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Abstract: This review considers problems related to design of efficient structured catalysts for
natural gas and biofuels transformation into syngas. Their active components are comprised of
fluorite, perovskite and spinel oxides or their nanocomposites (both bulk and supported on high
surface area Mg-doped alumina or MgAl2O4) promoted by platinum group metals, nickel and their
alloys. A complex of modern structural, spectroscopic and kinetic methods was applied to elucidate
atomic-scale factors controlling their performance and stability to coking, such as dispersion of
metals/alloys, strong metal-support interaction and oxygen mobility/reactivity as dependent upon
their composition and synthesis procedures. Monolithic catalysts comprised of optimized active
components loaded on structured substrates with a high thermal conductivity demonstrated high
activity and stability to coking in processes of natural gas and biofuels reforming into syngas. A
pilot-scale axial reactor equipped with the internal heat exchanger and such catalysts allowed to
efficiently convert into syngas the mixture of natural gas, air and liquid biofuels in the autothermal
reforming mode at low (~50–100 ◦C) inlet temperatures and GHSV up to 40,000 h−1.

Keywords: biofuel reforming; structured catalysts; nanocomposite active components; design;
mechanism; performance; coking stability

1. Introduction

Production of syngas by methods alternative to steam reforming of methane now at-
tracts a lot of attention due to both environmental and commercial reasons [1,2]. Conversion
of oxygenates obtained from biomass and dry reforming of natural gas appear to be most
promising [1–3]. In dry reforming of biogas or natural gas containing CH4 + CO2 these
greenhouse gases are transformed into syngas with H2/CO ratio ~1, which is a suitable
feed for Fischer–Tropsch and oxygenates synthesis. Oxygenates obtained from biomass
and glycerol- byproduct of biodiesel production are considered as attractive alternatives to
fossil fuels for syngas production [1,4,5].

Efficient catalysts of such processes are usually based upon supported noble (Pt, Rh,
Ru) or transition (mainly Ni) metals [1–12]. The main problem of these processes is coking
of catalysts leading to their deactivation. Even though noble metals are much more stable
to coking, their high price makes their broad-scale application impossible. Hence, great
efforts were devoted to design of Ni-based catalysts stable to coking. Next approaches
were found to be successful.

1. Instead of traditional supports (SiO2, alumina, zeolites, etc.) use mixed oxides of
rare earth and transition metals with variable oxidation states of cations/oxygen
stoichiometry. As the result, such oxides with fluorite [13–29], perovskite [30–67] and
spinel [68–76] structures as well as their nanocomposites [35,72,73] have sufficient
amount of reactive surface/bulk oxygen species characterized also by a high mobility
providing their fast migration to metal particles, where they react with activated
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fuel molecules, thus preventing coking [71–73]. These oxides are the most promising
supports for catalysts of hydrocarbons or oxygenates reforming to syngas without
coking [11–77]. Their oxygen mobility can be tuned by changing their composition as
well as synthesis procedures [13,32,35].

2. In the case of bimetallic Ni-containing nanoalloys with Ru, Co, Fe, etc. coking is
also much smaller than for pure Ni [8]. This is explained by dilution of the alloy
surface layers by added atoms, thus preventing clustering of Ni atoms responsible for
graphitic carbon nucleation. Moreover, guest metals suppress migration of carbon
atoms into the bulk of alloy particle, thus preventing nucleation of carbon fibers at
the metal/support interface [8]. While for traditional as well as fluorite-like supports
nanoalloys were mainly loaded via impregnation route, for perovskites and spinels
both Ni and other metal cations can be incorporated into the mixed oxide lattice
during synthesis. Subsequent reduction generates nanocomposites comprised of
segregated metal alloy nanoparticles strongly interacting with oxide matrix, which
improves coking resistance and stability to sintering [12,54–61]. However, even
for Ce–Zr–O fluorites application of such modern method as solvothermal one-pot
synthesis in supercritical alcohols [22–24] allowed to provide incorporation of Ni
cations into the mixed oxide lattice with the same Ni nanoparticles exsolution in
reducing conditions.

3. Suppression of traditional supports (alumina, etc.) acidity by doping with basic
cations such as Mg allows to minimize effect of side reactions (especially for such
biofuels as ethanol) leading to coking [12,70,75,78–81].

4. Since for perovskite and fluorite oxides their specific surface area is usually not high,
to enhance performance and thermal stability of catalysts on their bases they can be
supported on MgAl2O4 [28,78,81] or Mg-doped alumina [82].

For any practical application catalysts for transformation of biofuels into syngas are
to be supported as thin layers on heat-conducting monolithic substrates, which allows to
minimize or even avoid heat and mass transfer limitations typical for granulated catalysts
beds [77–86].

This review is devoted to analysis of these trends in design of catalysts for transfor-
mation of biofuels into syngas based on results of our research in frames of international
collaboration in last 10 years compared with those published in literature. The most impor-
tant new aspect of this review is detailed description of oxygen mobility in catalysts of fuels
transformation into syngas comprised of mixed oxides with fluorite, perovskite and spinel
structures promoted with Ni and Pt-group metals. It is based on application of unique
techniques of oxygen isotope heteroexchange of these catalysts with 18O2 or C18O2 in the
gas phase in flow installations including experiments in the temperature-programmed
mode as well as in the steady-state of catalytic reactions (Steady-State Isotope Transients
Kinetic Analysis, SSITKA) [18,35,68,69,71,72,87]. Even though it is well known that a high
oxygen mobility and reactivity in these catalysts allows to prevent coking in the reactions of
biofuels transformation into syngas by a fast transfer of oxygen species to the metal-support
interface, where they interact with activated fuels fragments transforming them into syngas,
only in our works such strict characteristics of oxygen mobility as oxygen self-diffusion
coefficients were systematically estimated using sophisticated software for isotope ex-
change kinetics data analysis. Atomic-scale features controlling oxygen mobility in these
catalysts were elucidated using modern structural and spectroscopic methods, while their
surface oxygen bonding strength was estimated by pulse microcalorimetry, which provided
foundations for optimization of their compositions and synthesis procedures [78,82,87].

