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Abstract: An efficient energy management system is integrated with the power grid to collect
information about the energy consumption and provide the appropriate control to optimize the
supply–demand pattern. Therefore, there is a need for intelligent decisions for the generation and
distribution of energy, which is only possible by making the correct future predictions. In the energy
market, future knowledge of the energy consumption pattern helps the end-user to decide when to
buy or sell the energy to reduce the energy cost and decrease the peak consumption. The Internet
of things (IoT) and energy data analytic techniques have provided the convenience to collect the
data from the end devices on a large scale and to manipulate all the recorded data. Forecasting
an electric load is fairly challenging due to the high uncertainty and dynamic nature involved due
to spatiotemporal pattern consumption. Existing conventional forecasting models lack the ability
to deal with the spatio-temporally varying data. To overcome the above-mentioned challenges,
this work proposes an encoder–decoder model based on convolutional long short-term memory
networks (ConvLSTM) for energy load forecasting. The proposed architecture uses encode consisting
of multiple ConvLSTM layers to extract the salient features in the data and to learn the sequential
dependency and then passes the output to the decoder, having LSTM layers to make forecasting. The
forecasting results produced by the proposed approach are favorably comparable to the existing state-
of-the-art and better than the conventional methods with the least error rate. Quantitative analyses
show that a mean absolute percentage error (MAPE) of 6.966% for household energy consumption
and 16.81% for city-wide energy consumption is obtained for the proposed forecasting model in
comparison with existing encoder–decoder-based deep learning models for two real-world datasets.

Keywords: energy load forecasting; energy management system; convolutional long short-term
memory network; smart home energy management system; smart grid energy management system

1. Introduction

Smart grid is a collective platform of multiple technologies connected to a common
network, either in a centralized or decentralized way. The smart grid network consists of
the end devices, grid operators, producers and consumers [1,2]. Load forecasting greatly
influences the smart grid operations, including energy purchasing, energy storage, peak
load shaving, load dispatching, and electric vehicle scheduling for charging/discharging
in the smart power distribution system. Conventional power grids have been evolved to
smart grids in which electricity consumers are replaced with prosumers that can produce
and consume electricity. Distributed energy resources (DERs) such as energy storage
systems (ESSs), renewable energy sources (RESs), and electric vehicles (EVs) are playing a
vital role in the transition towards the smart grid [1,3].
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In particular, with the increasing adoption of automation devices and distributed
renewable energy generation, energy management from residential customers to a large-
scale grid has attracted more attention. The smart grid decision-making is only possible
by making the right future energy load forecast. Internet of things (IoT) and energy data
analytic techniques have provided the convenience to collect the data from the end devices
on a large scale and manipulate all the recorded data into large databases. However, new
challenges have arisen where it is a major concern to manage the energy consumption in a
more efficient, secure, and reliable way while guaranteeing an uninterrupted bidirectional
communication for better control and monitoring of the smart grid network including user
assets. In recent studies, energy management systems (EMSs) have been considered as
an emerging technology to account for power generation, distribution, and the dynamic
processes of supply–demand management, load control, and energy storage service [4].
Energy load data forecasting is considered to be a challenging task as it varies temporally,
depending on the distribution of features and labels available up to each timestamp. In
order to draw the energy consumption model, many correlated features exist which are
driven by the events associated with the energy consumption such as HVAC, refrigerators,
cooking schedules, washing clothes, etc. Each event is determined by the event start
time and event duration [2,5]. To deal with this situation, researchers have focused on
the different categories of load forecasting such as one-step-ahead or multi-step-ahead
forecasting to open the way for multiple applications such as device scheduling, energy
market auctioning, peer-to-peer energy trading within a community, etc. [6].

In the energy market, load forecasting has become a vital challenging task for all
entities. Load forecasting is considered a time series problem which has been solved using
various statistical and artificial intelligence methods. The traditional statistical models
commonly include multiple linear regression, exponential smoothing, and auto-regressive
integrated moving average (ARIMA). However, these models have the limitation of dealing
with the nonlinear nature of energy load data. To tackle this problem of nonlinearity, deep
learning and machine learning have become very popular in recent times, inspired by state-
of-the-art achievements in image classification [7], natural language processing [8], protein
synthesis [9,10], drug discovery [11], and robotics [12]. Deep neural network architectures
have the ability to learn complex data representations of the datasets, which alleviates the
need for manual feature engineering and model design, considered to be a time-consuming
and tidy job. Gigantic companies such as Google, Facebook, Microsoft, and Amazon
are embracing this technological revolution by using and simultaneously improving the
deep learning techniques to boost up many of their services. In sequence-to-sequence
learning, especially dealing with time series modelling, recurrent neural networks (RNN),
and in particular, long short-term memory networks (LSTMs) [13], have been proven to
be a remarkably effective tool. In the case of time series modelling, various studies have
demonstrated the stability and power of long short-term memory; for example, in natural
language processing, the next sequence is predicted using the previous step real and actual
data representation. In recent years, many studies have been conducted to deal with the
spatial and temporal features of the data by combining the attributes of CNN and LSTM
models, giving rise to hybrid architectures such as encoder–decoder. With the continuous
development of the deep learning architectures, encoder–decoder networks based on CNN
and LSTM frameworks have conquered a lot of research fields including facial expression
recognition [14], machine translation [15], and video captioning [16], which is the most
common way to combine LSTM with CNN, and can yield satisfying performance. CNNs,
LSTMs, and other DNN architectures are individually limited in their modeling capabilities,
and we believe that the energy load forecasting task can be improved by combining these
networks in a unified framework. A conventional encoding–decoding structure is not
enough to deal with the spatio-temporal data. To deal with spatio-temporal data, there is a
need for special encoder–decoder architecture that can work in both domains to capture
spatial behavior as well as temporal characteristics of the energy consumption data, which
paved a way to convolutional long short-term memory (ConvLSTM) [17]. The proposed
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encoder–decoder model leverages the benefits of ConvLSTM which has convolutional
structures embedded in LSTM cells using the convolutional operations in both the input-to-
state and state-to-state transitions. The encoder is comprised of multiple ConvLSTM layers
forming an encoding network, and the decoder has been built up of LSTM layers forming
the forecasting architecture. By concatenating the encoder and decoder, we build an end-
to-end trainable model for energy load forecasting. According to the author’s knowledge,
this is the first time that ConvLSTM-LSTM-based encoder–decoder architecture has been
designed, trained, and analyzed to forecast energy load consumption to develop an efficient
energy management system. The main contributions of this work are as follows:

