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Abstract: The traditional Kalman filter algorithms have disadvantages of poor stability (the program
cannot converge or crash), robustness (sensitive to the initial errors) and accuracy, partially resulted
from the fact that noise covariance matrices in the algorithms need to be set artificially. To overcome
the above problems, some adaptive Kalman filter (AKF) algorithms are studied, but the problems
still remain unsolved. In this study, two improved AKF algorithms, the improved Sage-Husa and
innovation-based adaptive estimation (IAE) algorithms, are proposed. Under the different operating
conditions, the estimation accuracy, filter stability, and robustness of the two proposed algorithms are
analyzed. Results show that the state of charge (SOC) Max error based on the improved Sage-Husa
and the improved IAE is less than 3% and 1.5%, respectively, while the Max errors of the original
algorithms is larger than 16% and 4% The two proposed algorithms have higher filter stability than
the traditional algorithms. In addition, analyses of the robustness of the two proposed algorithms are
carried out by changing the initial parameters, proving that neither are sensitive to the initial errors.

Keywords: lithium-ion battery; SOC estimation; adaptive Kalman filter; stability; robustness

1. Introduction

Considering the current severe environmental challenges and gradual exhaustion
of non-renewable fossil fuels, electric vehicles (EVs) have been recognized by the global
automotive industry as a potential alternative to the widely used internal combustion
engine vehicles [1]. To improve the economic cost and cruising range of EVs, many studies
focus on advancing the battery technology suitable for EVs [2]. Lithium-ion batteries have
entered the market due to their high operating voltage, environmental friendliness, high
specific energy, and long cycle life [3,4].

To guarantee the safety and reliability of EVs, battery management system (BMS) is
equipped in the EVs. One of the key functions of the BMS is to estimate the state-of-charge
(SOC) of batteries, which is defined as the ratio of the battery’s current capacity to the
nominal capacity [5]. Based on the SOC estimation, the BMS adopts an appropriate control
strategy to make the EVs work safely and efficiently [6].

At present, the widely used SOC estimation methods include measuring internal
resistances, the ampere-time integration method, open circuit voltage method, support
vector machine, neural networks, and extended Kalman filter (EKF) [7]. Among them,
the EKF is often used in engineering application due to its ability to handle nonlinear
problems. However, applying the EKF algorithm to the SOC estimation may result in poor
accuracy. Furthermore, the algorithm may diverge when noise statistics are unknown and
time-varying [8,9]. In addition, the EKF algorithm uses the first-order Taylor expansion
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to linearize processing equations. This approximate method may lead to an inaccurate
SOC estimation resulting from ignoring high-order terms and calculating the complex
Jacobian matrix [10,11]. To overcome these limitations, a variety of improved methods have
been proposed, including UKF, CDKF, DEKF, and SRUKF. Compared with the improved
algorithm, the EKF is generally seemed as the traditional Kalman filter algorithms, which is
firstly proposed by Plett [12]. While these methods have merits of improving the accuracy,
the employed filter is based on the premise that the priori statistical properties of noise
are known and given [13–20]. However, it is not possible to obtain the accurate statistical
characteristics of noise in real applications [21]. There are two main drawbacks if the
given noise covariance matrix is applied. On the one hand, the estimation program cannot
converge or it can crash, and the expected accuracy is hard to achieve, when the given noise
error is set to be too small. On the other hand, the estimation program stops running soon,
and the estimation precision cannot meet the actual requirement since the given precision
is approached easily, when the noise error is set to be high.

