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����������
�������

Citation: Popławski, T.; Dudzik, S.;
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Abstract: This article describes problems related to the operation of a virtual micro power plant
at the Faculty of Electrical Engineering (FEE), Czestochowa University of Technology (CUT). In
the era of dynamic development of renewable energy sources, it is necessary to create alternative
electricity management systems for existing power systems, including power transmission and
distribution systems. Virtual power plants (VPPs) are such an alternative. So far, there has been no
unified standard for a VPP operation. The article presents components that make up the VPP at the
FEE and describes their physical and logical structure. The presented solution is a combination of
several units operating in the internal power grid of the FEE, i.e., wind turbines, energy storage (ES),
photovoltaic panels (PV) and car charging stations. Their operation is coordinated by a common
control system. One of the research goals described in the article is to optimize the operation of these
components to minimize consumption of the electric energy from the external supply network. An
analysis of data from the VPP management system was carried out to create mathematical models
for prediction of the consumed power and the power produced by the PVs. These models allowed us
to achieve the assumed objective. The article also presents the VPP data processing results in terms
of detecting outliers and missing values. In addition to the issues discussed above, the authors also
proposed to apply the Prophet model for short-term forecasting of the PV farm electricity production.
It is a statistical model that has so far been used for social and business research. The authors
implemented it effectively for technical analysis purposes. It was shown that the results of the PV
energy production forecasting using the Prophet model are acceptable despite occurrences of missing
data in the investigated time series.

Keywords: virtual power plant; short-term forecasting; measurement data processing; process
control; energy management

1. Introduction

The European Green Deal presented by the European Commission on 11 December
2019 assumes that by 2050, the EU will become “the first climate neutral continent”. This
goal requires achieving zero net greenhouse gas emissions and breaking the interdepen-
dence of economic development with the consumption of natural resources. In this regard,
it is assumed that EU countries will achieve zero net emissions in particular by reduction
of existing emissions, investments in green technologies and environmental protection [1].
These assumptions will also result in more dynamic development of the renewable energy
market and its greater share in the total power generation.

According to the Central Statistical Office in Poland [2], the energy obtained from
renewable energy sources (RES) comes mainly from solid biofuels (65.56%), wind farms
(13.72%) and liquid biofuels (10.36%). The total primary energy obtained from renewable
energy sources in Poland in 2019 was 396,498 TJ. The gross final consumption of energy
from renewable sources has increased in recent years by 8.8%, from 325,387 TJ in 2015 to
376,060 TJ in 2019. The increasing share of renewable energy sources in the power system,
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especially weather-dependent sources (wind, PV), may cause various complications in the
operation of the power system, but may also support its operation in special emergency
conditions. One possible solution in this case is virtual power plants. A virtual power
plant (VPP) is a combination of decentralized units whose operation for the power grid is
coordinated by a common control system. These units can be electricity producers such
as biogas, wind and photovoltaic energy conversion systems, cogeneration hydroelectric
power plants, electricity consumers, electricity storage facilities and other.

The goal of a VPP is joint marketing of electricity and flexibility for the entire group of
interconnected energy producing devices. Any decentralized entity producing, storing or
consuming electricity can become a part of a VPP. Unlike traditional power plants, VPPs
do not own energy resources. Instead, they own the data that is transferred between each
resource on the grid. VPPs focus on optimizing the way each resource is connected to the
grid, and thanks to the flexibility of a decentralized grid, they can effectively balance the
grid. The VPPs are able to maintain this balance by combining in their portfolio different
energy sources—such as solar, wind, biogas, water energy and more. Because there are
no uniform standards for power systems, there are various models of VPPs as well as of
grids they support. Some of them focus on the grid reliability, while other models focus on
maximizing economic benefits by selling surplus energy services to larger grids [3,4]. By
fast adjustment to the amount of electricity available in the grid, their aggregate capacity
allows them to optimally track the electricity price on the electricity exchange [5,6], and
thus to offer their electricity to the market in an effective way. In [7], the authors describe
the tender strategy of a VPP on the common energy and reserve market, while [8] deals
with the tender strategy of an electric vehicle aggregator that participates in both day-
ahead and reserve energy markets. In [9], a model is presented that also includes the grid
thermal loads and the energy storage. Another critical aspect of large-scale RES integration
is the operational security of the VPP operated network. In [10], the authors describe a
case of a VPP containing hydropower plants (HPP) and energy storage systems (ESS).
They analyze in detail power quality (PQ) issues on the basis of a set of 26-week multi-
point, synchronous measurements of power quality levels at four related points. The most
important conclusion from these studies is that the overall VPP impact on the long-term
grid performance in terms of the PQ was positive. In the works [11,12], the authors discuss
problems of grid security in terms of the voltage regulation and due to excessive grid
frequency. Adding distributed generation (DG) to the VPP paradigm allows for consistent
central control and coordinated market integration of several widely distributed energy
sources. As a consequence, the VPPs can participate in the frequency control by regulating
their output power in a coordinated manner for the sake of system stability. Another
important problem discussed in [13,14] is the uncertainty of energy production from the
RESs. The uncertainty and inaccuracy of forecasts increases with the time horizon and has
a significant impact on a VPP energy management planning. This paper focuses on the
problem of predicting electricity obtained from photovoltaic sources operating as one of
the elements of a virtual power plant (VPP). A new prediction algorithm, which has not
been used for these purposes so far, has been implemented.

