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Abstract: This paper investigates the control-oriented modeling for turbofan engines. The nonlinear
equilibrium manifold expansion (EME) model of the multiple input multiple output (MIMO) turbofan
engine is established, which can simulate the variation of high-pressure rotor speed, low-pressure
rotor speed and pressure ratio of compressor with fuel flow and throat area of the nozzle. Firstly,
the definitions and properties of the equilibrium manifold method are presented. Secondly, the
steady-state and dynamic two-step identification method of the MIMO EME model is given, and
the effects of scheduling variables and input noise on model accuracy are discussed. By selecting
specific path, a small amount of dynamic data is used to identify a complete EME model. Thirdly,
modeling and simulation at dynamic off-design conditions show that the EME model has model
accuracy close to the nonlinear component-level (NCL) model, but the model structure is simpler
and the calculation is faster than that. Finally, the linearization results are obtained based on the
properties of the EME model, and the stability of the model is proved through the analysis of the
eigenvalues, which all have negative real parts. The EME model constructed in this paper can meet
the requirements of real-time simulation and control system design.

Keywords: turbofan engine; control-oriented modeling; equilibrium manifold expansion (EME)
model; multiple input multiple output (MIMO)

1. Introduction

In recent years, as an ideal power plant for aircraft, turbofan engine has received
extensive attention [1–5]. The continuous improvement of aircraft performance and the
expansion of flight envelope have put forward higher requirements for the control system of
turbofan engines. Data show that 80% of the work for the aero-engine control system design
is devoted to modeling and understanding the characteristics of engine [6]. Therefore,
control-oriented modeling plays a significant role in the design. However, the turbofan
engine is a complex aerodynamic thermodynamic system with multi-variable, nonlinear,
and time-varying characteristics, so the control-oriented modeling of the turbofan engine
faces great challenges.

The modeling needs to resolve the contradiction between model accuracy and real-
time. Early work on aero-engine modeling is to build nonlinear component-level (NCL)
models [7–9]. The input-output relationships are established based on the characteristics of
each component of the turbofan engine. Then, the NCL model is established according to
the relationship and various constraints. At present, the NCL model has been applied in
real-time simulation and used to complete the real-time digital verification of the control
system [10,11]. However, the NCL model cannot meet the requirements of the closed-
loop control system design for the turbofan engine due to its complexity [12]. Since most
modern control methods are based on linear theory, the state variable model is often used
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in linear system theory. It is a linear model established in the state space, which can be
obtained by derivative method [13] and fitting method [14,15]. Unfortunately, although the
state variable model solves the application of linear control method in turbofan engines,
it only has good fitting effect near the steady-state point used in the model identification.
This shows that the state variable model is not effective for a wide range of operating
conditions. At the same time, it is difficult to guarantee the good performance of turbofan
engines in full envelope or in a wide range of operating conditions. In order to deal with
these problems, the linear parameters-varying (LPV) model has been widely discussed in
academia [16]. The modeling methods of LPV and quasi-LPV are discussed in Refs. [16,17],
and the main difference between them is that quasi-LPV considers the change of state
variables. There are three main modeling methods for the LPV model: the Jacobian
linearization approach [18], the state transformations techniques [19], and the function
substitution method [20]. Huang et al. [21] studied the identification of the LPV model with
two scheduling variables. Rotondo et al. [22] introduced the modeling of the quasi-LPV for
MIMO system. Lu and Huang [23] proposed a new lifecycle real-time model to describe the
dynamic behavior of turbofan engines and studied engine/model mismatch compensation
and performance degradation adaptive problems. The LPV model was converted to a
switched convex polytopic form with hysteresis switching logic, and a switched LPV
model of aero-engine rotor speed was obtained in Ref. [24]. With the development of LPV
technology, many studies have appeared on the control method of turbofan engines in a
wide range of operating conditions. However, the main problem of LPV method is that
equilibrium points of engines change greatly with the scheduling variable in the actual
work process, which brings great challenges to the accuracy and stability of the LPV model.

In order to obtain a control-oriented model that guarantees the accuracy and stability
in a wide range of working conditions, the equilibrium manifold expansion (EME) model
is proposed [25–29]. The ultimate goal of the equilibrium manifold method is to obtain
the linearized family of nonlinear plants expanded along the equilibrium manifold. Thus,
the EME model contains steady-state and dynamic characteristics of the nonlinear system
near the equilibrium manifold, which are beneficial for the modeling of turbofan engines
with operating line. Different from the LPV model, the EME model considers the mapping
between the EM and scheduling variables, thereby ensuring the high accuracy of the
model. Moreover, the equilibrium manifold method has been well applied in the modeling
of areo-engines. The comparison of simulation and engineering test data has a small
error. Yu et al. [25] studied the design of the shock position control system based on the
equilibrium manifold method. Sui and Yu [26] proposed the EME model, analyze the error
of the model, and solve the ill-posed problem of the identification matrix by using the
constraint conditions of the equilibrium manifold. Yu and Zhao [27,28] developed the aero-
engine control based on the EME model, and establish the affine EME model to complete
the feedback linearization control of the engine. Liu et al. [29,30] built a control-oriented
surge margin EME model and discussed the adaptive problem based on the EME model.
In order to further improve the accuracy of the EME model, a switched EME model was
proposed, and the switching control of the aircraft engine was carried out after the stability
was proven [31]. Chen and Zhao [32] applied the switching control to the acceleration
and safety protection of turbofan engines based on the switched EME model. With the
improvement of the performance requirements for turbofan engine, the engine must be
developed in a geometrically adjustable direction to ensure both performance and safety.
Unfortunately, the aforementioned EME models are identified from the SISO systems with
fuel flow as an input variable, which cannot meet the control requirements of advanced
turbofan engines in a wide range of working conditions. In particular, geometrically
adjustable variables, such as throat area of the nozzle, expand the operating range of
turbofan engines. Up to now, few studies about how to extend the EME model from SISO
system to MIMO system have been reported. Therefore, constructing the MIMO EME
mode of turbofan engine is a new perspective, which is the focus of this paper.
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Compared with existing studies, the main contributions of this work are as follows.
Firstly, the basic definition of EM and EME model is introduced in Section 2, and the
mathematical properties of the EME model are given. Subsequently, the modeling of
the EME model for MIMO turbofan engine is given in Section 3. The steady-state and
dynamic data needed for the identification of the MIMO EME model are obtained through
the NCL model simulation, and all the parameters are normalized. After constructing
the EME model, the EME model of the MIMO turbofan engine is obtained by using the
steady-state and dynamic two-step identification method. In the process of dynamic
parameter identification, it is creatively proposed to use less identification data and discuss
the influence of different paths on dynamic parameter identification. In addition, the EME
model shows that it can ensure the recognition accuracy under the interference of input
noise. The EME models of the MIMO turbofan engine with different scheduling variables
are discussed. Besides, the validation and stability analysis of the EME model is stated
in Section 4. This paper verifies the accuracy of the EME model at off-design points. The
validity and reliability of EME model is demonstrated over the whole range of operating
conditions. In addition, the stability analysis of the EME model is carried out based on the
linearization results of the model. Finally, Section 5 presents conclusion.