To solve these problems, some adaptive algorithms combined with the Kalman filter
have been studied, including the maximum likelihood and Sage-Husa algorithms. Xiong,
R et al. [22,23] used the adaptive EKF derived from the maximum likelihood criterion to
jointly estimate the SOC and state-of-power. The results of these studies demonstrated that
the estimation accuracy can be kept high under the condition of a huge initial estimation
error. Partovibakhsh, M et al. [24] used the adaptive unscented Kalman filter (UKF)
algorithm based on the maximum likelihood criterion to estimate the battery SOC in an
autonomous intelligent robot. Compared to the UKF, the average simulation accuracy was
improved by 8%. Wang et al. [25] studied the effectiveness of the adaptive Sage-Husa
Kalman filter method in improving the accuracy of the EKF under FUDS conditions. Liu
et al. [26] proposed a new Sage-Husa adaptive square root UKF method. This method is
based on the DP model and verifies the accuracy of the SOC estimation under constant
current and UDDS conditions. It achieves a higher precision compared to the EKF and UKF,
while improving the robustness of the underlying filter. The measurement and system
noise of the Sage-Husa algorithm and the maximum likelihood algorithm often causes the
local divergence or even non-convergence of the filter, since their respective non-negativity
and positive definiteness cannot be guaranteed [18,19,25]. Based on the above discussion,
Fan et al. [27] proposed a formula for updating the process noise covariance matrix Q and
measurement noise covariance matrix R when the adaptive Sage-Husa Kalman filter is
applied to SINS/GPS integrated navigation systems. The formula for R and Q is simplified
to ensure their respective positive definiteness and non-negativity [27]. Mohamed and
Schwarz [28] provided an expression for deriving R using a residual sequence instead of
an innovation sequence. It was proved that the expression has some numerical advantages
when applied to integrated navigation systems. This expression does not contain a minus
sign, thus allowing to avoid the filter divergence and guaranteeing the positive definiteness
of R. Hence, the two improved adaptive algorithms allow to improve the stability of the
underlying filter and satisfy the estimation precision. When applying these two improved
adaptive algorithms to the SOC estimation, we adopt different processing methods for Q
and R, which will be discussed in Sections 3.1 and 3.2. Furthermore, appropriately setting
the initial parameters remains an open problem for both the existing improved Kalman
filter algorithms and adaptive Kalman filter algorithms.

In this study, the DP model is chosen as the basis of the adaptive Kalman filter algo-
rithm to provide the reliability of the estimation. The two traditional adaptive algorithms
are introduced and employed to estimate the battery SOC. After discussing the problem
of the filter divergence caused by traditional adaptive algorithms in real applications, we
propose some improved algorithms to resolve it and verify their stability and robustness
under static and dynamic current conditions. This study provides a basis for setting the
initial values of P0, Q, and R, which is an important step toward reducing the impact of
the initial parameters on the convergence time and estimation error.
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2. Experiments

In our experiment, we studied an 18,650 cylindrical graphite||NCM battery from
Sony, for which the nominal capacity and nominal voltage are 2500 mAh and 3.6 V, respec-
tively. As shown in Figure 1, the battery test platform is comprised of a battery charging and
discharging device (BTS-5V300A), an alternating temperature and humidity test chamber
(GDJS-150), a PC host computer control system, and 2500-mAh/3.6-V lithium-ion batteries.
All experiments were conducted at a room temperature of 25 ◦C, and the data logging
frequency was 1 Hz.

Figure 1. Battery test platform.

3. Description of the Adaptive Kalman Filter
3.1. Adaptive Sage-Husa Kalman Filter

The Kalman filter is a method for optimal estimation of state variables based on closed-
loop control. It mainly involves the state variable update (time update) and measurement
update. The general expressions of the state and measurement equations can be written as:

xk = f (xk−1, uk−1) +ωk−1 (1)

zk = h(xk, uk) + υk (2)

where f (xk−1, uk−1) represents the state function of the system and h(xk, uk) represents the
observation function of the system.

Based on the Kalman filter, the nonlinear state and measurement equations are lin-
earized using appropriate mathematical methods to obtain the EKF [29,30]. First, Taylor’s
first-order expansion is performed on Equations (1) and (2), resulting in linear equations
such as Equations (3) and (4):

xk ≈ f(x̂k−1, uk−1)+
∂ f

∂x̂k−1
(xk−1 − x̂k−1) +ωk−1 (3)

zk ≈ h(x̂k/k−1, uk) +
∂h

∂x̂k/k−1
(xk − x̂k/k−1) + υk (4)

where ∂ f
∂x̂k−1

= Φk,k−1, f (x̂k−1, uk−1) −
∂ f

∂x̂k−1
x̂k−1 = Uk−1, ∂h

∂x̂k/k−1
= Hkh(x̂k/k−1, uk) −

∂h
∂x̂k/k−1

x̂k/k−1 = yk. Then, the simplified linear equations are approximated as:

xk ≈ Φk,k−1xk,k−1 + Uk−1 +ωk−1 (5)

zk ≈ Hkxk + yk + υk (6)