• A novel end-to-end deep learning model for energy load forecasting framework based
on encoder–decoder network architecture is proposed and designed. The encoding
network consists of ConvLSTM and decoder with recurrent neural network-based
LSTM, which serves to make the day ahead forecast.

• We formulate energy load forecasting as a spatio-temporal sequence forecasting prob-
lem that can be solved under the general sequence-to-sequence learning framework.
Experiments prove that ConvLSTM-based architecture is more effective in capturing
long-range dependencies.

• The performance of the proposed architecture is analyzed by training it with different
optimizers viz. Adam and RMSProp to choose the optimal model.

• The proposed framework has good scalability and can be generalized to other similar
application scenarios. In this work, we exploited univariate datasets ranging from a
single household to city-wide electricity consumption.

• Quantitative and qualitative analyses are performed to forecast week-ahead energy
consumption and the efficacy of the proposed model is confirmed in both cases
compared with the existing state-of-the-art approaches.

The rest of the paper is organized as follows: Section 2 provides the related work.
Section 3 gives background on the deep neural networks. In Section 4, we formulate the
proposed energy load forecasting model based on deep neural network architectures. Im-
plementation details, including training dataset and training process of the proposed model
are also provided. Section 5 presents the performance evaluation through experimental
results and comparison with other existing models. Section 6 provides the conclusion of
the paper and suggests the future work.

2. Related Work
2.1. Smart Power Distribution Systems

In the Smart Power Distribution System, the demand response management system
has a role to take valuable decisions concerning the energy generation and consumption. It
consists of an energy management system (EMS) whose objective includes better power
quality, integration of the end devices, PVs, ESSs, and EVs, profit maximization of aggre-
gators, and reducing the energy cost to the customer. On the basis of architecture, EMS
can be categorized as either centralized EMS, decentralized EMS or hierarchal EMS, which
gives intuition about where to place the control [18]. Hence, EMS gave rise to the three-tier
architectural framework from a single home to an aggregator and from an aggregator to a
utility company (power grid). The energy management at a single house or a building level
is known as a Home Energy Management System (HEMS) or Building Energy Management
System (BEMS). The HEMS exploits the shiftable loads at homes to schedule them in an
optimized manner which results in the reduction in the cost and peak consumption of
the electricity in a particular home or a building. Similarly, the smart power grid has
proved to be a key component for sustainable next-generation energy systems. Smart Grid
Energy Management System (SGEMS), in collaboration with the internet, has paved the
way to tackle with the energy generation, transmission, storage, consumption, and mar-
ket using the Internet-based smart operation cloud platforms, to perform remote control
optimization and improve operation efficiency by delivering the proper services [1,19,20].
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SGEMS has the ability to operate across its domain, whether a city, a local community, or a
university campus.

2.2. Time Series Energy Load Forecasting

In the recent published literature, time series forecasting has gained popularity in
many academic research fields. Time series forecasting models predict future values of
a target depending upon the domain of interest [21]. A variety of methods have been
developed to deal with the time series modelling, as shown in Figure 1. In our case, we
are concerned with the energy load forecasting, i.e., electricity consumption or demand
load prediction. Numerous methods have been developed to tackle the problem of en-
ergy load forecasting to develop an efficient energy management system for the smart
power distribution systems. Later, this energy management system can intelligently make
decisions for the applications, including energy generation, storage, and distribution in
multiple domains such as households, buildings, cities, etc. [22]. The energy load forecast-
ing approaches range from statistical approaches to artificial intelligence-based methods,
as shown in Table 1. They are categorized as:

Figure 1. Illustration of time series forecasting models.

2.2.1. Statistical-Based Methods

Recently, in the case of statistical-based load forecasting, the authors in [23] proposed
Conditional Hidden Semi Markov Model (CHSMM) to forecast the residential appliance
demand, which was evaluated using the Pecan Street database. The Auto-Regressive
Moving Average (ARMA) model is considered as the famous traditional method for load
forecasting. The authors in [24] applied the ARMA model to the California power market
to make the electricity forecasting. In [25], an adaptive linear model (LM) procedure is
employed to predict the residual component demand using the results of the Adaptive
Circular Conditional Expectation (ACCE) process at each time window. Similarly, many
more statistical methods are being improved to increase the accuracy of the forecast results.
Statistical modelling is rarely utilized for the time series modelling of the energy load
forecasting due to several limitations that affect the performance of the energy management
system, such as high error probability; the reason is the input and output relation is
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represented by simple regression functions that are not effective to map the non-linear and
dynamic uncertainty in the dataset.

2.2.2. Artificial Intelligence Methods

In [26], the fuzzy logic controller method is proposed for residential load forecasting
using two inputs to draw the uncertain relation of the input and output. Furthermore,
standard machine learning algorithms have been introduced to deal with the energy
load forecasting problem such as random forest with decision trees, linear regression and
gradient-boosted trees, which were evaluated on Spanish electricity load data with a ten-
minute frequency [27]. In the problem of load forecasting, machine learning models as
well as fuzzy logic-based models cannot accurately predict the trend of the load. There
are always deviations in the case of forecasting the future consumption. This deviation is
caused by the non-linearity and uncertainty in the consumption load data because it varies
spatially and temporally. The spatial variation is due to the infrastructure and population
of the domain. Even though using normalization to transform the data to the common
scale, the temporal difference cannot be converged to the same scale [28]. To reduce a
system’s computation burden and complete the real-time implementation, the deep neural
network-based architectures came into existence to deal with the non-linear and dynamic
system to improve the prediction performance.

