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Abstract: The small fault with a vertical displacement (or drop) of 2–5 m has now become an
important factor affecting the production efficiency and safety of coal mines. When the 3D seismic
data contain noise, it is easy to cause large errors in the prediction results of small faults. This paper
proposes an intelligent small fault identification method combining variable mode decomposition
(VMD) and a support vector machine (SVM). A fault forward model is established to analyze the
response characteristics of different seismic attributes under the condition of random noise. The
results show that VMD can effectively realize the attenuation of random noise and the seismic
attributes extracted on this basis have a good correlation with the small fault. Through the analysis
of the SVM algorithm and the fault forward model, it is proved that it is feasible to realize intelligent
predictions of small faults by using seismic attributes as the input of a SVM. The fault prediction
method using a SVM that is proposed in this paper has higher accuracy than the principal component
analysis method, as the prediction results have important guiding significance and reference value
for later coal mining. Therefore, the method presented in this paper can be used as a new intelligent
method for small fault identification in coal fields.

Keywords: variable mode decomposition; support vector machine; coal seam; small fault; seismic attribute

1. Introduction

The geometric and interfacial properties of faults in rocks are subjects of critical
importance to stress concentration and mining safety [1]. The Biot-Gassmann theory, in
the case of low frequency activity (less than 1000 Hz), describes the relation of reflection
amplitude to frequency as well as petrophysical and fluid features [2]. Since the 1990s, with
the development of 3D seismic work in coal mining areas, seismic data have been used to
identify faults with a drop greater than or equal to 10 m and the coincidence rate is high. In
areas with good seismic geological conditions, seismic data have been used to control faults
with a drop greater than or equal to 5 m and the coincidence rate is between 60% and 75%,
laying a strong geological guarantee for a high yield, high efficiency, and safe production in
coal mines. In recent years, with the progress of seismic exploration technology, coal mines
have increasingly higher requirements for exploration accuracy and many mines have
included the interpretation of faults of about 3 m into the geological task [3]. Small faults
in coal seams, especially those with a drop of less than 3 m, are important factors that often
induce safety accidents. For example, the phenomenon of water splashing and dripping
that occurs near fault zones can easily lead to water bursting in a mine. A gas outburst
is easy to occur on both sides of the fault zone or the coal strata distortion zone. Small
fault zones are also prone to caving at the top of the roadway [4]. Therefore, identifying
small faults in coal seams is very important to prevent accidents, such as water bursts, gas
outbursts, roof falls, and rock bursts, and to ensure safe production in mines [5].
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The existence of faults often makes the phase of seismic data unstable, but within the
effective frequency band of seismic data, as the frequency increases, small faults become
more clear [6]. In recent years, renowned scholars have conducted substantial research
work on technology and methods of small fault identification, mainly using time-frequency
attributes, seismic coherence attributes, instantaneous seismic attributes, curvature at-
tributes, and texture attributes [7–10]. In the early 1980s, Morlet et al. [11] first applied
the short-time Fourier spectrum for seismic interpretation. In the 1990s, Partyka et al. [12]
obtained the spectrum (amplitude spectrum and phase spectrum) of the seismic trace by
conducting continuous time-frequency analysis of the seismic trace, that is, transforming
the time-frequency analysis technology into a practical and simple interpretation tool
and forming the seismic spectrum decomposition technology. Partyka et al. [13] also used
spectral decomposition technology to predict river courses and achieved good results.
Marfurt et al. [14] used this technology for thin-layer visualization and sedimentary fa-
cies analysis. Wei et al. [2] applied spectral decomposition technology on reservoir fluid
identification and achieved preliminary application results.

Furthermore, there are various methods, such as coherent volume technology, variance
volume technology, and ant tracking technology, which can be applied in small fault
identification. Feng et al. [15] established a set of small fault identification technology
based on the joint interpretation of 2 and 3 dimensional seismic data, which improved
the accuracy of small fault identification and successfully explained 56 small faults in the
Etoke area. Lu et al. [16] controlled a fracture skeleton and a fracture by, respectively,
controlling the calculation time window and ensuring that the fused attribute body was in
good agreement with the logging information. Zhuang et al. [17] extracted an ant attribute
from the seismic data of the 82 mining area of the Qinan coal mine in Huaibei, which
improved the accuracy of fault interpretation. However, these technologies are applied in
conditions in which the signal-to-noise ratio (SNR) of the data is high and the application
efficiency of the above technologies is generally poor for seismic data with low SNR. Then,
the derivative and gradient classes as the main analysis methods are developed. However,
derivative or gradient methods tend to amplify the noise for low SNR seismic data, so
various edge-preserving filtering methods have been developed, such as structure-oriented
constraint filtering and edge-preserving focusing filtering.