Sage and Husa [31] established linear discrete systems based on Equations (5) and (6),
and proposed an observation-based (z1, z2, . . . , zk) noise statistic maximal posterior subop-
timal unbiased estimator. Providing the recursive formulas of Q and R derived by Sage and
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Husa, they use the average distribution for the historical noise. In terms of the time-varying
noise, the role of recent data should be emphasized, while the impact of old data should
be gradually eliminated. On this basis, Deng [32] proposed a method for weighting the
fading memory index, enabling the algorithm to estimate time-varying noise. The specific
equations are defined as follows:

dk =
1− b

1− bk+1 (7)

rk = (1− dk−1)rk−1 + dk−1(zk − Hk x̂k/k−1) (8)

Rk = (1− dk−1)Rk−1 + dk−1

(
ekek

T − HkPk/k−1Hk
T
)

(9)

qk = (1− dk−1)qk−1 + dk−1(x̂k −Φk/k−1 x̂k) (10)

Qk = (1− dk−1)Qk−1 + dk−1

(
Kkekek

TKk
T + Pk −Φk/k−1Pk−1ΦT

k/k−1

)
(11)

From Equations (7)–(11), rk and qk denote the mean of the measurement noise vk
and process noise ωk, respectively, dk denotes the adaptive factors, and b denotes the
forgetting factor, which is generally set to 0.95–0.99. The expression of the innovation ek is
ek = zk − ẑk/k−1, and ẑk/k−1 is the predicted value of the measured variable.

Unlike the Kalman filter, the Sage-Husa adaptive Kalman filter is time-varying with
respect to the noise mean and noise covariance. Wei [33] pointed out that biased rk and qk
may interfere with the coordination relationship between rk and qk, eventually leading to
an increase in the estimation error, and this increases the bias of rk and qk further. Hence, it
is assumed that the noise is Gaussian white noise, and the update calculation for rk and qk
is discarded.

This study simplifies Equations (9) and (11). Our proposed methods are divided into
two types: (1) for Equations (9) and (11), only the first part of the second expression is
retained; (2) in Equation (9), the absolute value of the diagonal element in the second term
is taken. The diagonal element of the second term for Equation (11) is taken as an absolute
value, and the non-diagonal element is zero. The two methods are named as improved
Sage-Husa1 (ISH I) and improved Sage-Husa 2 (ISH II), respectively. Thus, improving the
process and measurement noise can be written as follows:

ISH I:
Rk = (1− dk−1)Rk−1 + dk−1

(
ekek

T
)

(12)

Qk = (1− dk−1)Qk−1 + dk−1

(
Kkekek

TKk
T
)

(13)

ISH II:

Rk = (1− dk−1)Rk−1 + abs
[
dk−1

(
ekek

T − HkPk/k−1Hk
T
)]

(14)

Qk = (1− dk−1)Qk−1 + abs
[
diag

[
dk−1

(
Kkekek

TKk
T + Pk −Φk/k−1Pk−1ΦT

k/k−1

)]]
(15)

3.2. Adaptive Kalman Filter Based on the Maximum Likelihood Criterion

Mehra [34] pointed out that the convergence of the Sage-Husa adaptive Kalman filter
has not been proved. In 1972, he proposed an improved approach, namely, the innovation-
based adaptive estimation (IAE) method based on the innovation covariance matching
and maximum likelihood. The IAE method makes estimations from the perspective of the
maximum probability of the system measurement.

Suppose that the innovation sequence {ek} is a Gaussian white noise sequence and its
theoretical covariance is:

Cek = E
[
ekek

T
]
= HkPk/k−1Hk

T + Rk (16)
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Bian et al. [35] proved that the maximum likelihood optimal estimate of Cek is:

Ĉek =
1
M

M−1

∑
i=K−M+1

eiei
T (17)

where M denotes the length of the moving average window. Thus, the covariance matrix
of the adaptive measurement noise can be obtained as:

Rk = Ĉek − HkPk/k−1Hk
T (18)

The covariance matrix of the adaptive process noise can be expressed as [35]:

Qk = KkĈekKk
T (19)

We can then redefine the innovation as a residual sequence:

sk = zk − ẑk (20)

where ẑk denotes the optimal estimated current state variable x̂k. The optimal estimated ẑk
is updated using the following equation:

ẑk = h(x̂k, uk) (21)

Therefore, the improved IAE algorithm, called IIAE, is derived. The equations for im-
proving the process noise covariance and measurement noise covariance can be written as:

Ĉsk =
1
M

M−1
∑

i=K−M+1
sisi

T

Rk = Ĉsk + HkPk Hk
T

Qk = KkĈskKk
T

(22)

3.3. State-of-Charge Estimation

The DP equivalent circuit model is often embedded in the Kalman filter [36,37] The
DP model has been proved to provide better accuracy and strong dynamic adaptability
compared with the Rint model, the Thevenin model, and the PNGV model [37]; thus, it
was chosen in this study as the basis for comparing different algorithms. The structure of
the DP model is shown in Figure 2.

