors of Sx and Sy.

mag(∇f) = |Sx|+
∣∣Sy
∣∣ (14)

∅(x, y) = arctan
(

Sx

Sy

)
(15)
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Partial derivative formula for each pixel location is calculated. Using the gradient
operator, Sx and Sy are combined for convolution templates. To conduct convolution, two
kernels (templates) are used for every point. One kernel has a maximum response to the
vertical edge, and the other kernel has a maximum response to the level edge. The output
point uses the maximum value of the two convolutions. Then, the edge amplitude image is
created. The convolution is conducted using Equations (16)–(18).

g1(x, y) = ∑1
k=−1 ∑1

l=−1 S1(k, l) f (x + k, y + l) (16)

g2(x, y) = ∑1
k=−1 ∑1

l=−1 S2(k, l) f (x + k, y + l) (17)

g(x, y) = g2
1(x, y) + g2

2(x, y) (18)

Laplacian operator is a second order differential operator. The operator is defined
in the n-dimensional Euclidean space using the divergence (∇) of the gradient (∇ f).
The Laplacian operator needs a more careful approach to noise because it is the second
derivative operator. Scattered broken edge pixels can be shown in the results. To reduce
the low-quality pixels, a low pass filter is significant before the Laplacian edge detection.
It is proven that the Gaussian low pass filter is effective for image denoising [25]. This
approach is called the Laplacian of Gaussian (LOG) operator using Equation (19). Gσ(x,y)
is a Gaussian kernel function with the standard deviation of σ.

∆(Gσ∗I) =
[

∂2Gσ(x, y)
∂x2 +

∂2Gσ(x, y)
∂y2

]
∗ I(x, y) (19)

Canny operator is based on the three standards of the signal-to-noise standard, location
accuracy standard, and monolateral response standard. First, using the Gaussian function,
an image is denoised. Second, the maximum value of first differential determines the edge
points, which is closest to the real edge. Finally, both the maximum and minimum values
(i.e., strong edge and weak edge) of the first differential are matched with the zero cross
point of the second differential in order to extremely suppress the response of unreal edge.
Therefore, Canny operator can effectively avoid noise. Canny operator has the following
three standards of Equations (20)–(22):

Signal-to-noise (SNR) standard

SNR =

∣∣∣∫ ω
−ω G(−x)h(x)dx

∣∣∣
σ
√∫ ω
−ω h2(x)dx

(20)

where G(x) is an input image, h(x) is an impulse response of filter with the width ofω, and
σ is the unbiased variance of Gaussian noise.

Location accuracy standard

L =

∣∣∫ ω
ω G′(x)h′(x)dx

∣∣
σ
√∫ ω
−ω h′2(x)dx

(21)

where L quantificationally describes the accuracy of the edge detection. Larger value means
better accuracy.

Monolateral response standard

D
(

f ′
)
= 2π

{ ∫ +∞
−∞ h

′2(x)dx∫ +∞
−∞ h′′2(x)dx

}1/2

(22)

where D( f ′) should be larger to satisfy the zero cross point, impulse response differential
coefficient of the operator.
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3. Results

In this section, the results from the efficient routing coordinate, the frame-based
location identification, and the three contour detectors are described and discussed.

3.1. Battery Utilization

The drone used the battery of a lithium polymer with 14.8 V (5200 mAh), and it
was able to fly for 17 min in average. The drone flew perpendicularly to the wall at a
distance of 1 m distance. Then, the drone captured the dimension of 4 m × 2 m in a
frame. The distances of 3 m, 5 m, and 7 m were also tested as shown in Figure 7. We
considered the resolution and the distortion in the captured image while deciding the
drone’s distance from the wall. Note that resolution and distortion of captured images are
primarily dependent on the specification of a camera and the lens it uses. The distance
must be decided with respect to the specification. For this study, the images from the
distance of 1 m were used. It was observed that the maximum distance for accurate images
with less errors was 5 m. The distance of 7 m did not provide a reliable drone image. It
is because resolution of the camera is fixed; however, it must capture a larger area, which
means a larger area has to be compressed into a pixel in the image.
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crack decreases.