Support vector machines (SVMs) have unique advantages in solving small sample,
nonlinear, and high-dimensional pattern recognition problems; have excellent general-
ization abilities; and are robust to solve classification and regression problems. Based on
the measured data, Tan et al. [18] selected fault dip, drop, dip angle, and fault properties
as characteristic influence factors to establish a SVM prediction model for the horizontal
length of small faults in the Zhaoguan mine, and compared the prediction results with
those of traditional multiple regression models. The results showed that the SVM predic-
tion model is more accurate when the sample size is smaller. Sun et al. [19] established
a SVM two-classification fault recognition model by analyzing the seismic attributes of
structural and non-structural parts, and explained that some small faults that could not be
recognized by conventional seismic profiles. He et al. [20] studied fracture classification
methods based on an approximate support vector machine. The results of the latter study
showed that the SVM algorithm is effective in fault identification, but the SNR of original
seismic data is seldom discussed in the above studies, and the application results in the
low SNR region need to be studied further.

At present, safe and efficient mining of coal requires more accurate identification of
small faults in coal seams. However, when noise is contained in 3D seismic data, fault
identification errors are easy to occur. Based on the good ability of variable mode decompo-
sition (VMD) in denoising and the high accuracy of a SVM in two classification problems,
this paper proposes to combine VMD with a SVM, and apply it to the identification of
small faults. In this method, the seismic signal is decomposed by modal change to effec-
tively remove random noises and improve the SNR of seismic data. Then, the seismic
attributes sensitive to the fault response are extracted, the appropriate seismic attributes
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are selected, the SVM is used for learning and training, and the prediction of small faults is
finally realized.

2. Basic Principles of VMD and a SVM
2.1. Basic Principles of VMD

Huang et al. [21] proposed a brand new signal processing method based on the concept
of instantaneous frequency, namely empirical mode decomposition (EMD). This method
is essential to stabilize a signal, decompose the real fluctuations of different scales in the
signal step by step, and form a series of data sequences with different characteristic scales.
EMD is a powerful tool for analyzing non-stationary and nonlinear signals, but it has some
problems, such as lack of strict mathematical basis, low algorithm efficiency, and modal
aliasing. To solve these problems, Dragomiretskiy et al. [22] proposed a method called
VMD, which is a powerful signal analysis tool similar to EMD and has a firm mathematical
theoretical basis. The VMD method decomposes the signal into a finite sum of intrinsic
mode functions (IMFs). The original signal is decomposed into multiple eigenfunctions by
applying a single model and the reconstructed signal is obtained after the residual errors
are eliminated based on the threshold criterion.

Signals are decomposed into k-IMF signals by the VMD algorithm and each decom-
posed mode is processed in the following three steps:

1. For each mode, calculate the related analytical signal through the Hilbert transform;
2. For each mode, adjust the respective estimated center frequency by adding an expo-

nential term and transform the frequency spectrum of the mode to the baseband;
3. Estimate the bandwidth by performing Gaussian smoothing on the demodulated

signal.

In this way, a variational constraint problem can be obtained and, then, an uncon-
strained problem can be obtained by using the quadratic penalty function term and the
Lagrangian multiplier operator. According to the iterative relationship of the function, an
IMF is output to solve the problem.

The specific construction steps are as follows (Equations (1)–(4)):
By the Hilbert transformation, the analytic signal of each modal function uk (t) is

obtained to determine the unilateral spectrum of the signal.[
δ(t) +

j
πt

]
∗uk(t) (1)

1. Mix the analytical signal in each component with a pre-estimated center frequency
and modulate the spectrum of each mode into the response base frequency band:

[

(
δ(t) +

i
πt

)
∗uk(t)]e

−jωkt (2)

2. Calculate the square norm of the demodulation signal gradient above and estimate
the bandwidth of the modal signal. Introduce the constraint conditions to construct
the optimal variational model to minimize the sum of the aggregate bandwidth of
each component:

min
{uk},{ωk}

{
K

∑
k=1
‖
[

∂t

(
δ(t) +

j
πt

)
∗uk(t)

]
e−jωkt‖2

2

}
(3)

K is the number of components: uk = {u1, u2, . . . , uK} and ωk = {ω1,ω2, . . . ,ωK},
respectively, are the obtained K frequency band components and the center frequency of
the corresponding frequency band.