2. Materials and Methods
2.1. VPP Hardware Infrastructure

The importance of renewable energy sources is increasing year by year. Stochastic and
intermittent nature of energy production from these sources negatively affects stability of
power systems. A solution to this problem may be integration of distributed sources that
would enable aggregation of production capacities as well as energy storage capacities.
As a result, optimal energy management would become possible [15,16]. The idea of VPP
can also support solutions in the Demand-Side Management (DSM) programs [17]. The
virtual micro-power plant operating at the Faculty of Electrical Engineering (FEE), CUT, is a
system that was developed gradually by adding new hardware and software components.
Initially, from the point of view of the power system, the FEE buildings were only an
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electricity consumer. Renewable energy conversion systems, i.e., photovoltaic panels and
three vertical axis wind turbines, were installed at the first stage to convert energy from the
sun and wind into electricity. Next, the system was enriched with an energy storage. The
final stage (so far) was building three charging stations for electric cars, which increased
the demand side of the system. Simultaneously with the hardware development, the IT
software structure was developed so that it became possible to monitor and manage not
only the virtual power plant as a whole, but also its individual elements. The components
making the virtual micro-power plant are shown in Figure 1.

Figure 1. Components making up the VPP at the FEE, CUT.

Nowadays, the challenge is to design and build a photovoltaic power plant to achieve
high benefits at low cost. Individual components of the power plant are examined and
selected, and then the number of particular components and their distribution are spec-
ified [18,19]. There are created innovative management systems [20–22]. Photovoltaic
power plants are becoming parts of larger systems that can store the produced electric
energy [23]. Mobile power plants are designed to ensure fast charging of hybrid and electric
cars [24]. Similar problems also apply to wind farms [25–28].

In the case of the micro VPP located at the FEE, the design of renewable energy
conversion systems was motivated mainly by three factors: (1) reduction of the negative en-
vironmental impact by decreasing the consumption of electricity from conventional power
plants, (2) development and practical testing of solutions related to the construction of a
virtual power plant and analysis of the obtained solutions from the scientific perspective,
(3) reduction of incurred costs. The construction of the wind farm and the photovoltaic
plant began at the same time. Due to the shape and location of the FEE buildings, it was
decided to place photovoltaic panels and wind turbines on the flat roofs of two buildings.
The wind turbines were located at the highest possible place, while the photovoltaic panels
were installed on the roof of the lower building. The location of the renewable energy
conversion systems is shown in Figure 2.

The power of the photovoltaic power plant, shown in Figure 3, is 33 kWp. It con-
sists of 132 polycrystalline panels with a power of 250 Wp each. A single panel size is
1640 × 990 × 40 mm and it weighs 19 kg. The efficiency of a panel is 15.6%. The photo-
voltaic panels are connected to two three-phase inverters from GoodWe, 17 kW of nominal
power each. They can operate with 20% overload. Due to the panel distribution geometry,
most of the panels (19.00 kWp of power) are connected to inverter #1, the remaining panels
(14.00 kWp of power) are connected to inverter #2. The output circuit of inverter #1 is con-
nected to three single-phase Victron Energy inverters, which include microprocessor-based
battery charging controllers. They make it possible to control the flow of electricity coming
from the photovoltaic power plant. By means of established control rules, this energy is
directed either directly to the current consumption of the FEE facilities or to the energy
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storage. The system is configured so that the charging of the energy storage can be carried
out only from part of the power plant, i.e., the energy passing through inverter #1. The
energy passing through inverter #2 is transferred to the city power grid. This configuration
results from the limited storage capacity (25 kWh) and from the analysis of the FEE facilities
needs. The installation brings a measurable ecological, economic and scientific effect. In
particular, research on energy quality is carried out, see, e.g., the results presented in [29].

Figure 2. The wind farm and the photovoltaic power plant located on the roofs of the FEE,
CUT buildings.

Figure 3. The FEE 45 kWp photovoltaic power plant.