2. Synthesis of Active Components

The method of synthesis should provide a high dispersion of complex oxides along
with spatial uniformity of elements distribution in their particles. A lot of methods includ-
ing co-precipitation, solvothermal method, sol-gel method, Pechini polymeric precursor
method, microemulsions, sonochemical method, microwave-assisted self-combustion and
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ultrasonic spray pyrolysis were used for synthesis of oxides [30,33,35,36,87]. Among ad-
vanced methods, synthesis in flow regimes (including that in supercritical conditions) charac-
terized by continuous generation of nanoparticles appears to be very promising [20–26,87].
Note that single-phase complex oxides (such as ceria-zirconia mixed oxides, etc.) including
cations differing by charge and size and, hence, inherent acidity, could not be prepared by
traditional precipitation with alkaline solutions added to a mixed metal salts solution [87].

2.1. Pechini Method

Ester polymeric precursors (Pechini) method [88] is based upon using citric acid
and ethylene diamine as chelating agents. With ethylene glycol solution single-phase
nanocrystalline doped cerium–zirconium oxides [13,18,89], perovskites [31,32,34,35] and
spinel oxides [69] were obtained possessing a high spatial uniformity of cations distribution.
In the case of aqueous solutions such spatial uniformity was not obtained [62–65]. For
preparation of perovskite-fluorite nanocomposites Pechini method was further modified.
It was made by adding fluorite oxide nanopowder into the polymeric precursor solution
containing cations of perovskite followed by ultrasonic treatment and evaporation. After
polymeric matrix decomposition and calcinations under air this provides nanocomposites
with a high specific surface area and developed interphases between perovskite and fluorite
domains [31].

2.2. Synthesis in Supercritical Alcohols

Complex Ce1−xZrxO2−δ oxides were synthesized in supercritical ethanol and iso-
propanol using Zr(OBu)4, ZrOCl2 and Ce(NO3)3 · 6H2O solutions in isopropanol at
400–480 ◦C and pressure 120–140 atm [22–26]. Single-phase samples with uniform spatial
distribution of cations were obtained only with solutions containing acetylacetone (AA)
with AA/Zr molar ratio 2. This method allowed also to obtain single-phase samples of
Ce1−xZrxO2−δ doped with Ti and Nb cations [21,22] as well as to promote them with Ni
cations in so-called one-pot route of synthesis [21–24]. In reducing conditions Ni cations
are exsolved from the fluorite lattice providing small Ni clusters strongly interacting with
support, which helps to suppress coking and sintering.

2.3. Mesoporous Nanocomposites

Specific surface area of perovskites prepared via Pechini method is in the range
of 10–15 m2/g, which is too small for their good performance as active components of
structured catalysts. To deal with this problem perovskites were loaded on Mg-doped
γ-Al2O3 [90] or mesoporous MgAl2O4 prepared by self-assembly method induced by
evaporation (EISA) with copolymer Pluronic P123 [78].

Even though for (Ru + Ni)-promoted doped MnCr2O4 spinels specific surface areas
were reasonably high (~100 m2/g), to improve their sintering resistance these active
components were loaded on Mg-doped γ-Al2O3 as well [90].

3. Characterization of Nanocomposite Materials
3.1. Structural Features

For doped ceria and Ce–Zr–O oxides, a complex of modern techniques was applied for
studies of their structure. This includes high resolution transmission electron microscopy
with elemental mapping, diffraction studies using X-ray synchrotron radiation and neu-
tron diffraction, wide-angle X-ray scattering (WAXS), infrared and Raman spectroscopies.
This allowed to elucidate effects of samples chemical composition and preparation pro-
cedures on their phase homogeneity, spatial cations distribution in particles, types and
concentrations of defects and features of local coordination environment of Ce and Zr
cations [73,77,89–98]. For Ce0.5Zr0.5O2−y composition having the highest oxygen mobility,
doping with La, Gd, Pr, Sm cations (thus producing Lnx(Ce0.5Zr0.5)1−xO2−y oxides with
x = 0.1 ÷ 0.3) stabilizes the pseudo-cubic structure in humid environment and reduces
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domain sizes. For these samples the effect of domain boundaries on the oxygen mobility is
significant [18,94,95,98].

Prepared in optimized (with addition of AA complexing agent) supercritical condi-
tions Ce0.5Zr0.5O2−y samples have a cubic structure with the crystallite size of ~5.5 nm.
Doping by Ti and Nb cations increases oxygen deficiency due to generation of Ce3+

cations [21,22]. According to TEM data, nickel oxide particles supported by impregnation
(5 wt.%) have sizes from 20 to 40 nm, while for one-pot route they are smaller (~10 nm).

Perovskites of LnFe0.7−xRuxNi0.3O3−δ (Ln = La, Pr, Sm; x = 0–0.1) composition pre-
pared by Pechini method are single-phase rhombohedral samples. Their reduction pro-
duces nanocomposites comprised of Ni–Fe–(Ru) nanoalloys and LnOx situated in the
surface layers of remaining Ln–Fe–O particles [32,34,35].

Freshly prepared Ru/(La0.8Pr0.2Mn0.2Cr0.8O3 + 10 wt.% NiO + 10 wt.% YSZ) nanocom-
posite mainly consists of the perovskite phase, with Ni and Ru cations being mainly dis-
solved in its surface layers. YSZ disorders perovskite structure and hampers sintering due
to interfaces between its nanoparticles and perovskite domains [32].

Perovskite + fluorite (P+F) nanocomposites prepared by optimized procedures [31,35]
are characterized by the developed interphase, a higher specific area as compared to the
mechanical mixture of P+F phases. Cations redistribution between perovskite and fluorites
nanodomains helps to improve oxygen mobility.

Oxides with a spinel structure based on MnCr2O4 prepared by Pechini method [69,90]
have 2–40% of admixture phase with corundum structure due to segregation of (Mn,Cr)2O3
oxide during annealing in air. Doping with Fe and Zn cations as well as supporting Ru + Ni
decrease the content of this admixture due to spinel structure stabilization.

After supporting up to 10 wt.% of spinel, fluorite or perovskite oxides on MgAl2O4
or 10 wt.% Mg-doped γ-Al2O3 followed by supporting Ru + Ni by impregnation when
required, epitaxial layers of these oxides are formed along with incorporation of rare-earth
and transition metal cations into the surface layers of these supports [78,90]. In reducing
conditions Ni–Ru alloy nanoparticles are formed strongly interacting with layers of rare-
earth or transition metal oxides on the surface of these high surface area supports [78,90].