3. Introduce the quadratic penalty factor and Lagrange multiplication operator to change
the constrained variational problem into the unconstrained problem (the transfor-
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mation from constrained to unconstrained is equivalent here and the proof is no
longer expanded). The quadratic penalty factor α can ensure the accuracy of signal
reconstruction in the case of Gaussian noise and the Lagrange multiplier can ensure
the rigor of model constraints. The “saddle point” of the augmented Lagrange ex-
pression is obtained by using the alternating direction multiplier algorithm and the
determination accuracy ε is given to be greater than 0 until the iteration stop condition
is satisfied:

∑
k
(
‖ûn+1

k − ûn
k‖

2
2

‖ûn
k‖

2
2

) < ε (4)

4. At the end of the iteration, k-IMF components are obtained.

2.2. Basic Principles of a SVM

A SVM is a machine-learning method based on statistical learning theory, VC dimen-
sion theory, and structural risk minimization principles. It shows many unique advantages
in solving small sample, nonlinear, and high-dimensional pattern recognition problems,
and, to a large extent, it overcomes the problems of “dimension disaster” and “over-
learning” [23]. It finds the best compromise between model complexity and learning ability,
according to the limited sample information, in order to obtain the best generalization
ability. The basic principle of a SVM regression machine is as follows:

When the regression function is assumed to be the fitting data, it is necessary to find a
w as small as possible. To this end, the universal number of Euclidean space is minimized.
Where w and b are the normal vector and offset of the regression function, respectively,
and assuming that all training data are fitted with the function without error under the
accuracy ε, this leads to the following optimization problem (Equations (5) and (6)):

f (x) =< w, x > +b (5)

min φ(w) 1
2‖w‖

2

subject to
{

yi− < w, xi > −b ≤ ε
< w, xi > +b− yi ≤ ε

i = 1, 2, · · · n
(6)

When the above constraint conditions cannot be fully satisfied, the relaxation variables
ξi and ξ∗i can be introduced, and the optimization problem can be transformed into the
following problem (Equation (7)):

min φ(w) 1
2 ||w||

2 + C
n
∑

i=1
(ξi + ξ∗i ) ξi,ξ∗i ≥ 0, C > 0

subject to
{

yi− < w, xi > −b ≤ ε + ξi
< w, xi > +b− yi ≤ ε + ξ∗i

, i = 1, 2, · · · , l
(7)

The optimization function φ(w) is quadratic and the constraints are linear, so the
optimization problem is a typical quadratic programing problem that can be solved by
using the Lagrange multiplier method.

For linear classifiers, here is a simple example. Now we have a two-dimensional
plane on which there are two different kinds of data represented by circles and crosses.
Since the data are linearly separable, the two types of data can be separated by a line that
acts as a hyperplane, where all the points on one side of the hyperplane correspond to
y of negative 1 and all the points on the other side correspond to y of 1 (Figure 1). This
hyperplane can be represented by a classification function (Equation (7)): when f(x) is equal
to 0, x is on the hyperplane; if f(x) is greater than 0, y is equal to 1; and if f(x) is less than 0,
y is equal to −1 (Figure 2). In other words, when a new data point x is encountered while
classifying, the category of x is assigned −1, if f(x) is less than 0, and the category of x is
assigned 1, if f(x) is greater than 0.
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Figure 1. Hyperplane diagram in linear classification.

Figure 2. Schematic diagram of the classification of the output function.

2.3. Small Fault Prediction Process Based on VMD and a SVM

Based on the good ability of VMD in denoising and the high accuracy of a SVM in
two classification problems, this paper proposes an intelligent identification algorithm
for small fault prediction using VMD and a SVM. The main steps of this method are as
follows (Figure 3):

1. Based on the characteristics of small faults in coal seams, construct the fault model
containing a coal seam and carry out the forward simulation;

2. Add random noise to the forward seismic records and, then, use VMD for denoising.
Analyze the denoising effect of VMD and the response characteristics of different
seismic attributes to the fault, and select the related seismic attributes with good
response effect to the fault for fault identification.

3. Take the exposed fault data of the coal seam and its seismic attributes as the learning
samples, use the SVM for learning and training, and apply the small fault prediction
to the actual seismic data of the coal field.
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Figure 3. Flow chart of small fault prediction.

3. Fault Forward Modeling
3.1. Modeling

In order to study the response characteristics of seismic attributes to small faults, fault
models with different drops are constructed. The model is 1000 m long, mainly including
loess, mudstone, and a coal seam. The velocity, density, and thickness of the longitudinal
and transverse waves of each layer are shown in Table 1. The faults with a drop of 1 m,
3 m, 5 m, and 10 m are set in the lateral 200 m, 400 m, 600 m, and 800 m, respectively, and
the thickness of the coal seam is set at 3.5 m. The forward simulation is carried out using
the Ricker wavelet with a dominant frequency of 50 Hz; the detector spacing is 10 m; and
a total of 100 channels are received. In the noise-free synthetic seismic profile (Figure 4),
with the increase of the fault drop, the fault shows evident seismic response characteristics,
such as amplitude weakening and arrival-time delay.