In the field of energy load forecasting, which is formulated as a time series problem,
many new ideas using deep learning have been successfully applied [29]. The reason
behind this is the availability of a large amount of electricity data. Deep neural networks
feed on data and the performance is directly proportional to dataset size. In the previous
decade, several DNN architectures have been implemented to acquire a low error rate
between the forecasted load and the actual consumption.

Table 1. Review of the recent publications in energy load forecasting.

Model Author Approach Dataset Domain Year Dataset

Statistical
Modelling

Yuting ji et al. [23] Conditional Hidden
Semi Markov Model

Household
appliances 2020 Pecan street database

J. Nowicka-Zagrajek et al.
[24], ARMA CAISO 2002 California, USA

S.Sp. Pappas et al. [30] ARMA
Hellenic Public

Power Corporation
S.A.

2018 Greece

Nepal, B. et al. [31] ARIMA East Campus of
Chubu University 2019 Japan

Fatima Amara et al. [25] ACCE with Linear
Regression Model

Household electricity
consumption 2019 Montreal, Quebec

K.P. Amber et al. [32] Multiple Regression
Model

Administration
building electricity

consumption
2015 London, UK

M. R. Braun et al. [33] Multiple Regression
Model

Supermarket
electricity

consumption
2014 Yorkshire, UK

AI-Based Modelling

S.M. Mahfuz et al. [26] Fuzzy Logic
Controller

Residential
apartment 2020 Memphis, TN, USA

Galicia et al. [27] Ensembles Spanish Peninsula 2017 Spanish electricity
load data

Grzegorz Dudek et al. [34] LSTM and ETS 35 European
countries 2020 ENTSO-E

Ljubisa Sehovac et al. [35] S2S with Attention Commercial building 2020 IESO, Ontario,
Canada

Yuntian Chen et al. [28] Ensemble Long
Short-Term Memory

Provincial (12
districts) 2021 Beijing, China



Energies 2021, 14, 6161 6 of 23

Table 1. Cont.

Model Author Approach Dataset Domain Year Dataset

T. Y. Kim et al. [36] CNN-LSTM Household electricity
consumption 2019

UCI household
electricity

consumption dataset

W. Kong et al. [37] Sequence-to-
Sequence

Household electricity
consumption 2019 New South Wales,

Australia

D. Syed et al. [38] LSTM Household Electricity
Consumption 2021

UCI household
electricity

consumption dataset

Kunjin Chen et al. [39] ResNet and
Ensemble ResNet

North American
Utility Dataset,
ISO-NE, and

GEFCom 2014

2018

North American
Utility Dataset,
ISO-NE, and

GEFCom 2014

Mohammad F. et al. [40]

Feed Forward Neural
Network and

Recurrent Neural
Network

NYISO 2019 New York, USA

3. Deep Learning Architectures for Energy Load Forecasting Modelling
3.1. LSTM-Based Architecture

LSTM is considered as one of the famous and most employed recurrent neural network
(RNN) architectures for the time series modelling. The flow of information in the LSTM
takes place in the recurrent fashion, which internally forms a chain-like structure, shown
in Figure 2. RNN-based architectures have always performed well in the case of load
forecasting. LSTM has the ability to memorize the long-term information using the memory
cell state. The flow of information is controlled by four gates which are placed sequentially
inside the LSTM cell, namely forget gate, input gate, output gate, and input node gate, as
shown in Figure 3. Every time a new input comes, its information will be accumulated to
the cell if the input gate it is activated. The activation function is the main contributor in
gate formation and has the ability to scale the input close to zero either (0, 1) or (−1, 0, 1).
The previous cell status Ct−1 depends on the forget gate and can be forgotten in this process
if the forget gate ft is ON, i.e., decision ranges from 0 to 1 where 0 means to forget this
information and 1 means to keep it. The flow of the latest cell output Ct to the final state ht
is further controlled by the output gate ot.

Figure 2. Unrolled LSTM architecture.
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Figure 3. Internal structure of LSTM cell.

Equations (1)–(6) represents mathematical formulation for the individual LSTM cell:

it = σ(Wxixt + Whiht−1 + WciCt−1 + bi) (1)

ft = σ
(

Wx f xt + Wh f ht−1 + Wc f Ct−1 + b f

)
(2)

C̃t = tanh(Wxcxt + Whc ∗ ht−1 + bi)l (3)

Ct = ft ◦ Ct−1 + it ◦ C̃t) (4)

ot = σ(Wxo ∗ xt + Whoht−1 + Wco ◦ Ct + bo) (5)

ht = ot ◦ tanh(ct) (6)

3.2. LSTM Encoder–Decoder-Based Architecture

In the load forecasting task, both the input and output are of variable-length sequence
depending on the type of the problem [41]. To address these types of problems, encoder–
decoder-based architecture came into existence. The model is comprised of two sub-models:
the encoder, which takes in the input sequence, encodes it, and feeds it to next sub-model;
and the decoder, which reads the encoded input sequence and makes a prediction to
produce the output sequence, shown in Figure 4. In case of time series modelling, the
LSTM model is mostly used in the decoder network, allowing it to both know what was
predicted for the prior part in the sequence and accumulate internal state while outputting
the sequence.

Figure 4. Encoder–decoder for sequence-to-sequence learning for time series modelling.