3.2. Surface Properties

The most detailed characteristics of the surface of catalysts were obtained with the help
of X-ray Photoelectron Spectroscopy (XPS) and Fourier-transformed Infra-red Spectroscopy
of adsorbed CO (FTIRS of adsorbed CO). While the first method gives information about the
charge state of ions on the surface (as judged by their binding energies (BE) in XPS spectra)
as well as their surface concentrations, the second one allows to estimate the number of
coordinatively unsaturated sites (metal atoms, cations) as well as their charges reflected in
intensities as well as frequencies of carbonyl absorption bands in FTIRS spectra [13,94–97].
Secondary Ions Mass Spectrometry (SIMS) allows to estimate variation of the content of
cations along the depth of the surface layer sputtered by the beam of argon ions [13].

For doped Ce–Zr oxides the surface was found to be enriched by large Pr, Ce and La
cations as revealed by XPS and SIMS [94,95]. This implies domain boundaries enrichment
by the same cations, which could affect their transport properties.

The surface layer of MnCr2O4 spinel is enriched by Mn as judged by XPS data, which
is explained by segregation of Mn2+ cations on the surface of spinel obtained by Pechini
method, where decomposition of polymeric precursor under contact with air initially
occurs in rather reducing conditions [69]. Apparently even after complete oxidation of all
organic residues and transformation of charge state of Mn surface cations mainly to 3+ state
with an admixture of 4+ state, they remain on the surface as revealed by its enrichment by
Mn. This helps to provide a high mobility and reactivity of the surface oxygen having a
lower bonding strength with Mn cations than with Cr cations, thus ensuring a high coking
resistance of these catalysts in fuels reforming [68,69,71].

For Pt/Ln–Ce–Zr–O catalysts (Ln = La, Pr, Gd) pretreated in O2 platinum was found
to be present in three oxidation states: 0, 2+ and 4+ (XPS binding energies BE equal to
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71, 72 and 75 eV, respectively), the content of Pt cations being the highest in the case of
Pr-doped samples [13,95,97]. FTIRS of adsorbed CO also revealed several states of Pt on
the surface reflected in bands of linear carbonyls Pt0-CO (νCO 2046–2084 cm–1), Pt+-CO
(νCO 2125–2140 cm–1) and Pt2+-CO (νCO 2170–2180 cm–1) [13,94–98]. FTIRS spectra did
not contain bands which could be assigned to Pt4+-CO carbonyls, since these cations are
able to oxidize CO even at liquid nitrogen temperature, being reduced to 2+ and 1+ states.
For Pt/La–Ce–Zr–O sample the highest concentration of coordinatively unsaturated Pt2+

cations was revealed by these methods, which can be explained by their stabilization with
strongly basic La cations. Hence, strong metal-support interaction for these catalysts results
in stabilization of Ptn+ cations on the surface.

For Ni/Ce–Zr–O samples, mainly FTIRS bands of terminal carbonyls Ni-CO at
νCO~2105 cm–1 are observed [89]. This is explained by decoration of Ni nanoparticles
surface by Ce–Zr–O fragments due to strong metal-support interaction, thus hampering
appearance of neighboring Ni atoms able to stabilize bridging carbonyls. In a similar
way, FTIRS bands corresponding to terminal Ni/Ru carbonyls were mainly observed for
Ni + Ru loaded oxides, where alloys are formed after reduction [78,90,91]. Hence, these
effects of dilution and decoration are vital to prevent coking, since carbon nucleation on
Ni particles requires ensembles of the same surface atoms >6 or stepped faces having
coordinatively unsaturated atoms [8].

3.3. Oxygen Species: Bonding Strength and Mobility

The bonding strength of surface oxygen species is determined by such methods as pulsed
microcalorimetry and temperature-programmed desorption (TPD) of O2. Experimental data
are compared with calculations for model structures of surface sites using the semiempirical
interacting bonds method [35,99–104]. The oxygen mobility was estimated using such meth-
ods as oxygen isotope heteroexchange with 18O2 or C18O2 [24,68,69,105–107], steady state
isotopic transient kinetic analysis (SSITKA) [108,109] and modeling of reforming processes
kinetic relaxations [19,104,108].

For catalysts based on fluorite, perovskite and spinel oxides containing transition and
rare-earth cations with variable charges, the bonding strength of surface oxygen species
depends on their stoichiometry. In the initial oxidized state, it is ~150–200 kJ/mol O2, corre-
sponding to M–O forms of oxygen [35,99,100]. After removing more than one monolayer of
oxygen its binding strength increases to ~400 kJ/mol for spinels (MnCrOx), ~500 kJ/mol for
perovskites (PrFeOx, LaPrMnCrOx) and ~650 kJ/mol for LnCeZrO fluorites, respectively,
corresponding to M2O bridging forms of the surface oxygen [99–103]. In the stationary
state of these catalysts in the reactions of fuels reforming, only bridging forms of oxygen
are present on the surface being regenerated by CO2 or H2O pulses forming also CO and
H2 as products [101–103]. For PrCeZrO fluorite and MnCrOx spinel layers supported
on mesoporous MgAl2O4 the coverage by reactive oxygen species decreases while their
bonding strength increases due to interaction with support [104].

Diffusion coefficients of oxygen for these catalysts are high enough (up to 10–12 cm2/s
at 700 ◦C, Table 1, Figure 1) to provide fast oxygen migration to the metal–support interface,
which is required to transform activated fuel fragments into syngas.

Even though for stoichiometric spinel MnCr2O4 the oxygen diffusion in the bulk is not
too fast, it is at least close to that of La-doped ceria-zirconia, which allows to suggest usage
of much less expensive spinel for the catalysts design. Oxygen diffusion coefficients along
domain boundaries in Pt-supported fluorites exceed by 1–3 order of magnitude those for
the bulk diffusion (Table 1). The amount of oxygen involved into this fast diffusion channel
decreases when using oxygen exchange with C18O2 or SSITKA instead of heteroexchange
with 18O2, apparently reflecting also its lower amount (oxygen storage capacity) in real
reaction conditions of biofuels reforming.
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Table 1. Oxygen self-diffusion coefficients in the bulk (Dbulk) and along grain boundaries (Dinterface) at
700 ◦C [19,24,68,69,104–109].