Table 1. Geological model parameters.

The Layer Number Lithology Vp (m/s) P (g/cm3) H (m)

1 Loess 1800 2.00 200
2 Mudstone 2800 2.30 200
3 Coal seam 1600 1.45 3.5
4 Mudstone 2800 2.30 400

Figure 4. Synthetic seismograms of fault models with different drops.
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3.2. Analysis of the Faults’ Seismic Response Characteristics

In order to analyze the seismic response characteristics of different fall faults in detail,
the instantaneous amplitude, instantaneous frequency, waveform characteristics, Q value,
and frequency bandwidth are extracted, and a total of 5 seismic attributes are extracted
(Figure 5). In Figure 5, the locations of seismic traces 20, 40, 60, and 80 correspond to
the faults with a drop of 1 m, 3 m, 5 m, and 10 m, respectively. In order to compare and
analyze the response characteristics of each seismic attribute to the fault, the attribute value
is calculated after normalization; the changes of the faults with the value of each seismic
attribute show certain regularity.

Figure 5. Normalization of the seismic attributes of the noise-free model: (a) instantaneous amplitude
attribute; (b) waveform difference attribute; (c) instantaneous frequency attribute; (d) frequency
bandwidth attribute; and (e) attenuation coefficient attribute.

The analysis shows that there is a fault in the local minimum of instantaneous am-
plitude. The local maximum value of waveform difference is located on faults and the
maximum value distinctively increases with the increase of fault drop. There is a fault
in the local extreme of instantaneous frequency and instantaneous bandwidth. There is
also a fault at the local minimum of attenuation coefficient. When the fault drop is small,
there is a response, but the characteristics are not clear. When the drop is 3 m or less, each
seismic attribute shows that the response characteristics are enhanced with the increase of
the fault drop. From the above five seismic attributes, the waveform differential attribute
has the best effect on fault characterization. However, the characterizations of faults are not
completely consistent among the seismic attributes and a single seismic attribute cannot be
used to identify faults completely and correctly. Multiple seismic attributes are beneficial
to overcome the multi-solution and better identify faults.

3.3. Analysis of the VMD Denoising Effect

A random noise of 30 dB was added to the seismic profile of the noise-free fault model,
and the seismic profile and seismic attributes after adding noise are shown in Figure 6.
With the increase of noise, the response characteristics of each seismic attribute and fault
are greatly affected and cannot effectively respond to the location of the fault as shown
in Figure 7.
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Figure 6. Synthetic seismogram with noise.

Figure 7. Normalization of the seismic attributes of the synthetic seismogram with noise: (a) instan-
taneous amplitude attribute; (b) waveform difference attribute; (c) instantaneous frequency attribute;
(d) frequency bandwidth attribute; and (e) attenuation coefficient attribute.

VMD denoising was carried out on the denoised seismic profile, and the denoised
seismic profile and its seismic attributes are shown in Figures 8 and 9.

By comparing Figure 7 with Figure 9, it can be seen that VMD has a good denoising
effect, and the relationship between each seismic attribute and fault is essentially consistent
with the result without noise. Therefore, VMD denoising can effectively remove the random
noise and improve the SNR of seismic data.
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Figure 8. Synthetic seismogram with noise (after VMD denoising).

Figure 9. Normalization of the seismic attributes of the synthetic seismogram with noise (after VMD
denoising): (a) instantaneous amplitude attribute; (b) waveform difference attribute; (c) instantaneous
frequency attribute; (d) frequency bandwidth attribute; and (e) attenuation coefficient attribute.

4. Intelligent Identification of Small Faults in Actual Seismic Data
4.1. Geological Survey of the Working Area

The study area is located in the east of Jiaxiang County, Shandong Province. It presents,
generally, a monoclinic structure that is high in the west and low in the east, and the strata
strike north to north west and tend to east and north east. The stratigraphic strike in the
northern part of the original mine field turns to near east to west and the second-level folds
develop. East of the Jiaxiang branch fault, the stratum in the deepening zone presents a
wide and gentle fold structure, and the second-level folds are developed, which are mainly
NW-trending synclines. The folds are incomplete due to multiple transformations and
fault cutting. Affected and controlled by regional faults, the sub-structures in the area
are dominated by nearly north-south and north-north-trending faults, most of which are
north-north-trending faults, but there are also a few east-west faults locally.
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The main coal seam in the study area is number 3 coal: its thickness is 4.15 ~ 10.15 m;
the average thickness is 8.34 m; the bottom distance from limestone is 16.25 ~ 49.1 m; and
the average is 28.44 m. Comprehensive evaluation of the whole area determined that it can
be stably mined for thick coal seams. Intelligent identification of small faults in this coal
seam is beneficial to safe and efficient mining in the future.