3.3. CNN- and LSTM-Based Architecture

The CNN- and LSTM-based hybrid architecture is basically an encoder–decoder
architecture, in which CNN acts as an encoder and LSTM acts as a decoder [36]. An
encoder part with a one-dimensional CNN model has a convolutional layer that operates
over a 1D sequence of the input data followed by a second convolutional layer. Each
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convolutional layer is followed by an activation layer and then a pooling layer whose
job is to distill the output of the convolutional layer to the most salient elements. Both
convolutional layers have ReLU activation function. The convolution layer applies the
convolution operation to the incoming time series sequence and passes the results to the
next layer. The pooling layer of the second convolutional layer is followed by a flatten
layer to reduce the feature maps to a single one-dimensional vector. The flatten layer is
connected to repeat vector layer to obtain the output from the previous layers and forward
it to the decoder part of the network. The decoder part consists of the LSTM layer with a
rectified linear unit (ReLU) activation function followed by a dropout of 50%. The LSTM
output is fed to the dense fully connected layer called the time-distributed layer, followed
by one more fully connected layer that interprets the output of the model.

3.4. ConvLSTM Architecture

ConvLSTM is used to capture spatial–temporal dependency in the time-series electric-
ity consumption dataset. ConvLSTM is said to be an extension of the CNN-LSTM approach
described previously. ConvLSTM performs the convolutions as in CNN as part of the
LSTM for each time step. Recently, with this configuration, it boomed image recognition
and prediction with excellent results [17,42,43]. ConvLSTM uses convolutions directly
as part of the reading input into the LSTM cells themselves, as shown in Figure 5. Re-
cently, [44] has employed a ConvLSTM-based load forecasting model to produce least
error with high accuracy on the time series data collected in Maine, USA. This model has a
CNN-based encoder which extracts the features from the time series data and ConvLSTM
further processes the spatiotemporal information.

Figure 5. The internal structure of ConvLSTM cell.

ConvLSTM has been applied to various tasks such as predicting tumor growth [45],
biological age estimation [42], spatial feature extraction for hyperspectral image (HSI)
classification [43], etc. Depending on the applications, ConvLSTMs have similar variants
such as ConvLSTM 1D, ConvLSTM 2D, and ConvLSTM 3D with a difference in the type of
the filter used to initiate the operations.

The mathematical formulation of the ConvLSTM cell can be expressed as:

it = σ(Wxi ∗ Xt + Whi ∗ Ht−1 + Wci ◦ Ct−1 + bi) (7)

ft = σ
(

Wx f ∗ Xt + Wh f ∗ Ht−1 + Wc f ◦ Ct−1 + b f

)
(8)
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C̃t = tanh(Wxc ∗ Xt + Whc ∗ Ht−1 + bi) (9)

Ct = ft ◦ Ct−1 + it ◦ C̃t) (10)

ot = σ(Wxo ∗ Xt + Who ∗ Ht−1 + Wco ◦ Ct + bo) (11)

Ht = ot ◦ tanh(Ct) (12)

where Xt denotes the input of the current cell; Ct−1 and Ht−1 are the state and output
of the last cell, respectively. ‘∗’ asterisk means the convolution operation. W denotes
the convolution filter, which is a 2-D convolution filter with a k × k kernel. Specially, the
definitions of W•i, W• f , W•o, bi, b f , and bo are similar to that of LSTM architecture; however,
the data dimensions and processing methods are different. This special structure enables
ConvLSTM to extract a more effective feature representation than CNN. Furthermore,
compared with LSTM, the implementations of three gate mechanisms are extended from
one-dimensional to multi-dimensional convolution operation.

4. The Proposed Energy Load Forecasting System

The whole structure of the proposed framework in this paper is described in Figure 6.
For a deeper understanding of the proposed model, a more detailed description is given below:

Figure 6. Framework of the proposed energy load forecasting system.

4.1. Data Sources

To build an energy management system, intelligent integration of various distributed
energy resources (DERs), end devices, and automatic control operations are needed. In the
IoT era, end devices are connected to the centralized or distributed system which collects
the data, generated periodically by the end devices, using the advanced sensor technology,
and then the response signal is sent to the counterpart actuators to carry out the decided
actions from the energy management system.

Based on the scale of the deployment of the energy management system from where
we need to collect data, it is categorized as:

• Smart Home Energy Management System (SHEMS):

In a smart building/home, we access the data from the different entities in the house-
hold (appliances energy consumption, aggregated) and add it to a large database file [19].
The daily electricity consumption data are collected from an individual household meter
or an aggregator for an adequate time period using sensors from the so-called Advanced
Metering Infrastructure (AMI).

The AMI consists of three major elements: electricity meters, a bidirectional com-
munication channel, and a data storage which collects the time series electricity data
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periodically. AMI enables the SHEMS to provide a number of vital functions such as
measuring electricity consumption, security, and communication with the end devices and
the utilities [46].

• Smart Grid Energy Management System (SGEMS):

The transition from the conventional and unidirectional power grid to smart power
grids has made the opportunities available to deal with the demand and supply curve
intelligently. With IoT assistance, the energy management in smart power grids is able to
reach every corner of a city or a local area to collect the data and the behavior of the grid
entities [1,2], which paved the way to utilize that data to improve the system at a higher
level (city/microgrid).

4.2. Data Preprocessing

After the data acquisition, the raw data needs to be preprocessed before being fed
to the machine to make the prediction. This step is necessary because the raw data have
a lot of noisy datapoints and missing data. The data cleaning step is taken to adjust the
numerical differences among the data points using min–max normalization so that all the
attributes of the dataset lie on the same scale, as shown in Figure 7. The normalization
technique helps to improve the performance of the model training process due to the
significant differences among target data; this helps to increase the speed of the training
process [47]. The min–max normalization is formulated as presented in Equation (13):

z =
x−min(x)

max(x)−min(x)
(13)

where x is an original value, max(x) is the maximum value of x, min(x) is the minimum
value of x, and z is the normalized value. Raw data are to be processed and furnished
according to the model prerequisites. All deep learning-based models feed on the data;
more data leads to healthier training. However, on the other hand, only clean data can
make it possible to improve the model performance at its best. It is the nature of the data
that decides the job of the designed model.