Figure 2. The structure of the DP model.
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The mathematical relation of the DP model is obtained according to Kirchhoff’s law
of voltage and current [19] as:

UL = Uocv − IR0 −Up1 −Up2
·

Up1 = − 1
Cp1Rp1

Up1 +
1

Cp1
I

·
Up2 = − 1

Cp1Rp2
Up2 +

1
Cp2

I

(23)

Discretization of Equation (1) can be expressed as:
UL(k) = Uocv − IkR0 −Up1(k)−Up2(k)

Up1(k + 1) = Up1(k)e
− ∆t

τ1 + Ik+1Rp1(1− e−
∆t
τ1 )

Up2(k + 1) = Up2(k)e
− ∆t

τ2 + Ik+1Rp2(1− e−
∆t
τ2 )

(24)

The classical SOC estimation is the ampere-time integral according to Equation (23).
This method is simple in operation. However, its accuracy highly depends on the current
sensor and required precise initial SOC. Thus, the AEKF algorithm is selected to estimate the
SOC. Furthermore, the adaptive method realizes the SOC self-correction. Up1, Up2, and SOC
are selected as the state variables, while the terminal voltage UL is the observed variable.

The definition equation for the SOC is as follows:

SOC(t)= SOC(t0)−
η

CN

∫ t

t0

i(t)dt (25)

where η denotes the discharge efficiency and CN denotes the rated capacity of the battery.
Through linearization and discretization, the state and observation equations based

on Equations (24) and (25) can be expressed as:



 Up1,k
Up2,k
SOCk

 =

 e−∆t/τ1,k−1 0 0
0 e−∆t/τ2,k−1 0
0 0 1

 Up1,k−1
Up2,k−1
SOCk−1

+

 Rp1,k−1(1− e−∆t/τ1)

Rp2,k−1(1− e−∆t/τ2)

− η∆t
CN

Ik−1 +

 ωUp1,k−1

ωUp2,k−1

ωSOCk−1



[UL,k] =
[
−1 −1 0

] Up1,k
Up2,k
SOCk

− R0,k−1 Ik + Uocv(SOCk) + υk

(26)

Tables 1 and 2 show the basic equations regarding two kinds of adaptive Kalman
filter algorithms. Kk represents the Kalman gain, which determines the weight used by the
previous step estimate x̂k−1 and measured value zk. If Kk decreases, the weights of zk and
x̂k−1 decrease.
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Table 1. Summary of AEKF algorithm based on the improved Sage-Husa.

Step 1 Initialization : for k = 0, set b, (0), Up1, Up2, P(0), Q(0), and R(0){
x̂0 = E(x0)

P0 = E[(x0 − x̂0)(x0 − x̂0)
T ]

(27)

Step 2 Computation: for k = 1, 2, 3 . . .
Time update: 

x̂k/k−1 = Φk,k−1 x̂k−1 + Uk−1
ẑk/k−1 = Hk x̂k/k−1 + yk

Pk/k−1 = Φk,k−1Pk−1ΦT
k,k−1 + Qk−1

(28)

Kalman gain:

Kk = Pk/k−1HT
k

(
HkPk/k−1HT

k + Rk

)−1
(29)

Measurement update:

{
x̂k = x̂k/k−1 + Kk[zk − ẑk/k−1]

Pk = (I − Kk Hk)Pk/k−1
(30)

Adaptive factor:

dk =
1− b

1− bk+1 (31)

Process noise covariance and measurement noise covariance update:
ISH I: {

Qk = (1− dk−1)Qk−1 + dk−1
(
Kkekek

TKk
T)

Rk = (1− dk−1)Rk−1 + dk−1
(
ekek

T) (32)

ISH II:

{
Qk = (1− dk−1)Qk−1 + abs

[
diag

[
dk−1

(
Kkekek

TKk
T + Pk −Φk/k−1Pk−1ΦT

k/k−1
)]]

Rk = (1− dk−1)Rk−1 + abs
[
dk−1

(
ekek

T − HkPk/k−1Hk
T)] (33)
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Table 2. Summary of AEKF algorithm based on IIAE.