4.2. Introduction of Learning Samples for Small Fault Identification

Affected by regional NE-trending faults, the coal measures of the study samples were
cut into NE-trending strip graben-and-horst structures. In the area, the two groups of faults
that are NNE trending and near east-west trending are mainly developed, and the NW
trending regulating faults are developed at the same time. The intersecting and cutting
of these groups of faults form a net-like fault plane combination mode, which is mainly
dominated by high Angle interlayer normal faults and relatively developed by small
interlayer faults. A total of 154 faults with fault spacing greater than 5 m were explained,
of which 26 were reverse faults and the rest were normal faults.

Combined with the above analysis of various seismic attributes, it can be seen that
seismic attributes have relatively sensitive responses to faults and can be used as effective
samples for fault identification. Based on the above analysis and summary of various
seismic attributes, this paper uses “1” and “0” as labels for faults and non-faults. When
using support vector machines, the instantaneous amplitude, instantaneous bandwidth,
instantaneous frequency, attenuation coefficient, and waveform difference are used as
input data. The output data is fault or non-fault (the fault is indicated by the label “1” and
the non-fault is indicated by the label “0”). Tables 2 and 3 show partial results of fault
samples and non-fault samples, respectively. Tables 4 and 5 show the average value and
the median value, respectively, of seismic attributes of fault samples and non-fault samples.
From Tables 2 and 3, we can see that, at the location of faults, the instantaneous amplitude
value, instantaneous bandwidth value, instantaneous frequency value, and waveform
difference value are small, while the attenuation coefficient value is large. At non-fault
locations, the characteristics of the attributes are reversed at fault locations. In Table 4,
there are significant differences in the average values of instantaneous amplitude and
instantaneous bandwidth, and, in Table 5, there are significant differences in the median
values of instantaneous amplitude and instantaneous frequency. The average value and
the median value of seismic attributes of fault samples and non-fault samples shows that
the seismic attribute can be used to distinguish faults.

Table 2. Partial seismic attribute samples for support vector machine learning (faults).

Instantaneous Amplitude Instantaneous Bandwidth (Hz) Instantaneous Frequency (Hz) Attenuation Coefficient Waveform Difference

4865.85 3.83517 61.8614 −1.16212 0.993938
4691.47 8.36608 47.3904 −1.75026 0.999402
3367.27 15.4594 37.2179 −1.48514 0.999242
4816.77 31.1756 14.9254 −0.32169 0.807862
4335.54 7.60931 3.26045 −0.11131 0.9649
4732.01 13.6524 29.0931 −0.30216 0.998345
4640.61 26.8337 6.92003 0.230915 0.993288
4727.22 18.4564 9.90255 −0.06904 0.995208
3249.05 7.72003 24.5849 −0.65415 0.990835
3885.62 7.17641 52.268 −0.62079 0.97217
3256.59 9.88172 27.0562 −0.66764 0.98829
2505.36 30.301 30.3608 −0.15021 0.998515
3309.52 55.3597 34.3742 −0.30375 0.998786
4502.35 47.2056 63.902 −1.2301 0.999504
4972.27 36.4524 62.9385 −1.16251 0.998994
4696.00 28.0408 94.7015 −1.58393 0.999197
719.34 13.9524 229.188 −0.87734 0.991868
2775.05 13.1616 9.08372 0.199544 0.995766
3941.9 9.01527 18.1962 −6.79774 0.997587
2253.69 5.14017 18.2883 1.66724 0.9997
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Table 3. Partial seismic attribute samples for support vector machine learning (non-faults).

Instantaneous Amplitude Instantaneous Bandwidth (Hz) Instantaneous Frequency (Hz) Attenuation Coefficient Waveform Difference

13503.2 26.6158 50.3789 −6.56801 0.615492
12227.2 13.5381 53.4608 −3.1951 0.743877
10612.7 12.5301 55.7597 −1.80342 0.923876
6799.5 23.1988 49.4058 −0.79238 0.359729
5396.46 14.6464 56.2389 3.6954 0.861492
6569.41 48.1424 60.8557 −2.22876 0.7840
6365.06 14.984 63.1589 −1.17686 0.580568
5345.1 71.7198 45.9598 1.24509 0.521775
6510.88 18.7914 44.837 2.90394 0.947705
7363.17 42.0982 38.2898 2.66776 0.498144
6768.65 20.2626 29.7787 1.50676 0.910921

6459 101.062 21.9129 0.361587 0.660132
5253.02 56.5836 23.3189 0.210612 0.22914
7881.42 25.9743 55.2104 0.584787 0.968271
8481.98 27.0701 51.8925 0.711785 0.979323
9205.73 29.8944 47.3958 0.845123 0.982747
16388.2 130.616 52.1675 1.86948 0.984059
16737 22.7612 50.4621 1.91701 0.633132

16507.2 1.3384 50.0274 2.77459 0.923009
15678.8 5.48461 50.3258 4.89534 0.991588

Table 4. The seismic attributes average value of fault samples and non-fault samples.