Figure 7. Normalizing the actual electricity consumption data using min–max normalization.

Furthermore, we resample the whole dataset to change the entries from minute-based
to daily-based using sklearn library. As with the LSTMs for univariate data in a prior
section, the prepared samples must first be reshaped. The LSTM expects data to have a
three-dimensional structure of [samples, timesteps, features] and the same for the CNN-
based architecture, while in the case of ConvLSTM it is [samples, timesteps, rows, cols,
channels], and in this case, we only have one feature, so the reshape is straightforward. In
this work, the data we are working with is having lower granularity (downsample from the
higher frequency to lower frequency). The granularity of original raw data usually have a
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minutely consumption pattern. By using the resampling technique, the whole dataset goes
through resampling process to obtain hourly or daily consumption data.

4.3. Forecasting Model

Multiple deep learning architectures explained in the previous section are put under
investigation to select the best one in terms of both generalization capability and reduced
error. The proposed energy load forecasting model is based on encoder–decoder archi-
tecture having ConvLSTM as an encoding network and LSTM employed as a decoding
network. Before going for the selection of the final DNN architecture, different model
hyperparameters such as activation function, batch size, dropout, learning rate, number
of neurons in each hidden layer, optimization algorithm, training epochs, etc. are to be
optimized. The most common loss function called the mean absolute error is used to draw
the training and validation curves. In the proposed deep learning model, Adam optimizer
is utilized as an optimization algorithm after investigating it against RMSProp. Overfitting
of the proposed model during training is addressed by using dropout regularization and
further L2 regularization is added after each LSTM layer which adds a penalty term to the
loss function of the network for large weights. Regularization results in model simplicity
to learn only the relevant patterns in the training data.

4.4. Decision

In the energy market, intelligent decisions which are taken by the EMS with the help
of making the accurate and precise forecasting of the energy consumption can lead to a
sustainable smart grid. The ability to provide decisions in real time is directly proportional
to the reliability in smart grids and thereby increasing end user’s confidence in the smart
grid technology. Peer-to-peer energy trading can provide a way for energy marketing by
virtue of which prosumers can make a profit by trading their surplus of energy gathered
from renewable resources (e.g., PVs) during the peak hours and stored energy in storage
devices such as energy storage systems (ESS) during the non-peak hours [6]. Customers
can save on their energy bills by buying cheap energy from their peers or making the use
of clean renewable energy instead of buying directly from the grid, thereby decreasing the
load on the grid. To stabilize the grid power, the customers can participate in the energy
markets by selling the extra energy back to the grid during peak hours, which can shave
off the instantaneous peaks and also results in the money-making of the customers.

5. Proposed Deep Learning Architecture for Energy Load Forecasting

This work proposes a novel energy load forecasting model based on the sequence-to-
sequence encoder–decoder architecture, that deploys deep convolutional long short-term
memory network architecture, also called ConvLSTM. A conventional encoding-decoding
structure is not enough to deal with the spatiotemporal data. To deal with spatio-temporal
data, there is a need for special network architecture that can work in both domains to
capture spatial as well as temporal characteristics. ConvLSTM is a kind of recurrent layer,
just like the LSTM, but internal matrix multiplications are exchanged with convolution
operations, while in case of LSTMs, it is a Hadamard product. Convolution is used for both
input-to-state and state-to-state connection making the final state have a large receptive
field. The proposed deep learning model is based on the encoder–decoder architecture,
which consists of ConvLSTM2D-based encoder and a decoder consists of LSTM layers.
Furthermore, to the best of our knowledge, this work has simultaneously considered two
hyperparameters to build a more generalized model.

5.1. ConvLSTM-LSTM Architecture for Energy Load Forecasting

The proposed ConvLSTM-LSTM is an encoder–decoder network architecture in which
the ConvLSTM forms the encoding part and the LSTM forms the forecasting or decoding
part of the whole architecture, as shown in Figure 8. In convolutional long short-term
memory, each time step of data is defined as an image of rows and columns data points.
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The ConvLSTM (we used interchangeably ConvLSTM2D) model was first introduced to
deal with precipitation nowcasting [17] due to its capacity of extracting spatiotemporal
information. Equations (7)–(12) define the operations in the ConvLSTM network. In the
proposed deep learning architecture, we stacked multiple ConvLSTM layers to form an
encoder network which takes the input data and performs convolutions on it and passes
its output to the flatten layer. The flatten layer reshapes it into the one-dimensional output
and is followed by a repeat vector layer. The repeat vector layer repeats the incoming
inputs a specific number of times, the same as the original input, which can be fed to the
decoding network. Hyperparameters in the ConvLSTM layer are similar to that of CNN.
After conducting the many trial experiments, we finally settled down to select and finalize
the hyperparameters including the number of filters, kernel size, activation function, and
input shape for the ConvLSTM layers. Similarly, it is hard to decide the number of hidden
layers of ConvLSTM to build the encoding network without training it with different
combinations. After conducting series of experiments, we settle with four ConvLSTM
stacked layers to design encoder network.

Figure 8. ConvLSTM-LSTM-based encoder–decoder architecture for energy load forecasting.

The decoding network consists of LSTM layers. LSTM as a special RNN structure has
proven successful and is widely used for modeling long-range dependencies in various
previous studies [11,12,17,23]. The contribution of LSTM is recurrent connections, memory
cell Ct, and the self-parameterized and controlling gates, which essentially controls the flow
of the state information. During the training of LSTM, one advantage of using the memory
cell and gates is to prevent vanishing gradients, which is a critical problem existing in
simple RNN-based models. Each LSTM layer is followed by a dropout layer which reduces
the overfitting of the network on the training dataset. Furthermore, L2 regularization is
applied to both LSTM layers to reduce the complexity of the model. It does so by adding
a penalty term to the loss function. Following it, two consecutive time-distributed fully
connected layers produce the output of the whole network, i.e., forecasting result. Table 2
shows the architecture of the proposed energy load forecasting model.
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Table 2. Architecture of the proposed energy load forecasting model.