The wind power plant, which can produce 30 kW of total power, consists of three
H-Darrieus-type 10 kW turbines with a vertical axis of rotation, is shown in Figure 4.
Each turbine is equipped with a direct drive permanent magnet synchronous, low-speed,
coreless generator (38 pairs of poles) and connected to the power grid via an inverter. The
turbines can start to operate at wind speeds above 1.5 m

s (low cut-in wind speed). They
achieve high efficiency, up to 95% of the captured aerodynamic power, at 150 rpm. The
maximum (nominal) power is achieved at the wind speed of 12 m

s . The safety system stops
the turbine is if the wind speed exceeds 17 m

s (cut-out wind speed).
The installation of renewable energy conversion systems had a positive effect on the

energy balance of the FEE buildings. Due to the production of electricity from own sources,
the volume of energy drawn from the power system was reduced. In general, the share of
electricity generated from renewable energy sources in Poland is less than 14%. Therefore,
any initiative that increases this share results in decrease of CO2 emissions, as the amount
of energy produced from burning fossil fuels is reduced. In addition, consumption of the
energy produced on site reduces the load on the power grid and the losses associated with
the transmission of electricity. The next stage of the virtual micro power plant development
was installation of an energy storage. It made it possible to control the generated electricity
stream so as to consume as much energy produced on site as possible. The energy storage
allows us to minimize the transfer of the generated energy to the power grid. The installed
energy storage is a battery based on the innovative AHI (Aqueous Hybrid Ion) technology.
The battery is made of stainless steel and synthetic cotton is used as a separator. The anode
is made of carbon composite, the cathode material is manganese oxide, and the electrolyte
equivalent is salt water (electrolyte sodium sulphate). The whole battery is closed in a
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plastic housing. A great advantage of this solution is that there is no risk of explosion,
hence there is no need to prepare a special room for the battery placement. This type of
energy storage can be installed in places with more stringent environmental protection
requirements, in offices or in private homes where people or animals are present. The unit
used in the FEE micro VPP is the M110-LS83 battery with capacity of 25 kWh at 48 V. The
M series battery consists of twelve S series batteries connected in parallel. It is possible to
connect to the battery a dedicated monitoring system (BMS), that allows to measure the
level of charge, current, voltage or temperature. The M series battery is shown in Figure 5.

Figure 4. The FEE 30 kWp wind power plant.

Figure 5. The 25 kWh energy storage installed in the FEE micro VPP. Source: [30].

The Vantage Pro 2 Plus weather station from Davis Instruments is a complementary
element of the VPP. It makes it possible to conduct various types of the VPP-related
analyzes and scientific research. The weather station unit is located next to the wind farm
and the photovoltaic plant. Thanks to the recorded weather data and the information on
the volume of electricity produced from the renewable energy sources, it is possible to
find relationships between them. The weather station allows for continuous measurement
of such quantities as: temperature, humidity, pressure, precipitation, wind speed and
direction, and solar radiation including the UV radiation. Data update period takes from a
few to 60 s depending on the measured quantity. It can therefore be assumed that successive
sets of weather data are recorded with a 60 s interval.

Another element that was added to the FEE micro VPP were three Ecotap WG2
car chargers. These chargers enable three-phase charging of electric and hybrid plug-in
vehicles. The chargers are equipped with type 2 sockets and each charger can charge two
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vehicles simultaneously. The charging power is adjusted individually to each vehicle being
charged. Initially, the chargers were used to a small extent, but the number of cars using
this charging option has been increasing every month. After the several years of the FEE
VPP operation we can state that the installation contributes to reduction of CO2 emissions
and supports popularization of ecological solutions. Almost all the produced electricity is
consumed locally. Due to relatively low power of the generation sources, the produced
power is usually lower than the FEE demand, so situations when the produced electricity
is fed into the power grid are exceptional. Several electricity meters were installed in the
FEE buildings to enable monitoring of the electricity consumption in individual pavilions.
A few years ago, one pavilion was completely rebuilt, and electricity meters were installed
on each floor of the pavilion. Since then, it is the best of all the metered pavilion in terms of
electricity consumption. The meters can measure active and reactive energy, both drawn
from and fed to the grid. Additionally, it is possible to measure instantaneous values of
active and reactive power, voltage, current and frequency.

2.2. VPP Software Infrastructure

Each component of the VPP physical infrastructure can communicate with other com-
ponents and transmit measurement data. Some components have dedicated software that
enables monitoring and, in the case of the energy storage, also control of the charging and
discharging process. The photovoltaic power plant and the energy storage are supervised
by three single-phase Victron Energy MultiPlus 48/5000/70 inverters. Monitoring and
management of energy flows is carried out by the software supplied with the inverters.
This system is locally monitored and controlled through the Color Control GX panel. Re-
mote access to the installation is possible through the Victron Remote Mangement (VRM)
software. On PC computers, the access can be obtained through a web browser (address
https://vrm.victronenergy.com/login) (accessed on 3 August 2021), on mobile devices
through a dedicated application. Figure 6 shows the basic block diagram view of the
system. The main element of this part of the system, which monitors and controls the
power flows, is the element marked in blue (Victron Energy Inverters).