Instantaneous Amplitude Instantaneous Bandwidth (Hz) Instantaneous Frequency (Hz) Attenuation Coefficient Waveform Difference

Fault 3812.174 19.43976 43.77568 −0.85761 0.98417
Non-fault 9502.684 35.36561 47.54187 0.521237 0.754949

Table 5. The seismic attributes median value of fault samples and non-fault samples.

Instantaneous Amplitude Instantaneous Bandwidth (Hz) Instantaneous Frequency (Hz) Attenuation Coefficient Waveform Difference

Fault 4138.72 13.8024 29.72695 −0.63747 0.996677
Non-fault 7622.295 24.58655 50.35235 0.778454 0.822746

In summary, there are differences in attribute values between fault and non-fault
locations. A SVM is used to learn and train the processed fault and non-fault samples, and
apply it to the recognition of the number 3 coal seam faults in the work area.

4.3. Intelligent Recognition of Small Faults

Seismic attributes, such as instantaneous amplitude, waveform difference, instan-
taneous frequency, frequency band width, and attenuation coefficient, are sensitive to
faults and can be used to identify faults. Therefore, on the basis of the VMD processing
of the 3D seismic data in this area, seismic attributes of amplitude, instantaneous fre-
quency, and frequency band width are extracted along coal seam 3. The results are shown
in Figures 10–14.

1. Instantaneous amplitude. Amplitude attributes are the most widely used and the
most effective attributes to reflect the property characteristics of underground areas.
The instantaneous amplitude attribute is a reflection of the intensity of seismic wave
reflection. Its main characteristics are the difference of wave impedance in the forma-
tion and the presence of faults in the local minimum position, so it is well applied in
fault identification. Figure 10 represents a diagram of the instantaneous amplitude
attribute of the study area. It shows evident anomalies, with the cool color bands in
the property map generally corresponding to fault areas.
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Figure 10. The instantaneous amplitude attribute of the coal seam.

2. Waveform difference. The waveform difference attribute is one of the best seismic
attributes for fault characterization, because the seismic wave will scatter when
passing through the geological anomalous body, resulting in obvious differences.
Therefore, it can obtain clearer imaging results than other traditional attributes. There
are faults in the local maximum of the waveform difference and the maximum value
increases significantly with the increase of the fault drop. In Figure 11, the warm color
band area with maximum value is clearly distributed, showing warm-color band
patches like a network and the effect is relatively ideal.

Figure 11. The waveform difference attribute of the coal seam.

3. Instantaneous frequency. Instantaneous frequency is the seismic attribute obtained
by sampling the midpoint, one by one, according to the frequency of the trace set,
revealing the fault at the local extremum. In Figure 12, the boundary, marked by an
abrupt change in tone, is the theoretical fault development position, which can better
identify the small fault and improve its multi-solution problem.
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Figure 12. The instantaneous frequency attribute of the coal seam.

4. Instantaneous frequency bandwidth. The bandwidth attribute is the width between
high and low cut frequency in seismic data. It mainly reflects the characteristics of
seismic waveform in seismic data and can be used to analyze the heterogeneity of the
formation, in its local extreme value location and where there are faults. Therefore,
the application of this attribute is useful to identify of small faults in the study area.
In Figure 13, the boundary, marked by an abrupt change in tone, is the theoretical
location of the fault development, which is roughly consistent with the interpretation
of results map.

Figure 13. The frequency bandwidth attribute of the coal seam.

5. Attenuation coefficient. The attenuation coefficient is an important parameter to
describe geological body anomaly. In the subsurface of non-uniform geological
bodies with different attenuation coefficients, the seismic reflection wave has different
response characteristics under the condition of energy attenuation. There is a fault
at the local minimum of the attenuation coefficient. When the fault drop is small,
there is response, but its characteristics are not clear. In Figure 14, the minima of the
attenuation coefficient correspond essentially to the fault location in the interpretation
map, but the characterization of small structures is not obvious.
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Figure 14. The attenuation coefficient attribute of the coal seam.