Sample, Type of Exchange Molecule Dbulk, cm2/s Dinterfaces, cm2/s

Pt/Pr0.3Ce0.35Zr0.35O2−δ, 18O2 4 × 10−14 >3.3 × 10−11

Pt/Pr0.3Ce0.35Zr0.35O2−δ, C18O2 - >2 × 10−12

Pt/La0.3Ce0.35Zr0.35O2−δ, 18O2 4 × 10−15 5 × 10−13 ÷ 7 × 10−13

LaNiPt/Pr0.15Sm0.15Ce0.35Zr0.35O2−δ, 18O2 3 × 10−14 >2.5 × 10−11

LaNiPt/Pr0.15Sm0.15Ce0.35Zr0.35O2−δ, C18O2 - >5 × 10−12

Co1.8Mn1.2O4, 18O2 8 × 10−13 -

Ni0.33Co1.33Mn1.33O4, 18O2 1.5 × 10−12 -

Ni0.6Co1.2Mn1.2O4, 18O2 10−11 -

PrNi0.5Co0.5O3–Ce0.9Y0.1O2−δ-nanocomposite, C18O2 10−11 ÷ 10−9 10−8 ÷ 10−7

Ce0.65Pr0.25Y0.1O2−δ, C18O2 10−8 -

Ni/Pr0.2Ce0.4Zr0.4O2−δ, C18O2 4.8 × 10−12 -

Ni0.5Cu0.5O/Nd5.5WO11.25-δ nanocomposite, C18O2
Fast 2.2 × 10−11

Slow ~10−13 -

5 wt.% Ni/Ce0.75Zr0.25O2, C18O2 1.3 × 10−14 -

2 wt.% Ni+2 wt.% Ru/MnCr2O4, C18O2 2.6 × 10−15 -
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For PrNi0.5Co0.5O3–Ce0.9Y0.1O2−δ nanocomposite the method of isotopic heteroex-
change of oxygen with C18O2 also demonstrated coexistence of fast and slow channels
of oxygen diffusion [106]. Fast migrations go through perovskite–fluorite interfaces as
well as via Ce0.65Pr0.25Y0.1O2−δ nanodomains (Table 1), while diffusion through perovskite
domains is slow.

4. Catalytic Properties
4.1. Catalysts Based on Cerium–Zirconium Mixed Oxides

In methane dry reforming (MDR) Ni-supported biphasic ceria-zirconia sample pre-
pared in supercritical ethanol without adding AA complexion was very fast completely
deactivated in MDR due to coking [20]. In contrary, a high and stable performance of
catalysts with Ni supported by impregnation on single-phase Ce0.5Zr0.5O2 oxide prepared
either by modified Pechini route or in supercritical alcohols with addition of AA (vide supra)
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was maintained even at 600 ◦C [20–24,89]. At 700 ◦C, the effective first-order rate constants
for these catalysts were in the range of 1–4 s–1 cm–2, being close to values for Pt or Ru- sup-
ported Pr (Pr+Sm)–doped ceria-zirconia (Figure 2) and exceeding by an order of magnitude
k values for Ni supported on these fluorites (~0.2 s–1 cm–2 at 700 ◦C) [87]. This stresses
importance of the spatial homogeneity of ceria-zirconia mixed oxide for ensuring a high
oxygen mobility and, hence, stability to coking, which is usually not taken into account.
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Mixed Ce0.75Zr0.25O2 oxides doped with Ti, Nb and Ti+Nb (Table 2) were prepared
in supercritical isopropanol with addition of AA. 5 wt.% Ni were supported either by
impregnation (I) or via one-pot synthesis from mixed solutions in supercritical conditions
(O) [24]. For samples with Ni added in one-pot route its surface content estimated as
Ni/Ce+Zr atomic ratio from X-ray photoelectron spectroscopy data was twice as low in
comparison with impregnated samples. This indicates Ni incorporation into the bulk
of fluorite particles for one-pot samples reflected in the increase of oxygen diffusion
coefficients (Table 2) due to generation of additional oxygen vacancies. Such disordering
also leads to stronger sintering of samples during calcinations step, so specific surface
area for one-pot samples was twice as low [24]. However, both reagents’ conversions and
reaction rate related to the surface concentration of nickel atoms estimated by hydrogen
chemisorption (TOF, turn-over frequency) of one-pot samples were quite close to those of
impregnated samples of the same chemical composition (Table 2), which indicates on a
higher dispersion of Ni on the surface of one-pot samples. TOF values strongly depend
on the support composition, and the catalyst with titanium and niobium co-doped ceria-
zirconia support prepared by impregnation is three times more active than that with the
unmodified ceria-zirconia support, apparently due to optimized interaction of Ni with
more disordered doped ceria-zirconia.

Table 2. Kinetic parameters of MDR and oxygen mobility for catalysts prepared in supercritical
conditions [24].

Sample 1 keff (700 ◦C),
s−1

TOF,
s−1

DO (700 ◦C),
10−15 cm2/s

5 wt.% Ni/Ce0.75Zr0.25O2-I 46 2.9 7.1
5 wt.% Ni/Ce0.75Zr0.25O2-O 51 2.4 13

5 wt.% Ni/Ce0.75Ti0.1Zr0.15O2-I 38 3.4 3.2
5 wt.% Ni/Ce0.75Ti0.05Nb0.05Zr0.15O2-I 64 9.0 1.7
5 wt.% Ni/Ce0.75Ti0.05Nb0.05Zr0.15O2-O 38 2.6 7.8

1 I—impregnated sample, O—one-pot sample.
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Oxygen diffusion coefficients (Do) estimated by the isotope exchange method, of the
order of 10−15–10–14 cm2/s (Table 2), are quite close to those for Ni/Ce0.5Zr0.5O2 with
single-phase oxide support prepared via modified Pechini route (Figure 1). They are high
enough for efficient oxygen transport to the metal-support interface and contribute to a
high value of catalytic activity and stability against catalyst coking.