Figure 6. System monitoring in the Victron Remote Mangement software.

The photovoltaic power plant, denoted as PV Inverter in Figure 6, as well as elements
denoted as Grid and AC Loads, which represent outputs from the inverters, are connected
to the system. The inverters have two types of outputs: guaranteed and non-guaranteed.
The difference between them is that if the power supply is disconnected from the power
grid and, at the same time, the electric energy is generated by the photovoltaic power
plant or is drawn from the energy storage, the voltage at the corresponding guaranteed
output is maintained and connected loads are still powered. A guaranteed output works
like a classic UPS. In the same case, the inverter cuts off the voltage at an non-guaranteed
output. If electric energy was supplied to the loads through a guaranteed output, in

https://vrm.victronenergy.com/login
https://vrm.victronenergy.com/login
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emergency situations, such as fire in a building, people could get an electric shock despite
disconnecting the FEE installation from the power grid. Due to those safety reasons,
the energy produced by the photovoltaic power plant or stored in the energy storage is
supplied to local loads in the FEE buildings through the non-guaranteed output denoted
as Grid in Figure 6. A negative value on this block indicates that energy flows from the
PV plant or the storage facility to the consumers. Only the subsystem that controls the
energy storage is supplied through the guaranteed output denoted in Figure 6 as AC Loads.
It is a small part of the installation located by the energy storage that requires non-stop
power supply. Lack of power necessitates a manual restart of the subsystem. The energy
to the AC Load output is directed first from the PV power plant, later from the energy
storage. If there is no energy available from these sources, it is drawn from the building
infrastructure (external power grid). In such case, this part of the micro VPP becomes
an electricity consumer and the flow value on the Grid block becomes positive. The final
component of the system is the energy storage. The application allows for tracking its level
of charge, voltage, current and its current status, i.e., charging, idle or discharging. In the
case of other components, we can track the instantaneous power on individual phases (L1,
L2, L3) and the total three-phase power. The application main screen also displays the real
time animation of how the electric energy is flowing between individual VPP components.
At the same time, it is possible to view historical data on the production of energy by
the PV installation, the energy consumption and the storage charge level, including the
maximum and minimum values of charge over a specified period. Additionally, for a given
period, we can get a summary of how much energy was produced, how much energy
was consumed through the guaranteed output, and how much was drawn and returned
through the non-guaranteed output. The minimum time range that can be presented on
the chart is one hour (in this case, the values are aggregated to fifteen-minute periods),
the maximum time range is two years (in this case, the individual values are aggregated
on a monthly basis). The database contains historical data on the electricity production
and consumption from the last five years. A chart presenting the basic historical data from
the last two years is presented in Figure 7. The blue plot shows the average monthly level
of the energy storage charge, the light blue area represents the maximum and minimum
values in a given period. These values are scaled in percent—the right scale of the chart.
The aggregated monthly energy production and consumption in kWh are presented as
orange and pink bars, respectively. The decrease of the energy consumption from May 2021
(in comparison with the same period of year 2020) is related with physical reconfiguration
of the load connection structure, i.e., supply of energy through the guaranteed and the
non-guaranteed outputs as described above, which took place just in May 2021.

Figure 7. Historical data presented in the Victron Remote Mangement software.

It is also possible to check what the electric energy was used for, i.e., loading the
storage battery, direct consumption (guaranteed output) or consumption by loads in the
FEE buildings (non-guaranteed output). This information is presented as in Figure 8.
In addition, the percentage division of energy in the last periods is shown, starting from
the last day and ending with the last year.
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Figure 8. Graphs showing what the energy from the photovoltaic installation was used for.

Another option is to observe where the electricity transferred through the guaranteed
output was drawn from. Figure 9 shows the breakdown of the consumed electricity by the
source of origin.

Figure 9. Graphs showing the breakdown of electricity transferred through the inverter’s guaranteed
output by the source of origin.

A user can define more ways of how different historical data are presented. The
number of observed quantities can be freely configured depending on the needs. Ready-
made widgets that can be added to the dashboard are used for this purpose. The only
thing that needs to be done is to specify the size of a particular widget. For instance, one
can track instantaneous values of power, voltage, current on individual elements of the
system, broken down into phases (L1, L2, L3), or temperature of the energy storage. An
example set of observed quantities is shown in Figure 10. The data from the last six months
are available, older data are gradually overwritten.
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Figure 10. Example set of widgets presenting historical data in the VRM application.