In order to illustrate the effect of the fault prediction method of this paper, the tra-
ditional principal component analysis method was used to analyze the instantaneous
amplitude, waveform difference, instantaneous frequency, frequency band width, and
attenuation coefficient of coal seam 3, in which the proportion of the first principal compo-
nent reached 91.82%, as shown in Figure 15. Eight faults (F1–F8) were exposed during coal
mining. Figure 15 contains most of the information of various seismic attributes: based
on one single attribute, the yellow area may be a fault zone, but only five zones revealed
faults that conform to this rule; F1, F3, and F6 did not show evident fault development
characteristics; and fault prediction accuracy is 62.5% by using the principal component
analysis method.

Figure 15. Principal component analysis results of the seismic attributes.

Seismic data, such as instantaneous amplitude, waveform difference, instantaneous
frequency, frequency band width, and attenuation coefficient, of coal seam 3 were taken as
input data and the SVM model was used for fault prediction. The fault prediction results
of coal seam 3 were obtained as shown in Figure 16. In the figure, the value of the red
label is 1, which represents the fault. A white label with a value of 0 indicates non-fault.
It can be seen from the figure that the faults of coal seam number 3 in this working area
are relatively developed. By using the method proposed in this paper, 7 faults revealed by
the actual data are predicted successfully and the accuracy is 87.5%, which is significantly
higher than the prediction accuracy of the principal component analysis method. Only F1 is
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not predicted correctly, which may be due to the small size of the fault and the development
of surrounding faults.

Figure 16. Fault prediction results of the SVM.

The comparison results of Figures 15 and 16 show that the method of predicting
small faults using a SVM proposed in this paper has good application effects and a high
prediction accuracy.

5. Conclusions

Seismic attributes, such as instantaneous amplitude, instantaneous frequency, and
waveform characteristics, have a certain response to faults, among which the waveform
difference attribute has a good effect on fault characterization. Average value and the
median value of seismic attributes of fault samples and non-fault samples show that the
seismic attribute can be used to distinguish faults. However, the description of faults
by various seismic attributes is not completely consistent and a single seismic attribute
cannot be used to identify faults correctly. Using multiple seismic attributes is beneficial to
overcome the multi-solution and identify faults better.

When seismic data contains noise, the seismic response characteristics of the faults will
be affected to some extent. VMD can effectively attenuate the random noise and seismic
attributes extracted based on VMD denoising are more conducive to fault prediction.

The fault prediction method using a SVM proposed in this paper has higher accuracy
than the principal component analysis method and can be used as a new fault prediction
method.

Based on the actual geological data of a mining area, this paper carries out VMD
denoising and builds a SVM model to conduct sample training and fault identification.
The prediction results have important guiding significance and reference value for later
coal mining.

Author Contributions: A.Z. and Y.H.—conceptualization and design of the algorithms; A.Z., L.Y.,
Y.H., E.R., T.L. and H.Z. —algorithms; A.Z. and L.Y.—data analysis; A.Z. and L.Y.—writing. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Natural Science Foundation of the Jiangsu Province (Grant
No. BK20191344), the Engineering Laboratory of Deep Mine Rockburst Disaster Assessment Open
Project (LMYK2020010), and the Fundamental Research Funds for the Central Universities (Grant
No. 2018QNA45).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Energies 2021, 14, 6242 16 of 16

References
1. Pourahmadian, F.; Guzina, B.B. On the elastic anatomy of heterogeneous fractures in rock. Int. J. Rock Mech. Min. Sci. 2018, 106,

259–268. [CrossRef]
2. Xiaodong, W.; Yanqing, Z.; Lili, C.; Yanan, W.; Yazhong, Z. The Gradient of the Amplitude Spectrum of Seismic Data And

Its Application In Reservoir Prediction. In Proceedings of the 2009 SEG Annual Meeting, Houston, TX, USA, 25–30 October
2009; pp. 1102–1106.

3. Yu, Y. Research on Fine Identification of Coalfield Small Structures Based on Seismic Forward Modeling and Attribute Technology; Taiyuan
University of Technology: Taiyuan, China, 2011.

4. Du, W.F.; Peng, S.P. Prediction of small faults in coal seam by using curvature of seismic layer. J. Rock Mech. Eng. 2008, 27,
2901–2906.

5. Yang, X.H.; Ren, T.; Tan, L.H. Estimation of average ejection velocity generated by rib burst under compression load. Int. J. Rock
Mech. Min. Sci. 2020, 128, 104277. [CrossRef]

6. Chen, B.; Wei, X.D.; Ren, D.Z.; Zhang, Y.Z.; Wang, Y.N.; Li, J.H. Identification of small faults based on spectral decomposition
technology. Oil Geophys. Explor. 2010, 45, 890–894.

7. Munthe, K.L.; More, H.; Holden, L.; Damsleth, E.; Heffer, K.; Olsen, T.S.; Watterson, J. Subseismic faults in reservoir description
and simulation. In Proceedings of the SPE Annual Technical Conference and Exhibition, Houston, TX, USA, 3–6 October 1993.