Layer Hyperparameter Setting Output Shape Number of Parameters

ConvLSTM2D
Filters = 128, Kernel_Size = (1, 3),

Activation = ‘Relu’, Input_Shape =
(n_steps, 1, n_length, n_features)

(None, 2, 1, 5, 128) 198,656

ConvLSTM2D Filters = 64, Kernel_Size = (1, 3) (None, 2, 1, 5, 64) 147,712
ConvLSTM2D Filters = 32, Kernel_Size = (1, 3) (None, 2, 1, 5, 32) 36,992
ConvLSTM2D Filters = 16, Kernel_Size = (1, 3) (None, 1, 3, 16) 9280

Flatten _ (None, 192) 0
Repeat Vector _ (None, 7, 192) 0

LSTM
200, Activation = ‘Relu’,

Kernel_Regularizer =
Regularizers.L2(0.001)

(None, 7, 200) 288,800

Dropout 0.5 (None, 7, 200) 0

LSTM
200, Activation = ‘Relu’,

Kernel_Regularizer =
Regularizers.L2(0.001)

(None, 7, 200) 320,800

Dropout 0.5 (None, 7, 200) 0
Time Distributed (Dense) 100, Activation = ‘Relu’ (None, 7, 100) 20,100
Time Distributed (Dense) 1 (None, 7, 1) 101

Total # Parameters 1,022,441

5.2. Implementation Details

Deep neural networks are stochastic machine learning algorithms. In our case, we
implemented a novel encoder–decoder network architecture for time series data to forecast
energy consumption. The random initial weight matrix allows the model to train from a
different starting point in the search space. In a neural network, the weights and biases
of the hidden layers are updated on the basis of the result of the loss function signal.
The training algorithm decides the magnitude of the weights in the weight matrix which
causes the network to output the expected values, given some input data. Each layer is
characterized by its weight matrix, bias, and activation function. The hidden layers in
the encoder take the input matrix of electricity data and apply the filters on it using the
convolutional operations to obtain the feature maps, which is also a kind of modified
matrix of size depending on the size and the number of the filters used in that layer. In
case of encoder–decoder architecture, the format of output produced by the encoder needs
to be same as the input data so as to feed it to the decoder network; for that, it is traverses
through flatten layer to reach to the decoder. This is the forward movement of information
known as the forward propagation. After, calculating the loss using the loss function,
the error signal is sent back to the preceding layers and fine tuning the weights is made
to ensure lower error rates, so as to increase generalization. This process is known as
back-propagation. Once all the data have gone through forward–backward propagation,
the final weight and bias matrices are formed to make predictions/forecasting.

In this study, we formulated energy load forecasting as a multi-step time series
forecasting problem, which is an autoregressive problem. That means the next timestep
prediction is the function of observations at previous timesteps. We developed a model
with an encoding network consisting of multiple ConvLSTM layers and the decoding
network with multiple layers of LSTM layer with 200 units. Each LSTM layer has the
activation function ReLU. To speed up the training, we employed two regularization
methods: dropout and L2 regularization. Dropout had a value of 0.5, which means that
50% of the hidden neurons are left untrained to reduce the complexity of the model.
Furthermore, L2 regularization, also called Ridge Regression, adds the squared magnitude
of the coefficient as a penalty term to the loss function. The value of L2 regularization is set
to 0.001. The encoder network is followed by a time-distributed fully connected layer with
100 nodes that will take the features learned by the LSTM layers. Finally, an output layer
directly predicts a vector with seven elements, one for each day in the output sequence.
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The training loss is measured using a mean squared error as a loss function because it
is proven as a good error metric for validation loss. We use the efficient Adam optimizer as
an implementation of stochastic gradient descent and train the model for 100 epochs with
multiple batch sizes. Finally, after continuous experimentation, the batch size of 256 is used
to train the network. A smaller batch takes a long time to train but provides favorably good
prediction results while, as in our case, the larger batch size gives the better results. This
means that results may vary when the model is evaluated. To evaluate the performance of
the different models, we train the proposed model multiple times and calculate an average
of model performance.

We have a one-dimensional sequence of total energy consumption data, which can be
interpreted as two subsequences with a length of seven days each. To make the day ahead
forecast using the previous weeks data, this requires that a proposed model forecasts the
total active power for each day over the next seven days. This could be helpful for the
aggregator in planning the demand and supply for the household for a specific period. The
ConvLSTM can then read across the two time-steps and follow the basic CNN process on
the seven days of data. The ConvLSTM layer output is a combination of a Convolution
and an LSTM output. Just like the LSTM, it returns a sequence as a 5D tensor with shape
(samples, time steps, rows, columns, channels).

5.3. Backtesting/Validating Proposed Deep Learning Model for Energy Load Forecasting

Validating the deep learning model is the fundamental step to check the performance
of the proposed model on the unseen data with a similar distribution as of the training
data. Before evaluating a model for time series forecasting, the training dataset is split in
such a way that some is used to train the model, and some is kept back, called validation
data or development data. When the model is trained on the training data, parallelly it
makes the predictions on the validation data for that period. The prediction results on the
validation data will provide a good proxy for how the model will perform when we use
it operationally.

In the proposed model, we use the walk forward validation method to validate the
model, which is similar to the k-fold cross validation [48,49]. This method makes the
forecast at each time step by utilizing the sliding window mechanism, which depends on
the number of the samples or observations in a window. After selecting the window size,
the training starts and makes a step ahead prediction. This predicted value is stored in the
window by expanding its size, and the above process is repeated, as shown in Figure 9.