Step 1 Initialization : for k = 0, set M, SOC(0), Up1, Up2, P(0), Q(0), and R(0){
x̂0 = E(x0)

P0 = E[(x0 − x̂0)(x0 − x̂0)
T ]

(34)

Step 2 Computation: For k = 1, 2, 3 . . .
Time update:


x̂k/k−1 = Φk,k−1 x̂k−1 + Uk−1

ẑk/k−1 = Hk x̂k/k−1 + yk
Pk/k−1 = Φk,k−1Pk−1ΦT

k,k−1 + Qk−1

(35)

Kalman gain:

Kk = Pk/k−1HT
k

(
HkPk/k−1HT

k + Rk

)−1
(36)

Measurement update: {
x̂k = x̂k/k−1 + Kk[zk − ẑk/k−1]

Pk = (I − Kk Hk)Pk/k−1
(37)

Judgement:
If (estimated step size < M)

Ĉek =
1
k

k−1

∑
i=0

(zk − ẑk/k−1) (38)

Else

Ĉek =
1
M

M−1

∑
i=K−M+1

eiei
T (39)

Process noise covariance and measurement noise covariance update:{
Qk = KkĈskKk

T

Rk = Ĉsk + HkPk Hk
T (40)

4. Results and Discussion
4.1. State-of-Charge Estimation Using the Improved Sage-Husa Algorithm

The comparison of the estimation between the two proposed ISH algorithms and
the traditional Sage-Husa (SH) algorithm under different operations is shown in Figure 3.
The initial SOC was set to 0.2, and the initial simulation parameters were set to the same
value. Figure 3a,b illustrate the SOC estimations on the basis of the three considered SH
algorithms under the CCD and FUDS test, respectively. The corresponding errors of the
estimation are plotted in Figure 3c,d, where two error reference lines are artificially set at
an absolute value of 0.03.
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Figure 3. The SOC estimation results and errors based on the SH algorithm: (a) the result of SOC estimation under the CCD
test, (b) the result of SOC estimation under the FUDS test, (c) the SOC error under the CCD test, (d) the SOC error under the
FUDS test.

In Figure 3a,c, the red dash line fluctuates significantly in the time range of 400–1500 s,
indicating that the SH algorithm shows local anomaly under the CCD test. However,
the two ISH algorithms quickly track the real SOC, indicating that these two methods
achieve the SOC self-correction. According to the estimation error under the CCD test, the
convergence speed of the ISH II algorithm is the fastest, while the estimation error of the
ISH I algorithm falls completely within the error reference line. Under the FUDS test, the
result achieved by the SH algorithm still has local irregularities and deviates from the real
SOC. In contrast, the two ISH algorithms converge smoothly to the near-real SOC, as can
be noticed from the enlarged diagram. The accuracy of the ISH I is the highest under the
FUDS test. The ISH II algorithm maintains the same superiority of the convergence speed,
whereas its accuracy is retained, as can be noticed from the SOC error curve distributed in
a dotted manner during the end of discharge. Based on Figure 3, it can be concluded that
the two improved adaptive algorithms are able to follow the real SOC in case of the initial
SOC error and have a good dynamic response during the whole process. Therefore, it is
proved that the two improved methods are feasible and reliable.

The convergence time and SOC estimation errors under the CCD and FUDS tests are
listed in Table 3, including the maximum error, root-mean-square error (RMSE, defined as
the absolute difference between the simulated and measured values), and mean error. It
is obvious that the errors under the FUDS condition are lower than those under the CCD
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condition. This result demonstrates that the two improved algorithms have a good dynamic
adaptability in practical applications. The mean errors of the two improved algorithms are
below 3% under different operating conditions; however, the SOC estimation error based
on the ISH I algorithm is distributed within a small range. While the convergence time of
the ISH II algorithm is faster than that of the other algorithms, its impact can be ignored
due to the narrow time range.

Table 3. SOC estimation errors analysis under different SH algorithms.

Algorithm Operating
Conditions Max(%) Mean(%) RMSE(%) Convergence

Time/s

SH CCD 16.72 1.652 3.693 98
ISH I 2.929 1.562 3.311 96
ISH II 5.345 1.856 3.603 63
ISH I FUDS 2.306 0.822 1.857 87
ISH II 3.257 0.952 2.009 59

In summary, the estimation error of less than 3% achieved by the improved algorithms
further reflect the stability of their underlying filter compared to the traditional SH algo-
rithm under the FUDS test. Considering the balance between the SOC estimation accuracy
and the filter stability, it can be concluded that the performance of the ISH I algorithm is
better than that of the ISH II algorithm.