2. Description of EM and EME Model
2.1. Definitions of the Model

Consider the nonlinear system in the following form:{
ẋ = f (x, u)
y = g(x, u)

, (1)

where x ∈ Rn is the state variable, u ∈ Rm is the input variable, y ∈ Rr is the output
variable, and f (·) and g(·) are corresponding smooth nonlinear functions.

Definition 1 (Ref. [26]). The equilibrium manifold (EM) of the system (1) is a set of equilibrium
points, namely:

{(xe, ue, ye) | f (xe, ue) = 0, ye = g(xe, ue)}, (2)

where the subscript “e” represents “steady-state”.

The EM which contains a series of n + m + r algebraic equations is parameterized by
the scheduling variable alpha. Generally, the dimensional of scheduling variable alpha is
equal to the dimensional of input variable u, and the scheduling variable alpha is selected
from the steady-state value of input or state variables. Therefore, all the equations of the
EM can be expressed as the functions of alpha, namely:

xe = xe(α)
ue = ue(α)
ye = ye(α)

. (3)

Definition 2 (Ref. [27]). The equilibrium manifold expansion (EME) model of system (1) is a
family of first-order Taylor expansion at different equilibrium points (xe(α), ue(α)), and there
appears a mapping α = h(x, u) between the scheduling variable alpha and current operating point
(x, u). The EME model is expressed as:

ẋ = ∂ f
∂x

∣∣∣
x=xe(α),u=ue(α)

(x− xe(α)) +
∂ f
∂u

∣∣∣
x=xe(α),u=ue(α)

(u− ue(α))

y = ∂g
∂x

∣∣∣
x=xe(α),u=ue(α)

(x− xe(α)) +
∂g
∂u

∣∣∣
x=xe(α),u=ue(α)

(u− ue(α)) + ye(α)
, (4)
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where the content in Equation (4) can be simplified as: ∂ f
∂x

∣∣∣
x=xe(α),u=ue(α)

= A(α), ∂ f
∂u

∣∣∣
x=xe(α),u=ue(α)

= B(α)
∂g
∂x

∣∣∣
x=xe(α),u=ue(α)

= C(α), ∂g
∂u

∣∣∣
x=xe(α),u=ue(α)

= D(α)

. (5)

The research shows that the mapping is not arbitrary [26]. It must satisfy the condition
that any equilibrium point maps to itself. That is, α = h(xe(α), ue(α)) must be satisfied in
the mapping. Although the EME model of system (1) is obtained by Taylor expansion, it is
still a nonlinear system when the scheduling variable is eliminated.

2.2. Properties of the Model

There are a lot of studies on equilibrium manifold modeling in SISO aircraft gas
turbine engine. Compared with other models, the EME model has advantages in accuracy
and real-time performance due to its property.

Property 1. The linearization results and the EME model (4) of nonlinear system (1) are the same
at any equilibrium point [27].
Explanation: The EME model can be regarded as an approximate nonlinear result of system (1),
which is valid only if the linearization results of the two are consistent. At the same steady state,
the coefficient matrix A(α), B(α), C(α), and D(α) should be consistent.

Property 2. Equation (6) is a necessary and sufficient condition for EM (2) to become a family of
linearized models [27].

{
A(α) ∂xe(α)

∂α + B(α) ∂ue(α)
∂α = 0

C(α) ∂xe(α)
∂α + D(α) ∂ue(α)

∂α = ∂ye(α)
∂α

. (6)

Explanation: Equation (6) is the constraint of the steady-state and dynamic structure of the EME
model. The unique identification method and structure of the EME model may result in missing
parameters of Equation (5). Therefore, the completeness of linearization results of the EME model
can be guaranteed by the constraint of Equation (6).

3. Modeling of the EME Model for the MIMO Turbofan Engines
3.1. The Source of the Identification Data

In order to identify the EME model of the turbofan engine, it is necessary to carry
out the simulation in a wide range of operating conditions. The NCL model used in
this paper was established by Ref. [33]. A high degree of confidence component level
model of a twinspool turbofan engine has been achieved. The turbofan engine mainly
consists of the following components: inlet, fan, HPC, combustor, High Pressure Turbine
(HPT), Low Pressure Turbine (LPT), bypass, and nozzle. Each component is modeled
by aerothermodynamics calculations and solving a set of balance equations. The engine
design operation data and characteristic maps of rotating components are used to construct
the turbofan engine nonlinear model [34]. This NCL model of turbofan engine has been
used in other studies [35? –38]. The NCL model only provides the raw data needed for
the EME model identification. Through the study of EME model identification methods,
the high-precision mathematical models that can fit different types of turbofan engines will
be obtained.