Figure 9. Graphical representation of walk-forward validation—backtesting.

In fact, by doing the multiple split across the different time periods, the training data
expanding each fold makes it robust in choosing the model parameters. On the other hand,
the step-by-step estimation increases the computational cost, but this is not expensive if the
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dataset is small. In our case, after resampling the data from minutes to days or hours, the
dataset size reduction was manifold, which makes the walk forward validation method a
promising way to deal with the issue of the reduced dataset. Furthermore, it decreases the
chance for the model to become overfitted on the training data.

5.4. Evaluation Metrics

The performance of the proposed model is evaluated and compared using three
metrics. The first metric is the mean absolute percentage error (MAPE), the second metric
is the mean squared error (MSE), and the third metric is the root mean square error (RMSE),
which are mathematically represented as follows:

MAPE =
100
N ∑N

i=1|y(i)− ŷ(i)/y(i)| (14)

MSE =
1
N ∑N

i=1[y(i)− ŷ(i)]2 (15)

RMSE =

√
1
N ∑N

i=1[y(i)− ŷ(i)]2 (16)

In the above equations, y(i) is the real value, ŷ(i) is the predicted value, and N is the
total number of samples.

6. Experimental Results and Discussion

In this section, we compare the performance of the proposed energy load forecasting
model with the state-of-the-art deep learning models. Two different datasets are considered
under analysis, namely household electricity consumption dataset available online in
the Machine Learning Repository of the University of California, Irvine and New York
Independent System Operator dataset to verify the qualitative as well as quantitative
performance of the proposed model.

6.1. Data Description
6.1.1. UCI Individual Household Dataset

The dataset is available in the dataset archive of the University of California, Irvine
(UCI) Machine Learning repository [50]. The dataset contains 2,075,259 data points having
nine attributes. The dataset ranges over a period of 4 years, with an entry of minutely
electricity consumption, from 12 December 2006 to 26 November 2010. The household
power consumption dataset describes electricity usage for a single household. The different
attributes in the energy consumption data are described in Table 3. The main goal of
the proposed model is that it can be helpful within the household in planning energy
expenditures and take a proper decision to trade the energy in the community microgrid
which is not in the scope of this paper. It is used for planning electricity supply–demand
for a specific household. In this work, framing of the dataset is performed to downsample
the per-minute frequency of power consumption to total daily consumptions, which
yields 1443 data samples of the aggregated load on the daily basis. For training purpose
univariately energy consumption is selected. Up-sampling or down-sampling the dataset
depends on what target we are interested in forecasting. The resample () function available
in the Pandas library by passing the argument ‘D’ which allows the loaded data indexed
by date–time to be grouped by day. We can then calculate the sum of all observations
for each day and create a new dataset of daily power consumption data for each of the
eight variables.
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Table 3. The features of individual household power consumption dataset.

Attribute Description Value Range

Datetime Value designating a particular day MM/DD/YYY [12/16/2006–11/26/2010]
Global active power (GAP) Household global minute-averaged active power (in kilowatt) [250.298–4773.386]

Global reactive power (GRP) Household global minute-averaged reactive power (in kilowatt) [34.922–417.834]
Voltage Minute-averaged voltage (in volt) [93,552.53–356,306.4]

Global intensity (GI) Household global minute-averaged current intensity (in ampere) [1164–20,200.4]

Sub metering 1 (S1)
It corresponds to the kitchen, containing mainly a dishwasher, an

oven and a microwave, hot plates not being electric- but
gas-powered (in watt-hour of active energy)

[0–11,178]

Sub metering 1 (S1)
It corresponds to the laundry room, containing a washing

machine, a tumble-drier, a refrigerator and a light (in watt-hour
of active energy)

[0–12,109]

Sub metering 3 (S3) It corresponds to an electric water heater and an air conditioner
(in watt-hour of active energy) [1288–23,743]

6.1.2. New York Independent System Operator (NYISO) Dataset

The energy load data are collected from New York Independent System Operator
(NYISO). The dataset contains the daily records with hourly entries of electricity data for
the whole New York state, consisting of 11 different regions [51]. The load data in raw
form consists of 12 columns with the first column containing timestamp and the next
remaining columns represent the electricity consumption for the regions in the New York
state. Pre-processing clean data are obtained, which are then used to train the deep learning
models. The dataset ranges from May 2007 to May 2014. The training dataset consists
of hourly data in the form of a table having 53,321 datapoints with 10 different features.
To train our model, we need to reshape it according to the input dimension of the model.
Downsampling the dataset, we obtain the total of 2577 data point, shown in Figure 10. The
validation dataset consists of 30% of the test dataset. In this case study, city-wide energy
consumption data are selected to prove the scalability and computational competency of
the proposed model.

Figure 10. Normalized daily electricity load in NYISO dataset.

6.2. Parameter Selection for Training the Proposed Energy Load Forecasting Model

To train a deep neural network, different parameters and hyperparameters such as the
batch size of the training set, number of hidden layers, activation function in the hidden
layers, dropout, optimization algorithm number of training epochs, etc. are analyzed to
select the best architecture for the energy load forecasting task. The number of epochs
to train is selected as 100 to avoid over training of the network, which increases the
computational time without improving the accuracy of the prediction. In the case of
hidden layers, the ReLU activation function is opted for as compared to hyperbolic tangent
(tanh) as the number of hidden layers grows up to avoid vanishing gradient. Furthermore,
two regularization parameters, namely dropout and L2 regularization, are used to avoid
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overfitting of the model and to improve the generalization. The batch size is kept at 256
after training with 64, 128, and 512 as well to decrease the training loss and the mean square
error (MSE) is used as a loss function. Table 4 provides the list of hyperparameters selected
for the proposed energy load forecasting model.

Table 4. Hyperparameter setting for the proposed model.