4.2. Estimation Using the Improved Maximum Likelihood Criterion Algorithm

To analyze the differences between the IIAE algorithm and the traditional IAE algo-
rithm, we carried out simulation verification under the CCD test. The initial SOC was set
to 0.2, and the respective initial parameter settings of the two algorithms were set to the
same values. Figure 4 shows the SOC estimations of two IAE algorithms. In Figure 4a,b, M
is set to 100 and 10, respectively. Figure 4c,d show the errors of the two IAE algorithms
under the CCD test. To facilitate the analysis of the results, two reference lines are added to
the figure at an absolute error value of 0.03.

The SOC estimation based on the IIAE algorithm exhibits the favorable self-correction
performance; in particular, it quickly converges to the real SOC. In contrast, the traditional
IAE algorithm demonstrates large fluctuations, and the filter cannot converge (Figure 4b).
Hence, it can be concluded that the IIAE algorithm is better than the IAE algorithm. When
comparing the errors, the two IAE algorithms demonstrate good estimations when M is
set to 100; however, the IAE algorithm has some points deviating from the error reference
line. According to Figure 4d, the estimation error based on the IAE algorithm is greater
than that of the IIAE algorithm, and it gradually increases. In contrast, the error of the IIAE
algorithm always keeps within the reference lines, indicating that the estimation ability of
the algorithm is relatively stable.

The error statistics of the SOC estimation under the CCD test are presented in Table 4.
The maximum error of the IAE algorithm (M = 100) exceeds 4%, whereas the maximum
error of the IIAE algorithm (M = 100) is less than 1.4%. When M = 10, the IAE algorithm
has a complete divergence of the filter, whereas the IIAE still maintains similar stability
and accuracy. When analyzing the convergence time, the convergence speed of the IAE
algorithm was found to be lower than that of the IIAE algorithm.
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Figure 4. The SOC estimation results and errors based on the IAE algorithm under the CCD test: (a) the SOC estimation
results at M = 100, (b) the SOC estimation results at M = 10, (c) the SOC error at M = 100, (d) the SOC error at M = 10.

Table 4. SOC estimation errors analysis under different IAE algorithms.

Algorithm Max(%) Mean(%) RMSE(%) Convergence
Time/s

IAE (M = 100) 4.218 0.841 2.982 36
IIAE (M = 100) 1.377 1.234 2.857 29
IIAE (M = 10) 1.438 1.263 2.828 21

In conclusion, the two types of the improved algorithms exhibit superb precision and
stability. The high precision performance and good stability provide the possibility of
estimating the battery SOC for EVs in real time. In particular, the mean error, maximum
error, and RMSE of the IIAE algorithm are lower than those of the ISH algorithms under
the CCD test. Furthermore, the two types of the improved algorithms have a favorable
response speed under the initial SOC error.

4.3. Effects of the State Variable Error Covariance on the Estimation

To study the effect of the state variable error covariance P0 on the convergence of
the EKF, ISH I, and IIAE algorithms, two different initial SOCs were set under the CCD
condition: (1) the same as the real SOC (the auto-covariance value of zero); and (2) different
from the real SOC (the auto-covariance value of not zero). Before the verification, the
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polarization effect of the battery was ignored and the initial Up1 and Up2 were set to zero.
P0 was used as the auto-covariance matrix of the state variable set as a diagonal matrix.
To simplify the analysis, the auto-covariance values PSOC, PUp1, and PUp2 were regarded
as identical.

Figure 5 demonstrates the impact of P0 on the SOC estimation errors for the EKF, ISH
I, and IIAE algorithms under the CCD test. In particular, Figure 5a–c show the errors at
the initial SOC = 1, while Figure 5d–f show the errors at the initial SOC = 0.2. P represents
the auto-covariance values PSOC, PUp1, and PUp2 in the legend. It can be inferred from the
figures that the EKF and ISH I algorithms are not sensitive to p values and the error curves
at different p values almost coincide. Furthermore, the maximum error of EKF is the largest,
while the average error of EKF is larger than 1%. The maximum and average errors of ISH
I are about 3% and 1.25%, respectively. In contrast, the maximum error of IIAE is below
1%; thus, the estimation accuracy of this algorithm is optimal. In Figure 5d–f, the set SOC
is 0.2 and the real SOC is 1; thus, the auto-covariance PSOC of the SOC is 0.64. It can be
concluded from the three enlargement diagrams that the corresponding simulation curves
converge slowly due to the initial p values being farther away from the real PSOC. When the
simulation error curve touches the reference line, the set P is not sensitive to the estimation
error of the three algorithms. The smaller the set P is, the slower the convergence speed is
and the larger the estimation error is.