The EM of an MIMO turbofan engine develops from a simple curve to a complex
surface form. In the simulation, the engine NCL model works at H = 0 km, Ma = 0. In this
paper, input variables of MIMO turbofan engine are fuel flow

(
W f

)
and throat area of the

nozzle (An). At each W f , the An increases step by step during simulation. The specific
change of input variables is shown in Figure 1. Then, the high-pressure rotor speed (nHC),
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low-pressure rotor speed (nLC), and engine pressure ratio (EPR) are considered to be the
output variables of the turbofan engine. Figures 2–4 show the output results of the NCL
model in simulation. The inputs in Figure 1 is normalized, and the actual range of W f is
1.5906–2.4060 kg/s, while the actual range of An is 0.2577–0.3144 m2. This process involves
the acceleration of the engine. Meanwhile, the steady-state data which is required for the
identification of the EME model is extracted from the dynamic process. In addition, all the
data in this paper are normalized results.

0 20 40 60 80 100

time(s)

0

0.2

0.4

0.6

0.8

1

W
f

0

0.2

0.4

0.6

0.8

1

A
n

Figure 1. The input variables W f and An for the simulation of the NCL model.

Figure 2. The simulation results of nHC under ten simulation conditions.

Figure 3. The simulation results of nLC under ten simulation conditions.
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Figure 4. The simulation results of EPR under ten simulation conditions.

Instead of simple data processing, it is significant to analyze the steady-state and
dynamic performances of nonlinear plants and select the appropriate structure for the
identification of the EME model. Firstly, when W f is small, nHC is hardly affected by An
in Figure 2. It indicates that the turbofan engine exhibits strong nonlinearity over a wide
range of operating conditions. As the value of W f reaches around 0.3333, nHC rises with
the increase of An (greater than 0.6667). Subsequently, Figure 3 shows that both W f and An
have effects on nLC in 10 groups of dynamic operation. On the whole, larger W f and An
correspond to higher nLC. As W f increases, there appears a prominent steady-state linear
relationship between An and nLC. Next, Figure 4 indicates that W f effectively regulates the
overall work capacity of the turbofan engine. The performance of the engine improves
with the increase of W f , and EPR increases at the corresponding An. However, the engine
is close to dangerous conditions in high performance, such as surge. Therefore, An plays an
important role in solving engine safety problems in high performance operation. Under the
same W f condition, EPR can be effectively reduced by increasing An, which provides
control direction for avoiding compressor surge.

3.2. Identification of the MIMO EME Model

The turbofan engine is described as follows:{
Ẋ = F(X, U)
Y = G(X, U)

, (7)

where X = [nHC, nLC]
T is the vector of the state variable, Y = [EPR, nHC, nLC]

T is the

vector of the output variable, and U =
[
W f , An

]T
is the vector of the input variable. In this

paper, the typical state variables nHC and nLC of turbofan engines are directly used as
output variables.

The family of steady-state operating points of this engine is expressed as:(nHCe, nLCe, W f e, Ane, EPR
)
|

0 = Ẋ = F
(

nHCe, nLCe, W f e, Ane

)
Ye = G

(
nHCe, nLCe, W f e, Ane

) , (8)

where Ye = [EPR, nHCe, nLCe]
T .

The EM shown in the Equation (3) is parameterized by α = h(X, U). Thus, the EME
model of the turbofan engine shown in Equation (4) can be obtained as follows:

Ẋ = A(α)∆X + B(α)∆U
Y = C(α)∆X + D(α)∆U + Ye
α = h(X, U)

, (9)
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where ∆X = X − Xe(α), ∆U = U − Ue(α), A(α) =

[
a11(α) a12(α)
a21(α) a22(α)

]
,

B(α) =
[

b11(α) b12(α)
b21(α) b22(α)

]
, C(α) =

 c11(α) c12(α)
c21(α) c22(α)
c31(α) c32(α)

, D(α) =

 d11(α) d12(α)
d21(α) d22(α)
d31(α) d32(α)

.

The number of scheduling variables α in the EME model is equal to the number of
input variables. In this section, nHC and An are selected as α to build the EME model of
turbofan engine. So, the structure of α is shown as follows:

α1 = nHC = nHCe(α)
α2 = An = An(α)
α = [α1, α2]

. (10)

According to Equation (10), ∆nHC = nHC − nHCe(α) = 0, and ∆An = An − Ane(α) =
0. Meanwhile, nHC and nLC are both state variables and output variables. Thus, the EME
model of turbofan engine shown in Equation (9) can be replaced by:

ṅHC = a12(α)∆nLC + b11(α)∆W f
ṅLC = a22(α)∆nLC + b21(α)∆W f
EPR = EPRe(α) + c12(α)∆nLC + d11(α)∆W f
nHC = nHCe(α)
nLC = nLCe(α) + ∆nLC
α = [α1, α2] = [nHC, An]

. (11)

Here, the MIMO EME model of the turbofan engine is established according to
Equation (11). The modeling procedure, which is called the steady-state and dynamic
two-step method, is divided into two steps:

1. Based on the steady-state results obtained by the simulation of the turbofan en-
gine NCL model, the steady-state EM results of the engine shown in Equation (8)
are identified.

2. In the NCL model simulation process, the input variable signal is set to the staircase
signal. The EME model coefficients in Equation (11) are identified by simulation
results of the NCL model and the EM model.

Firstly, it is significant to obtain steady-state EM of turbofan engine for modeling the
EME model that shown in Equation (11). Normally, the EM is identified by polynomial.
Considering the accuracy of the identification, the engine EM is identified with the m-order
polynomial as shown below.

ξe =
m

∑
i=0

m−i

∑
j=0

knijα
i
1α

j
2, (12)

where ξe is the EM of the turbofan engine, which is distinguished by the subscript n.
Table 1 shows the subscript n corresponding to different EM ξe.

Table 1. Subscript corresponding to different EM.

ξe n

nHCe h
nLCe l
W f e f
Ane s
EPR p
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When nHC and An are selected as scheduling variables α, the EM of the turbofan
engine are nLCe, EPRe, and W f e, which have the structure of Equation (12). The one-to-one

correspondence between the input variables
(

An, W f

)
and the performance parameters

(nHC, nLC, EPR) of the turbofan engine is shown as the black circular mark in Figures 2–4.
These data are obtained by simulating the turbofan engine NCL model carried out in
Section 3.1. Therefore, nHC and An are taken as independent variables to extract all
steady-state results from simulations, and the corresponding dependent variables nLCe,
EPRe, and W f e are obtained. By using the least square method and selecting the 4-order
polynomial (m = 4), the identification results of EM (α = [nHC, An]) for the turbofan
engine are shown in Table 2. Meanwhile, the comparison steady-state results and error
analysis are shown in Figures 5–7.