For catalysts based on SmPrCeZrO2 oxide support, in MDR the rate constant was
higher for supported Ru (~7 s–1 m–2 at 850 ◦C) than for Pt (Figure 2) [87]. Ni-supported
catalyst is much less active (k~0.2 s–1 cm–2 at 700 ◦C), which is explained by coking of the
catalyst. For supported LaNiO3 activity is higher by an order of magnitude (k~1.8 s–1 cm–2

at 700 ◦C). This is explained by decoration of Ni nanoparticles by LaOxCO3 species pre-
venting coking. Ru+Ni-supported catalyst demonstrates the highest activity (Figure 2)
since NiRu clusters are not coked [87]. For Ru co-supported with LaNiO3, specific activity
is significantly lower being identical with that for Ru alone supported on this fluorite.
According to CO chemisorption data the metal surface area for this catalyst (~0.05 m2/g)
is much lower than that for Ru + Ni–loaded sample (0.5 m2/g). Hence, the rate constant
related to the metal surface is even higher for Ru+LaNiO3–loaded catalyst due to stronger
metal–support interaction/interface.

For Pt/Lnx(Ce0.5Zr0.5)1−xO2−y catalysts specific rate of hydrogen production in methane
partial oxidation into syngas (POM) in diluted feed (Figure 3) is the highest for La-doped
catalysts due to a higher content of Ptn+ cations transformed into clustered metal species in
reaction media [13,18,72,94,95].
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In the autothermal reforming of acetone (Figure 4) [95], specific catalytic activity of
Pt-supported doped ceria-zirconia catalysts correlates with the oxygen mobility required
to prevent coking, being the highest for Pt/Pr0.3Ce0.35Zr0.35O2 catalyst [18].

While testing catalysts in real concentrated feeds in POM, methane steam reform-
ing and MDR, the temperature gradient along the length of reactor equipped with the
catalyst fraction or granules caused by exothermicity or endothermicity of these reac-
tions emerges, which complicates data analysis. To avoid this problem, catalytic layers
were supported onto the inner walls of single channels cut from corundum honeycomb
monoliths, which allowed to avoid any temperature gradients and estimate rate constants
(Table 3) [109–112]. Among Pt/Lnx(Ce0.5Zr0.5)1−xO2−y catalysts the highest activity was
revealed for Pr-doped catalyst possessing the highest oxygen mobility, which stresses
importance of this characteristic.
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Table 3. Effective first-order rate constants (s−1) of CH4 reforming at 700 ◦C on separate corundum channels with supported
active components [111,112].

Catalyst Composition Partial Oxidation 1 Steam Reforming 2 Dry Reforming 3

LaNiOx/Ce0.2Zr0.8O2 80

LaNiPt/Ce0.2Zr0.8O2 (0.4 wt.% Pt) 63 16 62

0.4 wt.% Pt/Ce0.2Zr0.8O2 40 20 5

0.4 wt.% Pt+2.8 La/Ce0.2Zr0.8O2 94 44 44

1.8 wt.% Pt/Ce0.2Zr0.8O2 40 4 1

1.4 wt.% Pt/Pr0.05(Ce0.5Zr0.5)0.95O 40

1.4 wt.% Pt/Pr0.3Ce0.35Zr0.35O2 80 30 30

1.4 wt.% Pt/Gd0.3 Ce0.35Zr0.35O2 60 8

1.4 wt.% Pt/La0.3 Ce0.35Zr0.35O2 30 4
1 Feed 7% CH4 + 3.5% O2, N2 balance; 2 Feed 7% CH4 + 21% H2O, N2 balance; 3 Feed 7% CH4 + 7% CO2, N2 balance.

To accelerate preparation of ceria-zirconia based catalysts, an automated workstation
was used allowing wet impregnation of La-doped γ-Al2O3 by mixed solutions, so series of
samples with supported CeZrO layers doped by Pr or Sm and promoted by Pt, Ru, Cu,
Cu + Ni were made [113]. The ruthenium-promoted Ru/Ce0.4Zr0.4Sm0.2 O2−y/La-γ-Al2O3
catalyst demonstrated the best activity and coking stability in ethanol steam reforming,
which was explained by a high mobility and reactivity of oxygen in this sample.

4.2. Catalysts Based on Perovskite Oxides
4.2.1. Reactions of Methane Reforming

A lot of ABO3 perovskites with partial substitution of La in A sublattice for alkaline-
earth (Ca, Sr) or rare-earth (Ce, Pr) cations as well as containing in B sublattice, along with
Ni, such metals as Fe, Co, Rh and Ru, were studied in these reactions [30–48,50,51,53–60] as
well as in diesel fuel reforming [49,61]. Main attention was paid to the effect of perovskite
initial composition on segregated in reaction conditions Ni (or Ni alloys) dispersion,
interaction of a metal component with remaining oxide matrix and ability of the latter
to activate oxidants and provide oxygen species diffusion to the metal-support interface.
Clearly, formation of Ni nanoalloys with Co, Fe, Ru, Rh for reduced perovskites doped
in B sublattice prevents coking. For Fe-containing perovskites [28,32,34,39,57] incomplete
reduction of Fe cations in reaction conditions helps to stabilize a part of perovskite Ln-Fe-O
matrix strongly interacting with segregated nanoalloys. In a similar way, substitution
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of La in A sublattice for Ce and Pr cations able to change their charge state increases
oxygen mobility and reactivity in remaining perovskite matrix, thus improving resistance
to coking [32,34,58].

A high and stable performance in MDR without any coking was demonstrated also
for LaMnO3-based perovskite with in-situ exsolved Ni nanoparticles strongly interacting
with perovskite surface layers [114].

Detailed review on methane dry reforming over perovskite derived catalysts is pre-
sented in [39], where basically the same trends in ensuring high and stable performance
related to oxygen mobility and strong interaction of metal nanoparticles with remaining
oxide matrix are analyzed.

4.2.2. Ethanol Reforming on Bulk Perovskites

In reactions of oxygenates reforming a high activity and stability of catalysts based on
perovskites precursors was shown as well [32,63–67,108–110,115,116]. The same factors—
exsolution of Ni-containing nanoalloys from perovskite lattice in reducing conditions,
their stabilization by strong interaction with remaining matrix and oxygen transfer to
metal-support interface determine their resistance to coking and activity. It has been shown
that even Ni/La2O3 catalysts obtained from LaNiO3 have a higher stability to coking than
catalysts of the same composition prepared by traditional impregnation.