Figure 5. Cont.
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Figure 5. The estimation curve of SOC error under different P0: (a) EKF algorithm at initial SOC = 1, (b) ISH I algorithm at
initial SOC = 1, (c) IIAE algorithm at initial SOC = 1, (d) EKF algorithm at initial SOC = 0.2, (e) ISH I algorithm at initial
SOC = 0.2, (f) IIAE algorithm at initial SOC = 0.2.

In summary, (1) if the initial SOC is real, the estimation error of the three algorithms is
not sensitive to P0; (2) if the initial SOC is not real, P0 has little effect on the estimation error
after the convergence of the three algorithms, while it has an impact on the convergence
speed. When the set P0 value deviates from its real value, especially when P0 is far less than
the real value, the convergence time of the three algorithms becomes longer. In this case,
the required convergence time for the IIAE algorithm becomes significantly longer, which
is not acceptable in the real usage of the SOC estimation. Therefore, the recommended
initial P0 setting is the unit matrix, even if there is a large error between the actual and
simulated SOC. In this way, the impact of the initial P0 value on the convergence speed
and estimation error can be reduced.

4.4. Effects of the Noise Covariance on the Estimation

The SOC estimation based on the traditional Kalman filter requires a precise setting
of the initial values of Q and R. If the settings of Q and R are too large or too small,
the accuracy becomes worse, and the filter diverges. Tan [38] put forward a method of
setting Q and R in the Kalman filter by designing a large quantity of stochastic simulation
experiments. Wei et al. [33] proposed a recursive formula of Q and concluded that the
SH algorithm is not sensitive to the initial values of Q and R. The core of the adaptive
algorithm based on the SH and IAE algorithms is to use the variance matching method
for the variance matrix and the measurement noise to suppress the filter divergence and
improve its accuracy. Consequently, it is assumed that the SOC estimation based on
the ISH I and IIAE algorithms is insensitive to the initial values of Q and R. If these
values are set as zero matrices, it is necessary to discuss (1) whether the two algorithms
can proceed normally if they can converge and (2) whether the convergence time and
estimation accuracy can meet the actual requirements.

The SOC estimation and error curves of the ISH I and IIAE algorithms under the CCD
test are shown in Figure 6a,b, respectively. The SOC simulation curves of the two algorithms
quickly converge to the real SOC. This indicates that the two adaptive algorithms can work
well when the initial values of Q and R are set as zero matrices. It can be noticed from
Figure 6b that the maximum error of the IIAE algorithm is less than 1.8%, while its average
error is below 1%. The accuracy of the IIAE algorithm is higher than that of the ISH I
algorithm.
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Figure 6. (a) The SOC estimation results of the improved algorithm under the CCD condition. (b) The SOC estimation error
result of the improved algorithm under the CCD condition.

To further analyze the sensitivity of the ISH I and IIAE algorithms to the initial SOC
value when the initial values of Q and R are set as zero matrices, the initial values of the
SOC were adjusted to be 0.2., 0.4, 0.6, and 0.8. The errors of the two algorithms are shown
in Figure 7a,b. The enlargement diagrams demonstrate that the simulation curves of the
two adaptive algorithms converge faster when the initial value of the SOC is closer to its
real value. In general, the SOC simulation curves for the two improved algorithms under
different SOC initial values can quickly fall to the error reference line.

Figure 7. The comparison of SOC estimation error at different initial SOC values: (a) under the ISH I algorithm, (b) under
the IIAE algorithm.

Table 5 lists the SOC estimation error statistical results based on the two improved
algorithms at different initial values of the SOC. It can be seen from the table that the
mean, RMSE, and convergence time of the IIAE algorithm are smaller than those of the
ISH I algorithm. In particular, all SOC estimation average errors can be controlled to
be within 2%. In this table, the SOC estimation results from the other state-of-the-art
improved models [39–41] are also listfigureed. Compared with other algorithms, the IIAE
algorithm has advantages of lower Max and RMSE, but its mean error is higher. Note
that the comparison just has a reference value, since the test conditions, the initial SOC
errors, and the employed computers are different. In summary, the IIAE algorithm is less
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sensitive to the initial value of the SOC and its convergence speed is fast in case of the large
initial error.