The flight plan, as shown in Figure 6, was used to designate the way points of the
drone. The power of the battery was measured after a round trip flight of 10 m with
vertical and horizontal routes. The total round-trip distance for the vertical and horizontal
directions was 100 m. The tests were repeated several times to obtain the average power
dissipation in each direction. Figure 8 shows that the power dissipation of the vertical
route was greater than the horizontal route. In the vertical route, the power decreased
by 0.36 V on average, which was about 2.9% of the total power. On the contrary, in the
horizontal route, the power decreased by only 0.11 V on average, which was about 0.8% of
the total power. It was found that the horizontal movement was at least 3.3 times better
than the vertical movement. A simple linear regression analysis was conducted, and the
results showed that the vertical and horizontal oriented flights can travel about 4.1 km
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and 13.5 km, respectively. The travel distance could cover the distance for the inspection
of three of 40-story apartments or 140 of two-story houses when the average distances
between the apartments and the houses were 50 m and 3 m, respectively.
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3.2. Accuracy of Frame-Based Location Identification

The accuracy of the frame-based position was tested (Figure 9). The drone started
flying at coordinates of (2.5, 0). It flew 4 m up, which was on (2.5, 4), and moved 5 m
to the right (7.5, 4). Then, the drone flew up 1 m reaching at the final point of (7.5, 5).
The actual coordinates against estimated coordinates via FPS at each turn were compared.
The average error rates of the frame-based position on x- and z-axis were 1.3% and 0.17%,
respectively. It was found that maintaining constant speed was important to calculate an
accurate position.

Energies 2021, 14, x FOR PEER REVIEW 11 of 19 
 

 

0.36 V on average, which was about 2.9% of the total power. On the contrary, in the hori-

zontal route, the power decreased by only 0.11 V on average, which was about 0.8% of the 

total power. It was found that the horizontal movement was at least 3.3 times better than 

the vertical movement. A simple linear regression analysis was conducted, and the results 

showed that the vertical and horizontal oriented flights can travel about 4.1 km and 13.5 

km, respectively. The travel distance could cover the distance for the inspection of three 

of 40-story apartments or 140 of two-story houses when the average distances between 

the apartments and the houses were 50 m and 3 m, respectively. 

 

Figure 8. Boxplot of battery utilization with respect to direction. 

3.2. Accuracy of Frame-Based Location Identification 

The accuracy of the frame-based position was tested (Figure 9). The drone started 

flying at coordinates of (2.5, 0). It flew 4 m up, which was on (2.5, 4), and moved 5 m to 

the right (7.5, 4). Then, the drone flew up 1 m reaching at the final point of (7.5, 5). The 

actual coordinates against estimated coordinates via FPS at each turn were compared. The 

average error rates of the frame-based position on x- and z-axis were 1.3% and 0.17%, 

respectively. It was found that maintaining constant speed was important to calculate an 

accurate position. 

 

Figure 9. Boxplot of accuracy of frame-based location identification. 

3.3. Contour Detector for Crack Detection 

The Sobel [5,18], Laplacian [19,20], and Canny [21] contour detectors were compared 

to find which is the best approach for inspecting anomaly damage in building envelopes 

with low computation over-head. The criteria for the contour detector accuracy were the 

low rates of false negative and false positive. Although many tests were conducted, two 

images were selected for this study. 

Figure 10 shows the result of the three contour detectors. The building used for the 

crack detection was built in year 2000 within Gyeongsang National University, Jinju, 

South Korea. The purpose of this two-story building is to accommodate and incubate 

startup companies of various sizes. The reasons for the cracks on the building surface [26] 

Figure 9. Boxplot of accuracy of frame-based location identification.

3.3. Contour Detector for Crack Detection

The Sobel [5,18], Laplacian [19,20], and Canny [21] contour detectors were compared
to find which is the best approach for inspecting anomaly damage in building envelopes
with low computation over-head. The criteria for the contour detector accuracy were the
low rates of false negative and false positive. Although many tests were conducted, two
images were selected for this study.
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Figure 10 shows the result of the three contour detectors. The building used for the
crack detection was built in year 2000 within Gyeongsang National University, Jinju, South
Korea. The purpose of this two-story building is to accommodate and incubate startup
companies of various sizes. The reasons for the cracks on the building surface [26] are
irregular stress from a long-term overload [27], deformation and corrosion by the weather
conditions [28], decrease in bearing capacity [29] and damage from earthquakes [30]. The
dimensions of cracks numbered in Input Image 1 of Figure 10 was as follows: (1, 4, and 5)
circular shape with radius of 3 to 5 mm; (2) 20 cm long and 1 cm wide; and (3) triangular
shape with a base of 2 cm and a height of 2 cm. The widths of cracks shown in the Input
Image 2 of Figure 11 was as follows (length and width): (1). 11 cm and 4 mm, (2) 9 cm and
8 mm, (3) 15 cm and 10 mm, (4) 3 cm and 6 mm, (5) 12 cm and 3 mm, and (6) 7 cm and
3 mm.
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In the case of the Sobel detector, the detection results were not reliable when the
texture of the wall was not smooth (see Figure 11). Sobel required a lot of preprocessing to
reduce the noises. As a result, it showed a high false positive rate. The Laplacian detector
showed a higher false positive rate in Figure 10. On the contrary, the Canny detector
successfully identified all the edges on the wall regardless of the texture or the dimension
of the cracks.