Table 2. The coefficients of the EM (α = [nHC, An]).

nLCe Wf e EPRe

Coef 1 Result 1 Coef 2 Result 2 Coef 3 Result 3

kl00 −0.0031 k f 00 −0.0278 kp00 0.1875
kl01 0.0952 k f 01 0.1859 kp01 0.0355
kl02 0.0029 k f 02 −0.4295 kp02 −0.5316
kl03 0.1822 k f 03 0.4005 kp03 0.4544
kl04 −0.0662 k f 04 −0.1310 kp04 −0.1465
kl10 0.1586 k f 10 1.0829 kp10 0.8436
kl11 1.1210 k f 11 0.4523 kp11 0.2797
kl12 −0.2957 k f 12 −0.2919 kp12 −0.0796
kl13 −0.0700 k f 13 −0.1283 kp13 −0.2328
kl20 2.0277 k f 20 1.6503 kp20 1.6111
kl21 −2.0877 k f 21 −2.8265 kp21 −3.1073
kl22 0.2379 k f 22 0.8793 kp22 0.9245
kl30 −1.9790 k f 30 −1.5050 kp30 −1.6747
kl31 1.1385 k f 31 1.4396 kp31 1.7264
kl40 0.5497 k f 40 0.2737 kp40 0.2624
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(b) Absolute error

Figure 5. The identification result and absolute error of the EM (α = [nHC, An]) nLCe.
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Figure 6. The identification result and absolute error of the EM (α = [nHC, An]) EPRe.
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Figure 7. The identification result and absolute error of the EM (α = [nHC, An]) W f e.

In Figure 5a, 6a, and 7a, the identification results of EM (α = [nHC, An]) are presented.
Among them, the black points are the steady-state results of the NCL model, and the red
asterisks are the fitting result. Meanwhile, the absolute errors of the EM with the NCL
model’s steady-state results are given in sub-figure (b). Firstly, Figure 5 indicates that
the absolute error range of nLCe is about −0.015–0.017. In the region composed of nHC
(0–0.4) and An (0–0.5), the fluctuation of the nLCe is caused by the strong nonlinearity of the
engine, and the error changes from −0.0084 (nHC = 0.1034, An = 0) to 0.0168 (nHC = 0.1885,
An = 0.1111) and then to −0.0132 (nHC = 0.3761, An = 0.1111). The same phenomenon
also occurs when nHC and An become larger, but the fluctuation amplitude is smaller.
Secondly, the absolute error range of EPRe is about −0.022–0.028, and the maximum value
is 0.028 (nHC = 1, An = 1) in Figure 6. There appears the same strong nonlinear region,
in which the error of EPRe changes by a wide margin from −0.0219 (nHC = 0.009, An =
0) to 0.0196 (nHC = 0.1885, An = 0.1111) and then to −0.0207 (nHC = 0.3761, An = 0.1111).
Thirdly, Figure 7 shows the absolute error of W f e. Its range is about −0.02–0.024, and the
maximum one is 0.0246 (nHC = 1, An = 1). Besides, the absolute error of W f e changes from
−0.0176 (nHC = 0.009, An=0) to 0.0180 (nHC = 0.1885, An = 0.1111) and then to −0.0188
(nHC = 0.3814, An = 0.2222) in the same strong nonlinear region. Overall, the identification
result of the nLCe is better than the EPRe, and W f e, which is less than 0.017.

The fourth-order polynomial used in this section meets requirement of the accuracy.
Usually, when a low order polynomial is used to fit the EM of the system with strong
nonlinearity, the steady-state accuracy may not be satisfied. It is considered that increasing
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order of polynomial is a method to improve the fitting accuracy of the EM. However,
the EM with a high-order polynomial also brings problems, such as overfitting and complex
expression forms, when the result of the EM is close to the data from the NCL model. It is
not conducive to the application of the EME model. In addition, the future research can
also adopt switching method and neural network to solve the accuracy problem of the EM.

Secondly, the dynamic and static two-step identification method is applied to fit the
EME model. After obtaining the steady-state EM, the coefficient matrix A(α), B(α), C(α),
and D(α) in Equation (11) is identified by the dynamic simulation results of the turbofan
engine NCL model. In the simulation of the NCL model, the input variables W f and An
that contain two paths considering the sufficient excitation conditions for the identification
are shown in Figure 8. As described above, the identification results of the EM require a
large number of steady-state data to ensure the accuracy. However, this is not the case
for the dynamic parameters of the EME model. If a large number of dynamic processes
are adopted or the variation interval of input parameters is excessively reduced in the
identification, the results of EME model may be unstable. Therefore, some simulation paths
are provided in Figure 8a to obtain the data needed for the dynamic coefficients of the EME
model. Path 1 and Path 2 are the diagonal lines of the feasible region of the engine input,
and they contain a certain degree of dynamic characteristics. However, neither Path 1 nor
Path 2 alone can identify stable dynamic parameters of the EME model. This situation
is alleviated after combining Path 1 and Path 2 (Path 1 & 2). At the same time, through
the well-designed dynamic parameter identification Path New, better identification results
are obtained. Table 3 shows the accuracy results of EME model under different dynamic
paths in this paper. Analysis indicators include the sum of squares due to error (SSE), root
mean squared error (RMSE), and coefficient of determination (R2). The closer the SSE and
RMSE are to 0, the better the model selection and fitting, and the more successful the data
prediction. The closer R2 is to 1, the better the model fits the data. The results show that the
path for dynamic parameters fitting will affect the accuracy of the EME model. Path New
has higher accuracy than Path 1 & 2. Facing different engines, a well-designed dynamic
path can improve the accuracy of the EME model. The difficulty is that the dynamic path
selection is random, and the optimal path for different engines is also difficult to obtain.
On the contrary, the combination of Path 1 and Path 2 is the general operating range of
turbofan engines. From the results of Table 3, the EME model identified by Path 1 & 2
has the satisfactory accuracy. Therefore, the study adopts Path 1 & 2 to carry out dynamic
parameter identification of EME model, and carries out follow-up work based on this path.