The portal presented above makes it possible to observe historical data in the way
specified in the application. Using the widgets only, the data cannot be subjected to
an arbitrary detailed analysis. The solution is the data export capability of the software.
For registered users, there are two paths for downloading data. The straightforward way
is to export the data in the form of CSV or XLS files, specifying only the data time range.
One should remember that it is possible to download detailed data not older than six
months in the case of detailed data (powers, voltages, currents), and not older than five
years in the case of electric energy. However, this method is troublesome if it is required to
send data in real time, for example, to carry out an ongoing analysis. The solution to this
problem is the dedicated Victron VRM API interface. After the authentication procedure,
it is possible to retrieve both historical data and the current values available in the VRM
Portal. Available API functions make it possible to collect information about the entire
installation, its parameters, configuration, location, instantaneous and aggregated values.
The collected data can then be used for further analysis. Such analysis is presented further
in this paper. Examples of graphs created on the basis of data obtained using the VRM
service are presented in Figures 11 and 12. These graphs present 15-min profiles of energy
production from the PV panels, recorded on 2 March 2021 and on 2 June 2021, respectively.

Figure 11. Fifteen-minute profile of PV energy production recorded on 2 March 2021.
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Figure 12. Fifteen-minute profile of PV energy production recorded on 2 June 2021.

In the case of the weather station software, it is possible to monitor the data lo-
cally, using dedicated software, and remotely, via the www.weatherlink.com (accessed on
10 August 2021) portal or from an application dedicated to mobile devices. The software
makes a broad range of data available. One can view real-time data or historical data.
The real-time data available from the web portal are shown in Figure 13. All measured
parameters are also saved in the database. The configuration of displayed quantities can
be defined as arbitrary. From the research point of view, it is important that the data can
be easily exported. The export is possible in the form of text files or in real time via API
functions. It is possible to set up notification of alarm states via e-mail or SMS, and to
subscribe to daily weather reports via e-mail. Measurement data from the station can also
be made available to the public. The users of the Davis Instruments weather stations create
a worldwide community that enables to check weather parameters online at locations all
over the world where these devices work.

Figure 13. Monitoring of the current weather parameters via the www.weatherlink.com (accessed on
10 August 2021) portal.

Measurement data from the electricity meters are recorded and stored in the database
by the Energia 4 application. The application reads data provided by the meters. It is
possible to download instantaneous data in real-time and specified data profiles. The
profile data are used by the electricity supplier for billing. Therefore, it is possible to
control the volume of electricity consumed and supplied on an ongoing basis. The modular
structure of the application allows you to view and analyze the recorded data or export
them in the form of raw data or predefined reports. The application also makes it possible
to configure dashboards available online, which ensures access to the data for less advanced
users. More advanced users can download data directly from the database, e.g., for research

www.weatherlink.com
www.weatherlink.com
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purposes. In this case, the user must have knowledge of the OBIS codes and the JSON
format in which the measurement data are exported. Figure 14 shows the website panel for
remote view and download of data stored in the database of the Energia 4 application.

Figure 14. The website panel for remote view and download of data stored in the Energia 4 applica-
tion database.

2.3. Metodology of Research
2.3.1. Correlations between Quantities Obtained from Different Sensors

In the further part of the article, examples of analysis of data obtained from measuring
instruments installed in the described VPP are presented. First, we compare the data
recorded by the pyranometer of the weather station, i.e., the intensity of solar radiation,
and the total energy produced by the PV panels. The purpose of this comparison was not
to build a predictive model, but to analyze the correlation between these quantities [31].
This study enabled to evaluate consistency of various data sources included in the virtual
power plant. For the quantitative determination of the amount of radiant energy received
by a PV module, it is necessary to convert the solar radiation density Shoriz incident on the
horizontal measuring plane of the pyranometer into the radiation density Smod incident on
the PV module plane tilted to the horizontal plane by inclination angle β, assuming that
the panels are facing south (azimuth = 180 degrees). For the daily analysis, the following
relationships are valid [32]:

Shoriz = Si sin(α), Smod = Si sin(α + β), (1)

where: Si—maximum solar radiation measured in the plane perpendicular to the sun’s
rays, α—sun elevation angle determined as:

α = 90− φ + δ, (2)

where: φ—latitude, δ—declination angle calculated in turn using the formula:

δ = 23.45◦ sin
[

360
365

(284 + d)
]

, (3)

where: d—number of the day of the year for which the calculations are performed.
A different approach was used in this study. Since the study purpose was only to check

the consistency of data recorded from different sensors, the Equations (1)–(3) necessary
to determine the radiation density with respect to the PV module plane were not applied.
Instead, an analysis of the correlation between the raw pyranometer readings and the total
energy produced by the available PV modules was conducted. The research was performed
in accordance with the following methodology:

1. Export of weather data from the WeatherLink application and data from the VRM
portal to CSV files.
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2. Import of the data from CSV files to the Jupyter environment using the Pandas
library [33,34].