In our work [32], LnFe0.7−xMxNi0.3O3 perovskites (Ln = La, Pr, M = Mn, Ru, x = 0–0.3)
as precursors of robust catalysts were prepared by modified Pechini route. Before testing
in EtOH steam reforming in concentrated feed 10% EtOH+40% H2O + N2 at contact time
70 ms they were either reduced by H2 at 850 ◦C or pretreated in the reaction feed. The
highest activity was shown by Pr and Ru-containing samples, with specific rate constants
at 800 ◦C varying from 4 to 8 s−1m−2, and their performance was stable due to presence of
only a trace admixture of ethylene in products, which is usually responsible for coking in
this reaction.

4.2.3. Perovskite-Fluorite Nanocomposites

Since perovskite + fluorite nanocomposites possess a higher oxygen mobility com-
pared to separate phases [106], a lot of research was devoted to their design not only
as cathodes of solid oxide fuel cells (SOFC) and materials for oxygen separation mem-
branes [35,87], but also as active components of structured catalysts for fuels reforming
and SOFC anodes operating in the internal reforming mode [31,32,35,72,73,77,87,117–120].
As fluorites doped ceria or zirconia were employed. Different methods of synthesis were
used for preparation, the most efficient was modified Pechini method when prepared
nanocrystalline fluorite was dispersed in a polymeric precursor of perovskite followed
by its decomposition and calcinations [31], while (100 − x) wt.% LnFeNi0.3 + x wt.%
Ce0.9Gd0.1O2−δ (GDC) (x = 5–50 wt.%) nanocomposites were prepared from polymeric
precursors containing all cations. Their testing in MDR (feed 10% CH4 +10% CO2 in He,
contact time 15 ms) revealed that at 800 ◦C specific first-order rate constant k (s−1m−2)
goes through the maximum at x = 10 wt.% (k = 5.5), its values being nearly the same at
x = 0 (k = 2.5) and 20% (k = 2.0). Such trend is apparently explained by the positive effect of
perovskite structure disordering at a low content of fluorite dopant followed by subsequent
surface blocking by Ce and Gd cations due to their segregation as a result of their bigger
sizes.

Nanocomposite (10 wt.% Ni + 2 wt.% Ru)/(La0.8Pr0.2Mn0.2Cr0.8O3 + 10 wt.%
YSZ) [72,73,77] showed a high and stable performance in MDR. Its specific activity is
close to that of (Ru + Ni)/SmPrCeZrO catalyst (Figure 5a), and it provides a high methane
conversion into syngas at high temperatures even at short contact times (Figure 5b).
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4.3. Catalysts Based on Spinels

Co1.8Mn1.2O4, Ni0.33Co1.33Mn1.33O4 and Ni0.6Co1.2Mn1.2O4 catalysts were prepared
by thermal decomposition of nitrates and studied in ethanol steam reforming reaction. The
highest activity was found for Ni0.6Co1.2Mn1.2O4 catalyst, which is explained by a high
content of mixed Ni-Co clusters segregated at the surface in reaction conditions along with
the highest oxygen mobility (Table 1) preventing coking [68].

Mixed manganese-chromium oxides MnxCr3−xO4 (x = 0.3–2.7) prepared by modified
Pechini route and promoted by 2 wt.% Ni + 2 wt.% Ru were studied in steam reforming of
ethanol [69]. The density of surface metal sites was estimated by CO pulse chemisorption.
The highest conversion of ethanol and yield of syngas were obtained for stoichiomet-
ric MnCr2O4 composition. Turnover frequencies (TOF, s−1) at 500 ◦C vary in the row
(Ru+Ni)/Mn0.3Cr2.7O4 (0.88) < (Ru+Ni)/Mn2CrO4 (1.13) < (Ru+Ni)/Mn2.7Cr0.3O4 (1.36) <
(Ru+Ni)/MnCr2O4 (3.28). In this series of catalysts, the highest oxygen diffusion coefficient
was found for (Ru+Ni)/Mn2.7Cr0.3O4 sample with the excess of manganese. This implies
that namely metal-support interaction provides the highest TOF for (Ru+Ni) MnCr2O4
catalyst, while sufficient oxygen mobility (Table 1) ensures coking stability. Even in concen-
trated feed 10% C2H5OH + 40% H2O in N2 at short contact time 70 ms concentration of
byproduct CH4 was only 2% at 700 ◦C, while only trace admixtures of usual byproducts
such as ethylene and acetaldehyde were observed [69]. This means that such known
intermediates as ethoxy complexes and acetaldehyde are rapidly transformed into syngas
due to a high concentration of reactive oxygen forms and metal sites [104,121].

Testing (Ru + Ni)/MnCr2O4 catalyst in the autothermal reforming of glycerol (feed
10.9% C3H8O3 + 9.5% O2 + 44.5% H2O + 35.1% N2, contact time ~40 ms) also revealed its
high efficiency and stable performance [73]. Thus, already at 750 ◦C complete conversion
of glycerol was achieved with the content of main byproducts CH4 and C2H4 less than 2%
and syngas yield approaching equilibrium.

4.4. Catalysts Based on High Surface Area Supports

Since specific surface area of perovskites, fluorites and spinel is lower than that of tradi-
tional supports such as γ-alumina, silica, zeolites, etc., a lot of research was devoted to design
of catalysts for fuels reforming where active components—metals or their combination with re-
active oxides are loaded on high surface area supports [12,28,39,72,75,77–80,90,122–133]. Since
acidity of supports is well known to be responsible for coking, the best results for activity and
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stability of Ni-loaded catalysts in fuels reforming, as expected, were obtained in the case of
Mg-doped alumina [72,90,129,131,133] or MgAl2O4 [12,28,70,75,78–80,123,124,126,128,129].