Figure 12 shows the result from the three contour detectors adopted in the proposed
crack inspection program. In the automated scheme, the dimension of a crack had to
be large than 0.3 mm × 0.3 mm to be actually counted as a crack. An image with the
dimension of 627 × 239 pixels (46.4 Kb) was used to measure the run time of executed
algorithms. Since only Canny found the cracks on given criteria, low frequency filters and
binarization were added for a fair comparison of the performance of the anomaly detection
system (see Figure 12).
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False negative rates for Sobel, Laplacian, and Canny were 0.5, 0.5, and 0, respectively.
The average run time of 10 runs of Sobel, Laplacian, and Canny contour detectors was
20.3 ms, 40.1 ms and 11.4 ms. In terms of low computational overhead and accuracy, the
Canny contour detector was selected for the anomaly detection system.

3.4. Thermal Leakage Detection

In addition, the Canny detector was used to analyze thermal images captured with
an infrared camera. The aim for using Canny detector in thermal image was to provide
easy solution to locate the leakage in the built environment due to cold bridges, missing
insulation, moisture ingress, etc. More specifically, we were interested in finding the area
quickly where the thermal leakage was the highest. The building used for the thermal
leakage study was a two-story office building built in the 1980s in Boise, Idaho, the US. A
particular aspect of the building is that the windows of the building were replaced with
new, lower SHGC (solar heat gain coefficient) windows in 2015 [31]. Regardless of the
retrofit of the window, the thermal image shows high thermal transmittance in the frames
of the window.

For this experiment, both the camcorder and the infrared cameras were mounted
on the drone, thus the automated scheme can be used using the frame-based location
identification. Figure 13 shows the results from the Canny detector. It was effective to
detect the highest temperatures (i.e., thermal leakage through the window frames) on the
images. The images were taken when the outside temperature was −4.0 ◦C and the sky
condition was cloudy, for the better results.
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4. Cost Analysis

This paper proposes a cost-effective custom drone to inspect cracks and thermal
leakage on buildings autonomously. The cost-effectiveness can be compared using total
cost of ownership (TCO) analysis, which is the sum of capital expenditure (CAPEX) and
operational expenditure (OPEX). CAPEX includes the cost of the drone, camera, and battery.
OPEX contains the cost of assembling the drone, replacing the parts, maneuvering the
drone, processing the acquired image, and depreciation of the drone. TCO analysis justifies
the need for a custom drone with crack and thermal leakage inspection capabilities.

To compare TCOs from different drones, we chose the mid- and high price range of
the custom drones to match the prices of consumer drones (i.e., DJI Phantom 4 Pro and
Inspire2). We chose Go Pro4 as a camera for a mid-price custom drone and Sony A7R II with
24–70 mm lens as a high-price custom drone. For the consumer drones, we chose Zenmuse
X5S as a camera for Inspire2. In the case of Phantom 4 Pro, it uses a built-in camera. Table
1 summarizes the breakdown of the cost structure of the custom drone proposed in this
paper. Motor and electronic speed control (ESC) and Pixhawk platform were ranked at
number one (i.e., 57.2%) and two (11.8%) among the equipment cost, respectively. Note
that we excluded the cost of FLIR thermal camera in CAPEX because it is not a default
option for consumer drones. The total CAPEX for all drones is shown in Table 2. The
price range of custom-high and Inspire 2 is in the same tier (i.e., approximately $5000), and
the price range of custom-mid and Phantom 4 Pro is in the same tier (i.e., approximately
$2000).
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Table 1. Specifications and cost for the drone and attached equipment.

Item Unit Cost Piece Total Cost Percentage

Pixhawk Platform 163 USD 1 163 USD 11.8%
GPS for Pixhawk Platform 48 USD 1 48 USD 3.5%

Motor and Electronic Speed Control (ESC) 197 USD 4 788 USD 57.2%
DJI F450 Frame 25 USD 1 25 USD 1.8%

Carbon Fiber Propeller 16 USD 2 32 USD 2.3%
Power Module 16 USD 1 16 USD 1.2%

Battery and Lipo Battery Voltage Tester 74 USD 1 74 USD 5.4%
Landing Gear 2 USD 1 2 USD 0.1%

Raspberry Pi 3 Model 16 USD 1 16 USD 1.2%
Camera Module 74 USD 1 74 USD 5.4%

Controller 90 USD 1 90 USD 6.5%
Battery Charger 49 USD 1 49 USD 3.6%

Total 1377 USD 100.0%

Table 2. Total Cost of Ownership of a Drone (4-years).