3. Data cleaning, including detection and completion of NaN values by interpolation.
4. Averaging of the completed data series over one-hour intervals.
5. Selection of the data time range(s) for the analysis purpose.
6. Fitting linear models for hourly data in the selected periods using the ScikitLearn

machine learning library, estimation of correlation coefficients [35].
7. Assessment of the fit quality and formulation of conclusions.

At the first step the measurement weather data from the WeatherLink and the electric
data from the Victron service (VRM) were exported to text files in the CSV format. Next,
the data were imported into the unified Python-based Jupyter computation environment
that includes the NumPy, Pandas, Scikit-Learn and other libraries. An important stage was
cleaning the data series from NaN (Not A Number) values representing data missing due to
failures of the instruments or communication interfaces or incorrect operation of services.

The data taken for analysis were time series of two recorded quantities, i.e., the solar
radiation intensity Ssol(t), in W/m2, recorded in one-minute intervals and the total energy
produced by the PV installation Epv(t), in Wh, obtained for 15 min intervals. The linear
interpolation was applied to complete the missing values [36]. A missing value in the
interval [t0, t1] was determined using the formula:

Ŷ(t) = Y0 +
(Y1 −Y0)

t1 − t0
(t− t0), (4)

where: t1—time instant of occurrence of the last valid numerical value before the data
gap, t2—time instant of occurrence of the first valid numerical value after the data gap,
Ŷ(t)—interpolated value of the quantity (Ssol lub Epv), Y1, Y2—values of the quantity
recorded at t1 and t2, respectively.

In the next stage of the analysis, the complete time series Ssol(t) and Epv(t) without
NaN values were aggregated over a defined time interval. For the purpose of this study,
the one-hour aggregating interval was specified. The new time series S1hsol representing
the one-hour averaged values of the solar radiation were calculated as:

S1hsol =
1

60

tstop

∑
tstart

Ssol(t), (5)

where: tstart, tstop—the beginning and the end time of the data averaging interval.
The data recorded in March and June of 2021 were selected for the analysis. The data

was analyzed for the correlation between the average one-hour solar radiation intensity
and the one-hour energy production from PV modules. A linear dependence of the energy
production E1hpv on the radiation intensity was assumed:

Ê1hpv = w0 + w1S1hsol , (6)

where: w = (w0, w1)—coefficient vector, Ê1hpv, Wh—estimator of the energy production.
To determine the coefficients in (6), the least squares method was used to obtain

the best fit of the linear model by minimizing the sum of squared residuals between the
measured values and the values predicted by the linear approximation (6) [31]:

min
w

= ‖S1hsolw− Ê1hpv‖
2
2, (7)

where: ‖. . .‖2
2—square norm.

The calculations were performed in Python using the Scikit-learn machine learning
library. In addition to the model coefficients, the linear correlation coefficient, the coefficient
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of determination and typical error measures such as MAE, MSE and RMSE [37] were
determined. The results of the regression analysis are presented later in this article.

2.3.2. Prediction of Energy Production

Forecasting energy production from PV panels is presented as the second example of
using data from the presented VPP. There are many time series forecasting methods used
to forecast PV energy production, including: Autoregressive Moving Average (ARMA),
Autoregressive Integrated Moving Average (ARIMA) or Seasonal Autoregressive Inte-
grated Moving Average (SARIMA) [37,38]. In this work, the prophet forecasting model
developed by Facebook employees [39] was used. The method allows a practical approach
to “scale” at scale forecasting, which combines configurable models with performance
analytics. Ref. [39] proposes a modular regression model with interpretable parameters
that can be adjusted by analysts with domain knowledge about time. In this work, the
analysis of time series in terms of forecasting PV energy production was carried out in the
following stages:

1. Export data from VRM installation to CSV files;
2. Data import from CSV files to Jupyter environment using Pandas library;
3. Data cleaning, including the detection and completion of NaN values with the use of

interpolation;
4. Data aggregation into hourly intervals;
5. Selection of sample time periods for the purposes of the analysis;
6. Application of the prophet forecasting model and “at scale” approach to energy

production forecasting;
7. Assessment of forecasting quality and formulation of conclusions.

The flowchart of the research methodology is depicted in Figure 15.

Figure 15. The flowchart of the research methodology.

The first six steps of data analysis are described in Section 2.3.1, while the prophet
forecasting model is presented below.

The Prophet prediction model is based on the time series model proposed by Harvey
and Peters in [40]:

y(t) = g(t) + s(t) + h(t) + εt (8)

where: g(t) is a trend function that models non-periodic changes in the value of the series,
s(t) models periodic changes (e.g., weekly and annual seasonality), h(t) models effects
of holidays, εt represents an error, which is assumed to be normally distributed nym. In
model (8), you can easily adjust the multi-period seasonality and also allow the analyst
to test various assumptions about trends. In addition, unlike ARIMA models, the mea-
surements do not need to be regularly spaced, and there is no need to interpolate missing
values. An important feature of the method is the quick fit of the model. Ultimately, the
model has easily interpreted parameters and can easily be extended with new components.