Figure 8b shows the input variables changing along Path 1 (0–90 s) and Path 2
(90–180 s). Thus, the scheduling variables (α), derivatives (Ẋ), and deviations (∆X =
X − X(α), ∆U = U −U(α)) in the EME model of the turbofan engine can be obtained.
That is, ∆W f , ∆nLC, ṅHC, and ṅLC in Equation (11) can be calculated by the NCL and EM
simulations. The coefficient matrix of the EME model is identified as follows:

a12(α) = ka21α1 + ka22α2 + ka23
a22(α) = ka41α1 + ka42α2 + ka43
b11(α) = kb11α1 + kb12α2 + kb13
b21(α) = kb31α1 + kb32α2 + kb33
c12(α) = kc21α1 + kc22α2 + kc23
d11(α) = kd11α1 + kd12α2 + kd13
α =

[
α1 α2

]
= [nHC, An]

. (13)
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Table 3. Accuracy results of EME model under different dynamic paths.

Path α Output SSE RMSE R2

1&2 (nHC, An)

nHC 0.9508 0.0103 0.9979
nLC 0.1539 0.0041 0.9996
πC 0.4772 0.0073 0.9990

New (nHC, An)

nHC 0.2701 0.0035 0.9994
nLC 0.1623 0.0042 0.9996
πC 0.1615 0.0042 0.9997

1&2 with noise (nHC, An)

nHC 0.9204 0.0101 0.9980
nLC 0.1912 0.0046 0.9995
πC 0.5516 0.0078 0.9988

1&2
(

W f , An

) nHC 0.3830 0.0065 0.9992
nLC 0.2505 0.0053 0.9994
πC 0.1983 0.0047 0.9996

The identification results of Equation (13) are shown in Table 4.

Table 4. The coefficients of the EME (α = [nHC, An]) model.

ṅHC ṅLC EPR

Coef 1 Result 1 Coef 2 Result 2 Coef 3 Result 3

ka21 −0.2362 ka41 −1.4657 kc21 −0.0875
ka22 1.5140 ka42 0.2270 kc22 −0.0401
ka23 −2.1259 ka43 −2.0621 kc23 −0.9159
kb11 0.0148 kb31 −0.1033 kd11 0.0749
kb12 0.0023 kb32 −0.0175 kd12 −0.0227
kb13 1.7453 kb33 1.3592 kd13 0.3058
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(a) The path of the W f and An in simulation.
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(b) The value of the W f and An in Path 1 & 2.

Figure 8. The input variables W f and An for the identification of the EME model.

So far, all the parameters of the EME model have been identified. Naturally, it is
necessary to validate the accuracy of the EME model. During the verification, the input
variables W f and An are still shown in Figure 8. In addition, the comparison and error
analysis of the turbofan engine’s NCL model and EME model are shown in Figure 9.
The results given by Figure 9 show that the nLC and EPR of the EME (α = [nHC, An])
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have high steady-state accuracy, while the nHC has low steady-state accuracy. Obviously,
the steady-state accuracy of nHC and nLC is determined by the identification results of nHCe
and nLCe, respectively. Meanwhile, the simulations also indicate that the nLC and EPR
meet high dynamic accuracy, in which the dynamic time of the EME model is similar to
that of the NCL model. In particular, there appears a dynamic error with absolute value
around 0.02 for the simulations of nLC at 10 s and 70 s in Figure 9b. In Figure 9c, the results
of EPR show a dynamic error with absolute value around 0.05. The large dynamic error
of the EPR may be caused by the negative regulation characteristics. However, the nHC
shown in Figure 9a is not satisfactory. In the simulation, large overshoot occurs in the EME
model at 20 s, 60 s, and 70 s, and the overshoot at 70 s is close to 0.02.
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Figure 9. The identification result and absolute error of the EME (α = [nHC, An]) model.
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3.3. Effects of Scheduling Variables on Model Accuracy

In Section 3.2, there are some errors in the steady-state and dynamic accuracy of EME
(α = [nHC, An]) model, especially in nHC. Thankfully, the previous studies have shown
that the optimal identification form of the EME model always exists in the nonlinear plants
with analytic representation. Although MIMO turbofan engine with strong nonlinearity
cannot be expressed analytically, the accuracy of the EME model can also be improved by
selecting different combinations of the scheduling variables.

W f and An are selected as α to complete the EME model of the turbofan engine in this
section. Thus, the form of α can be rewritten as follows:

α1 = W f = W f (α)
α2 = An = An(α)
α = [α1, α2]

. (14)

According to Equation (10), ∆W f = W f −W f e(α) = 0, and ∆An = An − Ane(α) = 0.
Thus, the EME model of the turbofan engine shown in Equation (9) can be replaced by:

ṅHC = a11(α)∆nHC + a12(α)∆nLC
ṅLC = a21(α)∆nHC + a22(α)∆nLC
EPR = EPRe(α) + c11(α)∆nHC + c12(α)∆nLC
nHC = nHCe(α) + ∆nHC
nLC = nLCe(α) + ∆nLC

α = [α1, α2] =
[
W f , An

]
. (15)

Firstly, we identify the EM of the turbofan engine. When W f and An are selected as
scheduling variables α, the EMs of the turbofan engine are nHCe, nLCe, and EPRe which
meet the form of Equation (12). Based on the method given in Section 3.2, the identification
results of steady-state EM are shown in Table 5. Meanwhile, the steady-state results and the
absolute error analysis of EM with NCL model are shown in Figures 10–12. The identifica-
tion results of EM (α = [nHC, An]) are presented in Figure 10a, 11a, and 12a. Among them,
the black points are the steady-state results of the NCL model in Section 3.1, and the red
asterisks are fitting results. The absolute error of the EM with the NCL model’s steady-state
results is given in Figure 10b, 11b, and 12b.