8. Lohr, T.; Krawczyk, C.M.; Tanner, D.C.; Kukla, P.A. Prediction of sub-seismic faults and fractures: Integration of 3D seismic data,
3D retro-deformation, and well data on an example of deformation around an inverted fault. AAPG Bull. 2008, 92, 473–485.
[CrossRef]

9. Voutay, O.; Fournier, F.; Royer, J.J. Seismic interpretation with new attributes extracted from a prestack multicube analysis. SEG
Tech. Program Expand. Abstr. 2002, 21, 1762–1765.

10. Fournier, F.; Royer, J.J. Method for Obtaining an Optimal Model of a Physical Characteristic Load in a Heterogeneous Medium,
such as Subsurface Soil. European Patent EP1045259, 21 October 2008.

11. Morlet, J.; Arens, G.; Forgeau, I.; Giard, D. Wave propagationand sampling theory—Part II: Sampling theory and complex waves.
Geophysics 1982, 47, 222–236. [CrossRef]

12. Partyka, G.; Gridley, J.; Lopez, J. Interpretational applications of spectral decomposition in reservoir characterization. Lead. Edge
1999, 18, 353–360. [CrossRef]

13. Partyka, G.; Bottjer, R.; Peyton, L. Interpretation of incised valleys using new 3-D seismic techniques: A case history using spectral
decomposition and coherency. Lead. Edge 1998, 17, 1294–1298.

14. Marfurt, K.J.; Zhao, T.; Li, F.Y. Constraining self-organizing map facies analysis with stratigraphy: An approach to increase the
credibility in automatic seismic facies classification. Interpretation 2017, 5, 163–171.

15. Feng, Q.; Liu, C.Y.; Liu, X.Y.; Hui, X.; Feng, B.Z.; Nie, J.W.; Zhao, H.G. Application of small fault identification technology in
etuokeqianqi area. Prog. Geophys. 2021, 36, 1–11.

16. Lu, Z.Q.; Wang, L.; Yang, R.Z.; Meng, L.B.; Jin, S.L. Application of fine fault characterization technology in Shunbei region based
on coherence. Nat. Gas Explor. Dev. 2018, 41, 20–25.

17. Zhuang, Y.M.; Song, L.H.; Liu, J.Z. Application of ant tracking technology in the fine interpretation of three-dimensional
earthquake—Taking mining area 82 of Qinan Coal Mine in Huaibei as an example. Coal Field Geol. Explor. 2018, 46, 173–176.

18. Tan, X.P.; Shi, L.Q.; Qiu, M.; Xu, D.J.; Ji, X.K.; Wang, J. Prediction of small faults in Zhaoguan mine based on support vector
machine. Coal Geol. Explor. 2015, 43, 11–14.

19. Sun, Z.Y.; Peng, S.P.; Zou, G.G. Automatic identification of small seismic faults based on SVM algorithm. J. China Coal 2017, 42,
2945–2952.

20. He, J.; Wu, G.; Nie, W.L.; Liu, S.M.; Huang, W. Fracture classification method based on approximate support vector machine.
Lithol. Reserv. 2020, 32, 115–121.

21. Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.C.; Tung, C.C.; Liu, H.H. The empirical mode
decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. 1998, 454, 903–995.
[CrossRef]

22. Dragomiretskiy, K.; Zosso, D. Variational mode decomposition. IEEE Trans. Signal Process. 2014, 62, 531–544. [CrossRef]
23. Hsu, C.W.; Lin, C.J. A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Netw. 2002, 13, 415–425.

[PubMed]

http://doi.org/10.1016/j.ijrmms.2018.04.011
http://doi.org/10.1016/j.ijrmms.2020.104277
http://doi.org/10.1306/11260707046
http://doi.org/10.1190/1.1441329
http://doi.org/10.1190/1.1438295
http://doi.org/10.1098/rspa.1998.0193
http://doi.org/10.1109/TSP.2013.2288675
http://www.ncbi.nlm.nih.gov/pubmed/18244442

	Introduction 
	Basic Principles of VMD and a SVM 
	Basic Principles of VMD 
	Basic Principles of a SVM 
	Small Fault Prediction Process Based on VMD and a SVM 

	Fault Forward Modeling 
	Modeling 
	Analysis of the Faults’ Seismic Response Characteristics 
	Analysis of the VMD Denoising Effect 

	Intelligent Identification of Small Faults in Actual Seismic Data 
	Geological Survey of the Working Area 
	Introduction of Learning Samples for Small Fault Identification 
	Intelligent Recognition of Small Faults 

	Conclusions 
	References