In the Prophet model, two trend functions representing non-periodic changes in the
value of the time series were proposed, i.e.,: a non-linear growth model with saturation
and a linear trend with change points that can be selected automatically or by an analyst.
The nonlinear growth model with saturation expresses the following dependence:

g(t) =
C

1 + e−k(t−m)
, (9)
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where: C—the carrying capacity, k—the growth rate, m—an offset parameter. A detailed
description of the linear trend model can be found in [39].

The seasonal component, depending on (8), was modeled on the basis of the Fourier
series in the form:

s(t) =
N

∑
n=1

(
an cos

(
2πnt

P

)
+ bn sin

(
2πnt

P

))
, (10)

where: P—expected period (e.g., P = 7 in the case of weekly seasonality).
To determine the seasonality with the use of approximation (10), it is necessary to

estimate the vector of 2n parameters:

β = [a1, b1, . . . an, bn]. (11)

The model fit operation is performed on the basis of a matrix of seasonality vectors
computed for each t-value for historical and future data. For example, if we want to model
the annual seasonality for N = 3, the form of the matrix of seasonality vectors is expressed
by the following formula [39]:

X(t) =
[

cos
(

2π(1)t
365.25

)
+ sin

(
2π(3)t
365.25

)]
(12)

Apart from the trend (9) and seasonality (10) models, the Prophet model introduces
the option of taking into account the Christmas event. However, in this study, only the
above-described components of the model were used to forecast energy production by PV
modules (8). The results of the forecasts are presented later in this paper.

3. Results

In the further part of the article exemplary results of the analysis of data obtained from
the described VPP are presented and discussed. The recorded profiles of the aggregated
hourly PV energy production in March and June of 2021 are shown in Figures 16 and 17,
respectively. Figures 18 and 19 show the average hourly solar radiation intensity recorded
over the same two months. One can see large daily fluctuations of these two correlated
quantities in March, 2021. Two gaps in the energy production on 20 June and 27 (Figure 17)
resulted from the system failures. The PV installation did not produce electricity on these
two days. Another result of the system failure is that the weather data for 19–21 June was
also not recorded (Figure 19).

Figure 16. Hourly PV power plant energy production measured at the CUT VPP in March, 2021.
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Figure 17. Hourly PV power plant energy production measured at the CUT VPP in June, 2021.

Figure 18. Average hourly solar radiation measured at the CUT VPP in March, 2021.

Figure 19. Average hourly solar radiation measured at the CUT VPP in March, 2021.

The analysis of correlation between the average hourly solar radiation intensity
recorded by the pyranometer and the hourly PV energy production in March and June
of 2021 are shown as the linear regression fits in Figures 20 and 21 respectively. A large
number of outliers on the graph in Figure 21 is noteworthy. The points, for which the
energy production E1hpv is zero, occur due to the aforementioned system failure and a
break in the electricity production, while the solar radiation data were still measured.
Similarly, the points for which S1hsol is zero, but at the same time the electricity production
is non-zero, occur due to the lack of meteorological data.

Exemplary results of the PV plant energy production forecasting using the Prophet
Forecasting Model (8) described above and the data recorded at the CUT VPP are pre-
sented in Figures 22–33. The study was carried out using the methodology described in
Section 2.3.2. The presented results concern three selected days of March and three days of
June, 2021, assuming a flat and a linear trend (12 cases in total). The graphs present the
one-day-ahead hourly forecasts (red plot) with corresponding 95% confidence intervals
(orange strip) against the actual data (blue bar graph for the same day) and the earlier
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data used as learning datasets (blue bar graphs). For March 3, the learning set included
data from a day before (Figures 22 and 23), for March 18 (Figures 24 and 25) and March 29
(Figures 26 and 27) the learning set included data from three days before.

Figure 20. Linear regression model of correlation between the average hourly solar radiation and the
hourly PV plant energy production for March, 2021.

Figure 21. Linear regression model of correlation between the average hourly solar radiation and the
hourly PV plant energy production for June, 2021.

Figure 22. The PV plant energy production forecast for 3 March, on-day learning set, flat trend model.
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Figure 23. The PV plant energy production forecast for 3 March, on-day learning set, linear
trend model.

Figure 24. The PV plant energy production forecast for 18 March, three-day learning set, flat
trend model.

Figure 25. The PV plant energy production forecast for 18 March, three-day learning set, linear
trend model.
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Figure 26. The PV plant energy production forecast for 29 March, three-day learning set, flat
trend model.

Figure 27. The PV plant energy production forecast for 29 March, three-day learning set, linear
trend model.