Table 5. The coefficients of the EM
(

α = [W f , An]
)

.

nHCe nLCe EPRe

Coef 1 Result 1 Coef 2 Result 2 Coef 3 Result 3

kh00 0.0047 kl00 0.0044 kp00 0.2207
kh01 0.0261 kl01 0.0832 kp01 −0.2133
kh02 −0.0989 kl02 −0.0001 kp02 0.0389
kh03 0.0896 kl03 0.1935 kp03 −0.0500
kh04 −0.0207 kl04 −0.0678 kp04 0.0054
kh10 1.0655 kl10 0.2134 kp10 0.6443
kh11 −1.0625 kl11 0.2511 kp11 0.5970
kh12 1.2794 kl12 0.6322 kp12 −0.7356
kh13 −0.3306 kl13 −0.2856 kp13 0.1915
kh20 −1.1696 kp20 0.8536 k f 20 0.5171
kh21 1.9950 kp21 0.0144 k f 21 −1.2565
kh22 −0.7915 kp22 −0.4243 k f 22 0.5088
kh30 1.0608 kp30 −0.9268 k f 30 −0.5161
kh31 −0.7422 kp31 0.0930 k f 31 0.4477
kh40 −0.3170 kp40 0.3604 k f 40 0.1315
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Figure 10. The identification result and absolute error of the EM
(

α = [W f , An

]
) nHCe.
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Figure 11. The identification result and absolute error of the EM
(

α = [W f , An

]
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Figure 12. The identification result and absolute error of the EM
(

α = [W f , An

]
) EPRe.

Clearly, the operating range of the nHCe is shown in Figure 10, and the maximum ab-
solute error is −0.0120

(
W f = 1, An = 1

)
. However, the strong nonlinear region of the EM

in EME (α = [nHC, An]) is not significant in EME (α =
[
W f , An

]
). Figure 11 shows that the

absolute error range of nLCe is about−0.006–0.010. The extremum of the absolute errors are
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−0.0058 (W f = 0, An = 0.3333) and 0.0098 (W f = 0.1111, An = 0.4444) in Figure 11b. In ad-
dition, Figure 12b indicates that the absolute error range of EPRe is about −0.0060–0.0060.
The extremum of the absolute errors are −0.0061 (W f = 0.3333, An = 0.5556) and 0.0040
(W f = 0.3333, An = 0.2222) in Figure 12b. In general, the accuracy of the EM in EME

(α =
[
W f , An

]
) is higher than in EME (α = [nHC, An]).

Secondly, the coefficient matrix A(α), B(α), C(α) and D(α) in Equation (11) is iden-
tified by the dynamic simulation results of the turbofan engine NCL model. Clearly,
the specific fitting method is given in Section 3.2. That is, ∆nHC, ∆nLC, ṅHC, and ṅLC in
Equation (15) can be calculated by the results of the NCL model and the EM. The coefficients
of the EME model can be identified as follows:

a11(α) = ka11α1 + ka12α2 + ka13
a12(α) = ka21α1 + ka22α2 + ka23
a21(α) = ka31α1 + ka32α2 + ka33
a22(α) = ka41α1 + ka42α2 + ka43
c11(α) = kc11α1 + kc12α2 + kc13
c12(α) = kc21α1 + kc22α2 + kc23

α = [α1, α2] =
[
W f , An

]
. (16)

Therefore, the identification results of Equation (16) are shown in Table 6.

Table 6. The coefficients of the EME
(

α = [W f , An]
)

model.

ṅHC ṅLC EPR

Coef 1 Result 1 Coef 2 Result 2 Coef 3 Result 3

ka11 0.5015 ka31 3.7503 kc11 −0.5078
ka12 −0.0845 ka32 1.0956 kc12 −0.1344
ka13 −2.2704 ka33 −1.4782 kc13 0.3204
ka21 0.6230 ka41 −4.2386 kc21 0.0782
ka22 2.2073 ka42 0.9056 kc22 −0.7508
ka23 −2.6501 ka43 −2.0944 kc23 0.9199

Because the validation is an important part of modeling, so the validation of the EME
model is carried out as follows. The input variables W f and An vary according to the
rule shown in Figure 8. Through the simulation, the comparison and error analysis of
the turbofan engine’s NCL model and EME model are shown in Figure 13. The results
demonstrate the accuracy of the EME model along the design Path 1 & 2.

Figure 13 indicates that nHC, nLC, and EPR in EME (α =
[
W f , An

]
) all have high

steady-state accuracy, which is determined by the identification results of the EM. Simul-
taneously, the results also have high dynamic accuracy in EME (α =

[
W f , An

]
). There

are large dynamic errors for nHC, nLC, and EPR at 60s, and the values are 0.025, 0.0275,
and −0.055, respectively. The EME (α =

[
W f , An

]
) model can reflect the overshoot char-

acteristics of nHC in the range of 0–0.035. Besides, the overshoot is less than the EME
(α = [nHC, An]) at 60 s in Figure 13a. The accuracy of the EME model is affected by α,
which is confirmed in the simulation. The analysis indicators in Table 3 shows that the
EME (α =

[
W f , An

]
) model has higher steady-state accuracy than the EME (α = [nHC, An])

model, and the identification result of the nHC is more satisfactory. However, direct mea-
surement of inputs, such as real engine fuel, will limit the feasibility of inputs as scheduling
variables for the EME model.
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Figure 13. The identification result and absolute error of the EME (α =
[
W f , An

]
) model.