Table 5. SOC estimation errors analysis at different initial values of SOC.

Initial SOC Test Algorithm Max (%) Mean(%) RMSE(%) Convergence
Time/s

SOC = 0.2 CCD ISH I 2.929 1.557 3.312 109
IIAE 1.437 1.264 2.828 22

SOC = 0.4 CCD ISH I 2.919 1.548 3.327 97
IIAE 1.383 1.213 2.245 19

SOC = 0.6 CCD ISH I 2.921 1.544 2.5 92
IIAE 1.363 1.206 1.68 15

SOC = 0.8 CCD ISH I 2.952 1.514 1.721 16
IIAE 1.354 1.154 1.302 6

50% error DST Ref. [39] 2.49 0.63 - 6
No error nonstandard Ref. [40] - 0.12 3.50 -
No error B-DST Ref. [41] 2 1.24 1.35 -

5. Conclusions

In this study, we proposed two improved algorithms, named ISH and IIAE, for
adaptive noise and simultaneously analyzed the stability and robustness on the estimation.
The conclusions are as follows:

The DP model with the highest accuracy and strong dynamic adaptability is selected
as the research basis of the adaptive Kalman filter algorithm.

The SOC estimation of ISH algorithms under the CCD and the FUDS conditions shows
that the ISH I algorithm has better performance in accuracy and filter stability. Under
the CCD condition, the maximum error of IIAE algorithm is less than 1.5%, while the
maximum error of the traditional IAE algorithm exceeds 3%. It is proved that the IIAE
algorithm has good dynamic adaptability and accuracy.

By analyzing the sensitivity of two improved algorithms to the initial parameters, the
IIAE algorithm has shown great advantages at improving the convergence speedy (the
least convergence time is 6 s), filter stability (the initial SOC error can approach 100%), and
accuracy (the least Max, Mean, and RMSE are 1.354%, 1.154%, and 1.302%, respectively).
Compared with other state-of-the-art algorithms, the IIAE algorithm has advantages of
lower Max and RMSE, but its mean error is higher.
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Abbreviations
The following abbreviations are used in this manuscript:

AEKF Adaptive extend Kalman filter
BMS Battery Management System
CCD Constant current discharge
CDKF Central difference Kalman filter
DEKF Dual extended Kalman filter
DP Dual polarization
EV Electric vehicles
EKF Extend Kalman filter method
FUDS Federal Urban Driving Schedule
HPPC Hybrid pulse power characteristic
IIAE Improved innovation-based adaptive estimation
ISH I Improved Sage-Husa 1
ISH II Improved Sage-Husa 2
PNGV Partnership for a new generation of vehicles
RMSE Root mean square error
SOC State of charge
SOP State of power
SRUKF Square-root unscented Kalman filter
UKF Unscented Kalman filter
UDDS Urban Dynamometer Driving Schedule

List of Notations
A list of the notations used in this paper is summarized below:

b Forgetting factor
Cek Innovation sequence {ek} covariance
Ĉek Optimal estimate of Cek
CN The rated capacity of the battery
Cp1 Concentration capacitance
Cp2 Electrochemical capacitance
Ĉsk Optimal estimate of sk covariance
dk Adaptive factors
Kk Kalman gain
M Moving average window length
P0 The initial error covariance
PSOC The auto-covariance of SOC
PUp1 The auto− covariance of Up1
PUp2 The auto− covariance of Up2
qk Mean values of process noiseωk
Q Process covariance matrix
rk Mean values of measurement noise vk
R Measurement covariance matrix
R0 Ohmic internal resistance
Rp1 Concentration resistance
Rp2 Electrochemical resistance
sk The innovation as a residual sequence
Uocv Open circuit voltage
UL The terminal voltage of the battery
Up1 Concentration polarization voltage
Up2 Electrochemical polarization voltage
uk System excitation
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v Measurement noise
xk State vector
x̂k Filtered value of the state variable
x̂k/k−1 Predicted value of the state variable
ẑk Optimal estimated value of the current state variable x̂k
ẑk/k−1 Predicted value of the measured variable
τ1 The time constant of the parallel circuit Rp1, Cp1
τ2 The time constant of the parallel circuit Rp2, Cp2
ω Process noise
η The discharge efficiency
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