For 4 June (Figures 28 and 29), 10 June (Figures 30 and 31) and 25 June (Figures 32 and 33)
the learning set included data from two days before.

Figure 28. The PV plant energy production forecast for 4 June, two-day learning set, flat trend model.



Energies 2021, 14, 6200 19 of 24

Figure 29. The PV plant energy production forecast for 4 June, two-day learning set, linear
trend model.

Figure 30. The PV plant energy production forecast for 10 June, two-day learning set, flat trend model.

Figure 31. The PV plant energy production forecast for 10 June, two-day learning set, linear
trend model.
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Figure 32. The PV plant energy production forecast for 25 June, two-day learning set, flat trend model.

Figure 33. The PV plant energy production forecast for 25 June, two-day learning set, linear
trend model.

As can be seen in Figures 22 and 33, the forecasts cover the next 24 h, including the
hours when the energy production is known to be zero—at night the solar radiation is zero
and the PV plant does not work. The authors are aware of the weakness of the algorithm
in this regard. However, one of the aims of this article was only to verify the validity of
using the Prophet Forecasting Model to forecast electricity production by a PV power plant.
Analyzing graphs in Figures 22 and 33, it can be noticed that more accurate forecasts were
obtained for a flat trend model.

4. Discussion and Conclusions

The results of the regression analysis for March and June, 2021, presented in
Figures 20 and 21 and in Table 1, show that the insolation level was more stable in March.
This is also confirmed by the coefficient of determination: for the March data R2 = 0.95, for
the June data R2 = 0.64.

Table 1. Parameters for assessing accuracy of the linear approximation of the PV plant energy
production vs. the insolation level.

MAE MSE RMSE R2

(kWh) (kWh) (kWh) -

March 2021 0.62 1.07 1.03 0.95
June 2021 1.97 12.79 3.58 0.64

It should be pointed out that determining the parameters from Table 1 is important
when selecting the length of the sequences that are used to train a prognostic model. If the
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coefficient of determination from is too low (below 0.8), the training sequences should be
shortened to improve the prediction accuracy. To support this conclusion, we conducted
cross-validation of the MAE prediction errors for various periods—from 1 to 15 days—of
the model training. The results of this analysis are presented in Figure 34 for March and in
Figure 35 for June 2021. The decrease of the MAE with shortening of the learning period is
clearly visible in Figure 35 because the coefficient of determination for the June data is low.
However, this is not a rule for the plots in Figure 34 because the coefficient of determination
for the March data is high, which confirms the above thesis.

Figure 34. Plots of the MAE prediction error vs. the prediction horizon obtained from cross-validation
for the March 2021 data.

Figure 35. Plots of the MAE prediction error vs. the prediction horizon obtained from cross-validation
for the June 2021 data.

The VPP data analysis carried out in Section 3 clearly indicates that an important
factor affecting the prediction accuracy of the used model (8) is appropriate selection of
assumed trend function g(t). In all the presented cases, the MSE and MAE errors for a flat
trend function, presented in Table 2, are lower than the corresponding errors for a linear
trend function, presented in Table 3.

Table 2. Forecasting accuracy errors assuming a flat trend function.

MSE MAE
(kWh) (kWh)

3 March 2.29 0.91
18 March 3.72 1.21
29 March 3.24 1.33

4 June 2.56 1.04
10 June 2.75 1.32
25 June 1.93 0.97
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Table 3. Forecasting accuracy errors assuming a linear trend function.

MSE MAE
(kWh) (kWh)

3 March 5.60 1.88
18 March 8.75 2.43
29 March 28.9 5.1

4 June 2.84 1.49
15 June 41.7 6.25
25 June 4.70 1.83

We suppose that in further experiments, we should go towards models with a spline
trend function g(t), which would allow for combining the advantages of both linear and
nonlinear functions.

The forecasting accuracy is significantly affected by the quality of historical data and
occurrence of the system failures. In Table 1, we can see significantly greater forecasting
errors for the June data because, as it was mentioned earlier, on two days of June 2021
the PV power plant was out of operation due to the system failure. For March, when the
electricity production remained uninterrupted, the forecasting errors are much lower. The
biggest difference occurs in the case of the MSE error.

It should be noted that in this work, we were verifying the statistical model that
had been used so far for social and business research. The authors decided to apply it to
technical analysis purposes, more specifically for prediction of electricity production at
a photovoltaic farm. The next step in the development of the algorithm, which is now
based only on the historical energy production time series, will be its extension by adding
elements related to the physics of the phenomenon, like the insolation level time series.
Currently, the model provides forecasts also for the night hours, when the PV power plant
is out of operation. These values are different from zero, which deteriorates the forecast
accuracy. In the authors’ opinion, limiting the forecast only to the day hours, when the PV
plant is in operation, will have a positive impact on the forecast accuracy. An appropriate
further research and tests will show to what extent.
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