3.4. Effects of Noise on Model Accuracy

The EME model is a turbofan engine mathematical model based on data identification.
These data can be obtained by dynamic simulation of the NCL model, on the one hand,
and can be obtained by a large number of real engine tests, on the other hand. However,
the cost of engine testing is too high to be used as a data source for the study of EME
modeling methods. In fact, there is a big difference between NCL model simulation data
and engine test data, among which noise is an important influencing factor. To analyze the
influence of noise on EME model identification, we add random noise to the input W f and
An of the dynamic Path 1 & 2 in Section 3.2, and complete the EME model identification
according to the same process. The output results of the NCL model and the EME model
are shown in Table 3.
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First, it can be seen from Figure 14 that the input noise has a greater impact on the
engine pressure ratio EPR than two rotors nHC and nLC. Secondly, under the effect of
input noise, the EME model still has a strong model fitting ability. From the perspective
of steady-state results, the EME model can ensure stability; meanwhile, the steady-state
accuracy of nHC and nLC is kept about within 2%. Although the pressure ratio EPR error is
relatively large, the EME model ensures the steady-state accuracy of the engine and shows
a certain filtering ability.
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Figure 14. The validation of the EME (α = [nHC, An]) model with noise conditions in Path 1 & 2.
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4. Validation and Stability Analysis of the EME Model
4.1. Validation at Dynamic Off-Design Conditions

This paper proposes that the dynamic coefficients of the EME model are identified by
Path 1 & 2 shown in Figure 15a. Despite differences in accuracy, the identification results of
the EME model shown in Sections 3.2 and 3.3 are satisfactory in control-oriented modeling.
However, verifying the accuracy of the EME model on the design path alone is insufficient.
Therefore, this section considers the validation of the EME (α = [nHC, An]) model and the
EME (α =

[
W f , An

]
) model at dynamic off-design conditions. Path 3, which is different

from Path 1 and Path 2, is given in Figure 15a. Figure 15b shows the corresponding input
variables for the validation.

The input variables given in Figure 15b are used in the NCL , EME (α = [nHC, An]),
and EME (α =

[
W f , An

]
) model of the turbofan engine for simulation. The output variables

nHC, nLC and EPR of the turbofan engine are shown in Figure 16. At the same off-design
conditions, the validation results of different turbofan engine models, and the absolute
errors between the EME (α = [nHC, An]) model to the NCL model and the EME (α =[
W f , An

]
) model to the NCL model are shown in Figure 16.

Firstly, the steady-state nHC, nLC and EPR of the EME model with different scheduling
variables have different accuracy. In particular, Figure 16a shows that there is a difference
between the EME (α = [nHC, An]) and EME (α =

[
W f , An

]
) model in the steady-state

accuracy of nHC. The EME (α =
[
W f , An

]
) model has higher steady-state accuracy at the

off-design conditions given in Path 3, which is consistent with the results obtained from
Path 1 and 2. In addition, Figure 16b indicates that the steady-state accuracy of nLC at
off-design conditions is almost the same, except that the steady-state accuracy of the EME
(α = [nHC, An]) is lower than the EME (α =

[
W f , An

]
) at 70–80 s. The steady-state accuracy

of EPR at off-design conditions is similar to that shown in Figure 16c, except that the EME
(α = [nHC, An]) has lower steady-state accuracy than the EME (α =

[
W f , An

]
) at 40–50 s.

Secondly, Figure 16 shows that the dynamic time of the EME (α = [nHC, An]) and EME
(α =

[
W f , An

]
) is almost the same, which means that the two EME models can well meet

the dynamic process of the turbofan engine. Meanwhile, Figure 16a indicates that there is
an overshoot of nHC at 30 s, which is caused by the strong nonlinearity of the engine.

In short, the EME model has satisfactory accuracy at both design and off-design
conditions. The model meets the demand of real-time simulation. These are significant for
the control-oriented model of the turbofan engine. Although it is difficult to find the EME
model with the smallest error for the strongly nonlinear system including turbofan engines
that cannot be expressed analytically, we can identify the EME model that meet the require-
ments of the accuracy by selecting different combinations of the scheduling variables.
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Figure 15. The input variables W f and An for the identification of the EME model at dynamic off-design conditions.



Energies 2021, 14, 6277 19 of 24

4.2. Linearization and Stability Analysis

As a control-oriented model of the MIMO turbofan engine, it is significant for the EME
model to meet the requirements of the control system design. At present, the most common
and well-developed control methods are linear control, while the nonlinear control methods
have difficulties in solving and practical applications. Moreover, many nonlinear control
methods involve the linearization of the complex nonlinear plants. Therefore, a wide-
range linear model with high accuracy can greatly reduce the difficulty of a control system
design for nonlinear plants. Nevertheless, the EME model is a nonlinear parameter-varying
system, and some coefficients of the linearization for the EME model are missing in A(α),
B(α), C(α), and D(α) due to the selection of the scheduling variables. a11(α), a21(α), b12(α),
b22(α), c11(α), and d12(α) are missing in Equation (11), whereas b11(α), b12(α), b21(α),
b22(α), d11(α), and d12(α) are missing in Equation (15). Thus, it is important to obtain
a complete linearization result of the EME model. Fortunately, Property 2 of the EME
model introduced in Section 2.2 can be used to complete the linearization results, which
contains the constraints of the EME model. For Equation (11), the sufficient and necessary
conditions Equation (6) given in Property 2 can be expanded to:

a11(α)
∂nHCe (α)

∂nHCe
+ a12(α)

∂nLCe (α)
∂nHCe

+ b11(α)
∂W f e(α)

∂nHCe
+ b12(α)

∂Ane(α)
∂nHCe

= 0

a11(α)
∂nHCe (α)

∂Ane
+ a12(α)

∂nLCe (α)
∂Ane

+ b11(α)
∂W f e(α)

∂Ane
+ b12(α)

∂Ane(α)
∂Ane

= 0

a21(α)
∂nHCe (α)

∂nHCe
+ a22(α)

∂nLCe (α)
∂nHCe

+ b21(α)
∂W f e(α)

∂nHCe
+ b22(α)

∂Ane(α)
∂nHCe

= 0

a21(α)
∂nHCe (α)

∂Ane
+ a22(α)

∂nLCe (α)
∂Ane

+ b21(α)
∂W f e(α)

∂Ane
+ b22(α)

∂Ane(α)
∂Ane

= 0

c11(α)
∂nHCe (α)

∂nHCe
+ c12(α)

∂nLCe (α)
∂nHCe

+ d11(α)
∂W f e(α)

∂nHCe
+ d12(α)

∂Ane(α)
∂nHCe

= ∂EPRe(α)
∂nHCe

c11(α)
∂nHCe (α)

∂Ane
+ c12(α)