Cost Category Specification Custom-Ours
(USD)

Custom-Mid
(USD)

Custom-High
(USD)

DJI
Phantom 4
Pro (USD)

DJI Inspire
2 (USD)

CAPEX

Drone Body (Frame,
controller, etc.) 1229 1500 2500 2049 3299

Camera

Camera module 74 - - - -

Go Pro 4 - 249 - - -

Go Pro mount - 15 - - -

Sony A7R II - - 1198 - -

Lense 24–70 mm - - 398 - -

Mount - - 500 - -

Zenmuse X5S - - - - 2049

Battery Minimum requirement 74 150 250 - -

Total CAPEX 1377 1914 4846 2049 5348

OPEX

Assembly Personnel ($200 per
Hour) 200 200 200 - -

Replacement
(2 Years)

Landing gear
replacement (×2) 8 20 20 - -

Frame replacement
(×2) 100 200 200 - -

Camera (Cost ×2 × 2
Years) 296 996 1592 - -

Battery (×1) 100 300 500 370 358

Propellers replacement
(×2) 64 100 100 52 100

Care plan
(Drone)

1 Year care - - - 159 339

1 Year care extension - - - 129 -

1st replacement - - - 99 209

2nd replacement - - - 149 329

Care plan
(Camera)

1 year - - - - 205

1st replacement - - - - 149

2nd replacement - - - - 219

Operation
(2H, 5D, 2W)

Automatic drone
control ($100) 2000 2000 2000 - -

Manual drone control
($300) - - - 6000 6000
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Table 2. Cont.

Cost Category Specification Custom-Ours
(USD)

Custom-Mid
(USD)

Custom-High
(USD)

DJI
Phantom 4
Pro (USD)

DJI Inspire
2 (USD)

Processing
(2H, 5D, 2W)

Automatic inspection
($100) 2000 2000 2000 - -

Manual inspection
($300) - - - 6000 6000

Depreciation
cost 4 Years 344 479 1212 512 1337

Total OPEX 5112 6295 7824 13,470 15,245

TCO CAPEX +
OPEX 2 Years 6489 8209 12,670 15,519 20,593

A professional must assemble all the parts for a custom drone. Although assembling
is not too difficult, it takes about an hour for novice personnel. We assumed $200 to hire
personnel to build a custom drone. We also assumed that we needed two replacements for
a frame, landing gear, propellers, and camera lens. In addition, we replaced the battery
every year. Since parts on a consumer drone are not replaceable, we considered a care plan
for the body and the camera, which provided replacements for various accidents with a
fee. Since the camera lens is not replaceable for a module camera or a Go-Pro product, we
assumed replacing the camera itself is necessary rather than replacing the lens. In the case
of custom-high, we chose to replace the lens because the lens was not fixed to the body.

Unlike a proposed custom drone, a professional must fly consumer drones and post-
process acquired images. To consider the cost of hiring a professional, we assumed the
professional work for 2 h per day, five days per week, and two weeks with a fee of USD 300
per hour. In the custom drone case, we assumed the same amount of time with USD 100 per
hour. It was also assumed that the same amount of proficiency is required to process the
image to find the cracks. For the sake of comparison, we assumed the manual inspection
for the image; however, we can reduce the cost if it uses the proposed scheme. As the TCO
analysis shows in Table 2, automatically inspecting cracks in the building has competitive
advantages over consumer drones.

Using a high-resolution camera in inspecting the wall may reduce overhead by reduc-
ing route length for a drone to scan because it may capture an image further away from
the wall and still maintain the information it requires to detect cracks. However, using a
better camera causes several complications: First, a high-end camera cannot interact with
embedded boards such as Raspberry Pi. Moreover, even if we assume it can be connected
to the embedded boards, it requires higher computation power to process the acquired
image. Second, the heavier the peripherals are attached to a drone, the more battery it
consumes and the shorter the drone’s flight time. Table 3 describes the weight and battery
time of drones. Third, we need more skilled drone pilots to fly the drone higher up, which
increases the hiring cost. Another critical factor is post-processing cost. Irrelevant to the
camera used to capture the image of a wall, we need to take the post-process for the image
to determine the cracks in the wall. The distance of the drone from the wall or generating
the battery-optimized route of the drone is a customizable factor that one can adjust de-
pending on the specification of a drone. However, determining the crack and identifying
the coordinates of the found crack on the wall is time-consuming and tedious error-prone
work. Thus, we can expect that using the automation scheme proposed in this paper will
reduce the time of operating and processing the acquired images and also significantly
reduce the cost of ownership.
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Table 3. Weight and battery time of drones.