In our studies [72,73,77,90,104,129], both Mg–γ-Al2O3 supports prepared by support-
ing Mg on γ-Al2O3 as well as mesoporous Mg–γ-Al2O3 and MgAl2O4 supports prepared
by EISA method with Pluronic P123 were used. Ni was supported either by impregnation
or during one-pot synthesis. Nanocomposite active components comprised of mixed oxides
with perovskite, fluorite and spinel structures described above were supported by impreg-
nation and then promoted by Ni+Ru. Catalysts were tested in dry reforming of methane
and steam/autothermal reforming of ethanol as fractions as well as layers supported on
small plates of heat-conducting substrates. Even for catalysts containing only Ni prepared
by one-pot synthesis a high and stable performance in ethanol steam reforming was demon-
strated due to a high dispersion of metal and acidity suppression [129]. The most promising
active components comprised of mesoporous MgAl2O4 with supported PrNi0.9Ru0.1O3,
MnCr2O4 or Ce0.35Zr0.35Pr0.3O3 promoted with Ni+Ru demonstrated a high efficiency and
resistance to coking in dry reforming of natural gas and autothermal reforming of such
fuels as ethanol and ethyl acetate [78]. In a similar way, Ni/CeZrO2/MgAl2O4 catalyst
revealed a high activity and coking stability in tri-reforming of methane due to a small
size of Ni nanoparticles and moderate basicity of support [28]. In steam reforming of
methane [80] a high activity of Rh-Ni/MgAl2O4 washcoated FeCrAlloy honeycomb mono-
lith was observed and explained by a high active metal dispersion as well as absence of
heat and mass transfer limitations.

5. Mechanisms of Main Reactions
5.1. Partial Oxidation and Dry Reforming of Methane

Mechanism of these reactions was studied by using such methods as SSITKA, kinetic tran-
sients and pulse techniques (pulse microcalorimetry, pulse studies in flow conditions including
those carried out in vacuum systems called TAP) [19,72,82,87,101,102,108,109,111,112,134–137].
For majority of efficient catalysts based on mixed oxides with a high mobility and storage
capacity of reactive oxygen species with supported Pt group metals and/or Ni mecha-
nism can be described by so called bifunctional type, where molecules of oxidants are
activated on support vacancies producing oxygen species (and CO in the case of CO2),
while methane is activated on metal sites by C-H bond rupture (rate-limiting stage). These
steps are conjugated by rapid transfer of surface oxygen species to the metal sites where
they interact with CHx fragment transforming them into CO and H2. A typical feature
of such redox scheme in the case of MDR is the same degree of methane conversion and
syngas selectivity in pulses containing only CH4 or CH4 + CO2, as well as identical CO2
conversion into CO in mixed and CO2—containing pulses. Simplified scheme of methane
dry reforming and sequence of elementary steps successfully applied for modeling of
transient over Ni-Ru-Sm0.15Pr0.15Ce0.35Zr0.35O2 catalyst [72] are shown below:
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CH4 + 2s→ CH3s + Hs
CH3s + s→ CH2s + Hs
CH2s + s→ CHs + Hs
CHs + s→ Cs + Hs
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For catalysts comprised of Pt/doped CeZrO oxides direct route of CH4 partial ox-
idation into syngas, which generates CO and H2 even in the presence of oxygen, was
reliably demonstrated in our studies. It is explained by stabilization of Pt cations due to
metal-support interaction and fast migration of oxygen species activated on support to Pt.
Moreover, Pt cations are less efficient in oxidation of CO and H2, while being more efficient
in C-H bond activation in CH4.

Basic scheme of methane partial oxidation [109] is presented here:

(1) O2 + 2Pt⇔ 2PtO
(2) H2O + z⇔ H2 + zO
(3) zO + Pt⇔ PtO + z spillover
(4) Obulk + z⇔zO + VO (bulk) diffusion
(5) CH4 + PtO→ CO + 2H2 + Pt
(6) CH4 + 4PtO→ CO2 + 2H2O + 4Pt
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(7) CO + PtO→ CO2 + Pt
(8) H2 + PtO→ H2O + Pt
(9) Pt + CO + H2O⇔ CO2 + H2 + Pt

Clearly this mechanism is impossible in the case of such supported metals as Ru, Pd,
Ni, Co, etc., which can only combust methane, CO and H2 in the oxidized state. For these
catalysts indirect scheme of methane partial oxidation is realized, in which all oxygen is
consumed for methane combustion in the inlet part of the catalytic layer, while syngas
is generated via steam and dry reforming of methane in the main part of catalytic layer
where O2 is absent in the gas phase and supported metals are in the reduced state [82].

These unique features of Pt cations were also reflected in specificity of MDR relaxation
after contact of oxidized Pt/PrCeZrO catalyst with reaction feed, where both CH4 and CO2
conversions decline with time-on-stream apparently caused by the catalyst progressing
reduction [19,136,137]. Mathematical modeling using scheme of methane dry reforming
mechanism given below allowed to describe such transients taking into account a high
efficiency of Pt cations in CH4 activation, while CO2 transformation occurs via carbonates
adsorbed on Ptn+–Pr4+–O oxidized sites:

(1) CO2 + [PtO]↔ [PtCO3 ]
(2) CH4 + [PtCO3]→ 2 CO + 2 H2 + [PtO]
(3) CH4 + [PtO]→ CO + 2 H2 + [Pt]
(4) [Pt] + [Os]↔ [PtO ] + [Vs]
(5) CO2 + [Vs]→ CO + [Os]
(6) H2 + [PtO]→ H2O + [Pt]

Here [PtO] and [Pt] denote the oxidized and vacant Pt-centers, [PtCO3] is the car-
bonate complex, [Os] and [Vs] are the oxidized and vacant sites inside the lattice layer of
Pt/PrSmCeZrO complex oxide composite,

Note that for catalysts with all other supported transition and precious metals in oxidized
state catalytic activity in MDR is negligible and begins to increase to the steady-state value in
the process of catalysts reduction by reaction mixture at sufficiently high temperatures.

5.2. Reactions of Ethanol Transformation into Syngas

For steady-state of catalysts based on oxides with high oxygen mobility and reac-
tivity in ethanol reforming reactions pulse studies revealed that ethanol conversion and
products selectivities in pulses containing reaction mixture or only ethanol are practically
the same [103,104,121]. This proves realization of step-wise redox mechanism of these
reactions. FTIRS studies combined with SSITKA identified main intermediates of ethanol
conversion into syngas, such as ethoxy species and acetaldehyde and estimated rate con-
stants of their transformation, while acetates were shown to be spectators. The rate-limiting
step is the cleavage of C–C bond in ethoxy species fixed on rare-earth or transition metal
cations due to incorporation of terminal oxygen species located on neighboring Me sites
as supported by DFT calculations for the (001) face of MnCr2O4 spinel doped by Ru [104].
Kinetic scheme of the reaction of ethanol partial oxidation used in analysis of SSITKA data
is as follows:

(1) O2 + 2[Z]→ 2 [ZO]
(2) C2H5OH + [ZO]→ C2H4O + H2O + [Z]
(3) C2H4O + (2+n)[ZO]→ CO + CO2 + nH2O + (2-n)H2 + (2+n)[Z], n = 0–2
(4) CO + [ZO]↔ CO2 + [Z]
(5) H2 + [ZO]↔ H2O + [Z]

where [ZO] and [Z] correspond to oxidized and reduced site of catalysts surface,
respectively, without any differentiation of the nature of active sites related to different
transition metal cations (Mn, Cr) and metal atoms (Ni, Ru) at this level of analysis similar
to that for catalysts based on bulk MnCr2O4 [104].
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6. Development of Structured Catalysts

For design of such catalysts substrates made of metals, alloys and cermets were
used [72,73,77,82,84,86,87,90,91,98,117]. Detonation spraying [138] was applied to cover
thin foils, microchannel plates or gauzes by protective nonporous layer of alumina or
zirconia. Known procedures of stacking and winding were applied to produce monolithic
substrates from these constituents. Foam substrates comprised of NiAl alloys, ceramics,
etc. were prepared via polyurethane foam duplication followed by required mechanical
and thermal treatment [73,86]. These substrates were covered by catalytic layers using
suspensions of active components in isopropanol. Structured catalysts were tested in
pilot reactors in processes of natural gas, liquid fuels and biofuels reforming/autothermal
reforming under realistic conditions. For best catalysts on substrates with a high thermal
conductivity a high syngas yield was provided even at short contact times due to more
uniform temperature profile along the catalysts’ length [73,82,84]. In the autothermal
reforming mode it helps to transfer heat generated in the inlet part of monolith due to
exothermal combustion of a part of fuel into the following parts where O2 in the gas
phase is absent, so endothermic reactions of steam and dry reforming occur. For strongly
endothermic reaction of MDR this positive effect of a high thermal conductivity of substrate
is demonstrated by the identical temperature dependence of methane conversion in the
layer of catalyst fraction for diluted feed and for the stack of microchannel plates with the
same active component even in more concentrated feed (Figure 5b). In dry reforming of real
natural gas (NG) containing up to 6% of C2–C4 alkanes also high and stable performance
of structured catalyst was demonstrated for concentrated feed (Figure 6).
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This advantage of structured catalysts on heat-conducting metal/cermet substrates
allowed to carry out efficient transformation of a lot of fuels including gasoline and diesel
into syngas via partial oxidation and steam/autothermal reforming [82–87,117,139–142].
Reforming of biofuels such as acetone, ethyl acetate and glycerol is known to be accompa-
nied by gas-phase reactions yielding ethylene, which is easily transformed into coke on
catalysts. However, structured catalysts with nanocomposite active components demon-
strated high and stable performance in the autothermal reforming of such biofuels as
ethanol, acetone, ethyl acetate (Figure 7) and glycerol (Figure 8) with fuels content up
to 25% and O2 content in the mixture with steam up to 20% [73,82,86,87,117]. Note that
Figures 7 and 8 show a high yield of syngas achieved at very short contact times, which is
provided by a high efficiency of active components supported on mesoporous MgAl2O4 or
Mg-doped –γ-Al2O3. Even anisole (content in the feed up to 10%), sunflower oil (content
up to 0.7%) [82,117] and turpentine oil (commercial bio-oil mainly containing C10H16 and
C10H18O components, such as α-pinen, α-terpineol, etc., content in the feed up to 6% [90])
(Figure 9) were successfully converted into syngas in the autothermal reforming on de-
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veloped structured catalysts. Another important problem in design of efficient syngas
generators, especially for the small-scale application, is related to the heat management,
since endothermic reactions of fuels steam and dry reforming require extensive preheat of
inlet streams. This can be dealt with by using the exit stream for preheating the inlet feed
in specially designed heat exchangers conjugated with catalytic reactors. Another aspect
of energy efficiency problem solution is bound with possibility to conjugate exothermal
partial oxidation of methane into syngas with endothermal processes of biofuels steam/dry
reforming. These problems were solved in design of a radial-type reactor equipped with
the heat exchanger described in detail in our previous work [82,117]. Here a cylindrical
stack of catalytic microchannel washers was wrapped by gauze sheets with supported
active components as well as with microspherical catalysts loaded between gauzes. The
feed enters the central part of the stack of washers and flows in the radial direction. The
reformed gas is collected into a plenum around the catalyst arrangement and exited from
a single pipe, while inlet feed is heated by passing through the heat exchanger situated
around the reactor as an outer shell. Such design made it possible to efficiently carry
out partial oxidation of a mixture of natural gas and liquid fuel (ethanol, ethyl acetate,
turpentine oil) to syngas at high flow rates (up to 40,000 h−1) with preheating the mixture
up to 50–100 ◦C at the reactor inlet (Figures 10–12).
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7. Conclusions

Pechini method and synthesis in supercritical alcohols allowed to provide uniformity
of the spatial distribution of elements in nanodomains of fluorite, perovskite and spinel
oxides required for controlling their oxygen mobility and reactivity. Promoting these
oxides and their nanocomposites of optimized composition by platinum group metals and
nickel allowed to create effective and coking-resistant catalysts for biogas and biofuels
transformation into syngas. Due to developed metal-support interface and strong metal–
support interactions bifunctional scheme of reaction mechanism is realized with activation
of oxidants (O2, CO2, H2O) on the oxide support sites, while fuel molecules are activated
on metal centers. Fast diffusion of surface oxygen species to the metal–oxide interface
provides conjugation of these steps resulting in efficient syngas generation and coking
suppression. Preparation of mesoporous supports comprised of MgAl2O4 or Mg-doped
alumina with enhanced basicity allowed to design core-shell systems with a high working
area of supported catalytic nanocomposite layers, increase their activity, thermal and
coking stability and decrease content of rare-earth elements. Structured heat-conducting
substrates loaded with optimized active components provide efficient heat- and mass-
transfer in reactors for biofuels transformation into syngas. Pilot reactors with internal
heat exchangers permit efficient operation in the autothermal mode on the mixture of
natural gas, air and real biofuels such as ethanol, glycerol and turpentine oil with the inlet
temperature 50–100◦C and GHSV up to 40,000 h−1.
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