∂nLCe (α)
∂Ane

+ d11(α)
∂W f e(α)

∂Ane
+ d12(α)

∂Ane(α)
∂Ane

= ∂EPRe(α)
∂nHCe

α = [nHCe, Ane] = [nHC, An]

. (17)

Considering the orthogonal properties of the scheduling variables, we have:

∂nHCe(α)

∂nHCe
= 1,

∂Ane(α)

∂nHCe
= 0,

∂Ane(α)

∂Ane
= 1,

∂Ane(α)

∂nHCe
= 0. (18)

Substituting Equation (18) into Equation (17), the missing coefficients in Equation (11) can
be completed as:

a11(α) = −a12(α)
∂nLCe (α)

∂nHCe
− b11(α)

∂W f e(α)

∂nHCe

b12(α) = −a12(α)
∂nLCe(α)

∂Ane
− b11(α)

∂W f e(α)

∂Ane

a21(α) = −a22(α)
∂nLCe (α)

∂nHCe
− b21(α)

∂W f e(α)

∂nHCe

b22(α) = −a22(α)
∂nLCe(α)

∂Ane
− b21(α)

∂W f e(α)

∂Ane

c11(α) =
∂EPRe(α)

∂nHCe
− c12(α)

∂nLCe (α)
∂nHCe

− d11(α)
∂W f e(α)

∂nHCe

d12(α) =
∂EPRe(α)

∂Ane
− c12(α)

∂nLCe (α)
∂Ane

− d11(α)
∂W f e(α)

∂Ane
α = [nHCe, Ane] = [nHC, An]

. (19)
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Similarly, the missing coefficients in Equation (15) can be completed as:

b11(α) = −a11(α)
∂nHCe (α)

∂W f e
− a12(α)

∂nLCe (α)
∂W f e

b12(α) = −a11(α)
∂nHCe(α)

∂Ane
− a12(α)

∂nLCe(α)
∂Ane

b21(α) = −a21(α)
∂nHCe (α)

∂W f e
− a22(α)

∂nLCθ
(α)

∂W f e

b22(α) = −a21(α)
∂nHCe (α)

∂Ane
− a22(α)

∂nLCe (α)
∂Ane

d11(α) =
∂EPRe(α)

∂W f e
− c11(α)

∂nHCe (α)
∂W f e

− c12(α)
∂nLCe (α)

∂W f e

d12(α) =
∂EPRe(α)

∂nHCe
− c11(α)

∂nHCe (α)
∂Ane

− c12(α)
∂nLCe (α)

∂Ane

α =
[
W f e, Ane

]
=
[
W f , An

]
. (20)

Obviously, after the EME (α = [nHC, An]) model is complemented by Equation (19)
and the EME (α =

[
W f , An

]
) model is complemented by Equation (20), the linear model

of the MIMO turbofan engine at any steady-state operating point can be obtained. As the
turbofan engine is a stable system which can be seen from the simulation in Section 3.1,
the EME model should be stable, and it is verified in the time domain simulation shown
in Figures 9 and 13. However, the analysis from the time domain is not rigorous enough.
Stability analysis is necessary for the linearized results of the EME model.

The sufficient and necessary condition for the stability of linear systems is that all
the roots of the characteristic equations of closed-loop systems have negative real parts.
This condition means all the A(α) matrix from the linearization results of the EME model
with the state space form have negative real parts. Thus, the linearization of the EME
(α = [nHC, An]) model and the EME (α =

[
W f , An

]
) model are completed at the 100 steady-

state points given in Figures 2–4, and the real part of the eigenvalues of A(α) matrix is
shown in Figures 17 and 18.

Since all the eigenvalues of A(α) have negative real parts, the linearization results
of the EME models (α = [nHC, An], α =

[
W f , An

]
) are stable within the range of the

scheduling variables. So far, the accuracy and stability of the EME model are proved by the
time domain simulation and linearization results, which indicates that the EME model can
be used as real-time simulation model for control system design.
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Figure 16. The validation of the EME (α = [nHC, An],α =
[
W f , An

]
) model at dynamic off-design conditions.
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Figure 17. The real part of eigenvalue of A(α) for the EME (α = [nHC, An]) model.
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Figure 18. The real part of eigenvalue of A(α) for the EME (α =
[
W f , An

]
) model.

5. Conclusions

This paper investigates a control-oriented model of nonlinear MIMO turbofan engines
using the equilibrium manifold method. To obtain the EME model of turbofan engine
with input variables W f and An and output variables nHC, nLC, and EPR, extending the
equilibrium manifold modeling method from the SISO system to the MIMO system is
studied. The main conclusions of this article are:

1. The two EME models that contain the input variables (W f , An) and the output variables
(nHC, nLC, EPR) are established. The results of the steady state EM (α = [nHC, An]) show
that the absolute error range of nLCe (−0.015–0.017) is better than EPRe (−0.022–0.028)
and W f e (−0.02–0.024). The absolute error range of EM (α =

[
W f , An

]
) are about

−0.006–0.010 in nLCe, −0.0060–0.0060 in EPRe, and −0.012–0.010 in nHCe. Obviously,
the accuracy of EME (α =

[
W f , An

]
) is higher than EME (α = [nHC, An]). Because of

the simple structure, the EME model also meets the needs of real-time simulation.
Meanwhile, the EME model still shows high accuracy under the influence of noise.

2. The EME model meets the accuracy requirement of the simulation and the stability in
the entire range of operating conditions. The validity of the EME model is verified
by simulation at off-design points. At the same time, the results also show that
the identification of the dynamic coefficients for the EME model can be completed
through only considering simple paths. Depending on the property of the EME model,
the linearization of the model is completed. By calculating the eigenvalues, both EME
models (α = [nHC, An],α =

[
W f , An

]
) have stable linearization result, thus ensuring

that the EME model can be regarded as a control-oriented model.

Furthermore, the dynamic coefficients of the EME model have low dependence of
the excitation condition in identification. It means that the identification of the dynamic
coefficients needs few data, which is different from the general method of model identi-
fication. This finding provides a possibility for the EME model to solve the performance
degradation of the turbofan engine in future.
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