Drones Custom-Ours Custom-Mid Custom-High DJI Phantom 4
Pro DJI Inspire 2

Weight 0.5 kg 1.5 kg 4.5 kg 1.4 kg 4 kg

Battery time ~18 min ~20 min ~20 min ~30 min ~25 min

5. Discussion

There are other sophisticated and elaborate schemes that allowed more accurate
detection of cracks in the built environment. For example, global positioning system (GPS)
can be used for the crack detection instead of the frame-based location identification. To
address this issue, we set a drone to a hovering mode and measured GPS readings for
30 min. Although the drone was in hovering mode, the difference of longitude and latitude
of actual location and the readings were 6.1 m on average. In a short period of time, i.e.,
1 min, the GPS readings were constantly fluctuating and gave us an error of 2.3 m. A more
expensive yet reliable solution for identifying the location would be an ensemble of more
accurate modules. However, the cost-effective solution developed in this study was viable
because this solution did not require expensive peripherals.

The default scenario for the built environment inspection includes human engage-
ment for visual confirmation. Since inspections are performed periodically, identifying
the location, size, and the pattern of a crack is enough for determining the progress of the
crack in many of the cases. Moreover, thermal defects are 3D in nature, and both interior
and exterior of the defected area must be thoroughly inspected by trained and qualified
personnel. Since the drone was used as auxiliary equipment for the inspection, we believe
the developed cost-effective solution will suffice for the inspection scenario. Regarding
detecting thermal leakage using drones, weather conditions, such as sky conditions, outside
air temperatures, and daylight and solar radiation, are important [1]. For example, the
emissivity of the building materials can be influenced by the solar radiation and cloud
conditions [32]. In addition, the difference of 10 ◦C between inside and outside air temper-
atures can be required for the better thermography results [33]. Thus, stable and desirable
weather conditions are necessary to achieve the research goal utilizing the drone equipped
with the infrared camera. If the conditions are appropriately met for the infrared camera,
the drones equipped with the infrared camera will quickly identify thermal leakage from
the envelopes of many buildings and will help human inspectors save the time.

Applications of these drones are applicable to crack and thermal leakage detection
of a building and post-earthquake inspection for any built environment. In the case of
earthquake inspection scenarios, time is of the essence. The authorities can deploy several
drones to inspect for cracks and leakage in high-rise buildings to reduce the safety risks.
This approach can also reduce operational costs and time spent inspecting buildings.

The limitations of this study include weather conditions during the drone flight. In
low light environments when the sunlight is weak, the three contour detectors were not
effective. In addition, wind speeds should be considered to mitigate the effect of adverse
wind on a drone. An additional feedback control algorithm is needed to maintain the
stability and velocity of a drone.

6. Conclusions

As a built environment ages and as natural disasters such as earthquakes increase,
the fatigue also increases, and it causes internal or external cracks on the surface of the
building that may lead to greater disaster. Since we have limited manpower and resources,
it is not only an expensive but is also a time-consuming job to investigate the buildings for
cracks. By using drones, we can mitigate the cost structure of the wall inspection as well as
provide time-efficient solution for crack inspection of the built environment. The solution
can be used to also utilized to inform a managing agency about the danger signals observed
while inspecting. The contribution of the paper is in two-folds. First, it offers ingredients of
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autonomous building inspection, which opens many doors to sustaining built environment.
Second, it offers a low-cost and easily maintainable solution for wall inspection.

This paper presents improved approaches to detect cracks and thermal leakage in
building envelopes using drones with video camcorders and/or infrared cameras. First, the
efficient routing coordinate was found from several tests. Second, the automated scheme
using the frame-based location identification was developed to effectively find the current
location of the drone-assisted image frame. Finally, three widely used contour detectors
of Sobel, Laplacian, and Canny algorithms were compared to find a better solution with
low computational overhead. In addition, the Canny detector was applied to the anomaly
detection from thermal images.

The results showed the new simplified drone-assisted scheme provided automation,
higher accuracy, and better speed through low battery energy use. Furthermore, this study
found that the developed, cost-effective drone with the attached equipment generated
accurate results without using an expensive drone.

Although there were limitations, the developed, drone-assisted scheme of this paper
will be valuable to automate all the procedures to detect anomaly damages in the building
envelopes with low battery use, low computational loads, and low cost. This new scheme
will contribute to fully automated anomaly detection, energy audit, and commissioning for
sustainably built environments, including numerous residential and commercial buildings.
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