Hyperparameter Value

Batch Size 64, 128, 256
Epoch 100, 1000

Activation function ReLU, tanh
Dropout after LSTM layers 50%

L2 regularization in LSTM layer 0.001
Loss Function Mean Absolute Error (MSE)

Optimizer Adam, RMSProp
Learning rate 0.001

In addition, different optimizers have been employed such as RMSProp [52] and
Adam [53]. Based on the empirical results, we have selected Adam optimizer for this
work. Adam is said to have properties of both Adadelta and RMSProp and hence performs
comparatively better for most of the problems. In [53], there are some simulations where
Adam is compared to SGDNesterov, AdaGrad, RMSProp (MNIST, IMDB, CIFAR10). Adam
performs very well compared to the others. The authors find that Adam converges faster
than AdaGrad in a convolutional network. To testify the above statement, we simulated
different deep learning architectures using Adam and RMSProp optimizers to draw the
training and validation curves, which provide some intuition of selecting the optimizer
well suited for our task to achieve better generalization. In Figure 11, the results of training
and validation curves of simulated DNN architectures are shown when trained with Adam
and RMSProp optimizers on the UCI dataset as well as on the NYISO dataset. After
analyzing the reported figures, we deduced that the optimal optimizer to be used for time
series forecasting is Adam. This algorithm is easy to implement, computationally efficient,
converges to attain generalization, and has fewer memory requirements.

6.3. Performance with UCI Individual Household Dataset

In this section, we evaluate the proposed energy load forecasting model against
the various encoder–decoder-based deep learning architecture quantitatively as well as
qualitatively to obtain the least error in forecasting the total daily energy consumption
of a single household. It becomes clear that the proposed energy load forecasting model
comparatively out-performs the existing state-of-the-art load forecasting models, as shown
in Table 5. Each model analyzed in this work has specific built-in characteristics which
make them feasible candidates for performing energy load forecasting task.

Table 5. Comparison of the evaluation metrics on the univariate UCI household electricity dataset.

Model RMSE MSE MAPE

CNNLSTM 0.668 0.439 406.03
LSTM-LSTM 0.648 0.392 423.75

ConvLSTM-BiLSTM 0.650 0.416 429.39
ConvLSTM-LSTM 0.605 0.386 390.07
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Figure 11. Illustration of training loss and validation loss using different optimizers for both datasets, (a) UCI electricity
dataset, and (b) NYISO dataset.

In the case of UCI dataset, after forecasting the aggregated daily energy consumption
for a weekly basis, the proposed model achieves high performance in terms of having
the least errors. The proposed architecture achieves 9.4%, 12%, and 3.9% more least error
rate in terms of RMSE, MSE, and MAPE, respectively, than the CNNLSTM-based model
proposed in [32], which is the combination of two Conv1D layers followed by a single
LSTM layer. Similarly, we achieve better performance than LSTM-LSTM encoder–decoder
architecture by the improvement of 6.6%, 1.5%, and 7.9% in the case of RMSE, MSE, and
MAPE, respectively. In the case of above two models, achieving higher performance is
possible at the cost of computational time. The ConvLSTM-BiLSTM model consists of an
encoder having a single ConvLSTM layer and decoder with one LSTM layer. The proposed
architecture achieves a lower error rate than ConvLSTM-BiLSTM in the case of evaluation
metrics and with less computational time and a lower number of parameters used. The
ConvLSTM-LSTM performs 6.9%, 7.2%, and 9.1% better than ConvLSTM-BiLSTM in the
case of RMSE, MSE, and MAPE, respectively.

In Figure 12, qualitative results depict that when three models—CNNLSTM, Con-
vLSTM-BiLSTM, and ConvLSTM-LSTM—are tested on the test set of 46 sample weeks
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for different days, each one tries to follow the dynamic trend of the energy consumption
for each day. The blue curve represents the actual energy consumption and the orange
curve represents the prediction result using the various deep learning models. The figure
con-sists of only three alternative days of a week to show the robustness of the models.
Each day of a week has a different consumption pattern with dynamically changing.
Observing Figure 13, it provides the average values of the evaluation metrics considering
one week starting from Sunday and ends at Saturday, which also gives the intuition of using
ConvLSTM-LSTM-based energy load forecasting model compared to other architectures.

Figure 12. Daily total actual consumption vs. prediction results over a test samples for different days in a week with UCI
household electricity dataset.

Figure 13. Evaluation metrics for different days in a week with UCI electricity dataset.

6.4. Performance with New York Independent System Operator (NYISO) Dataset

In the case of the NYISO dataset, after preprocessing the dataset to make it compatible
with the model for training purpose, univariate data consisting of total load consumption
values is selected as the input to the model. Forecasting the aggregated daily energy
consumption over one week, the proposed model achieves better performance in terms of
achieving the least forecasting error. By observing Table 6, the proposed architecture in
forecasting the total consumption achieves better performance with 3.8%, 24.1%, and 18.8%
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amounts of decrease in the error rate in terms of RMSE, MSE, and MAPE, respectively,
compared to CNNLSTM-based model. In the case of LSTM-based encoder–decoder, the
proposed model continues to outperform by the decrease of 5.5%, 19.5%, and 20.45% in
terms of RMSE, MSE, and MAPE, respectively. Similarly, comparing to the ConvLSTM-
BiLSTM model, which consists of an encoder, the proposed architecture achieves lower
error than in terms of evaluation metrics and with less computational time and number of
parameters used as in the case of the previous dataset. The ConvLSTM-LSTM performs
1.1%, 10.46%, and 11.17% better than ConvLSTM-BiLSTM when compared in terms of
RMSE, MSE, and MAPE, respectively. We simulated the proposed model against the
existing models on alternative days of the week considering the whole test dataset to check
the scalability and robustness. The results of experimentation in Figure 14 clearly show that
the trend learning ability of the proposed energy load forecasting model is comparable to
the existing architectures. Similarly, in Figure 15, average values of the evaluation metrics
RMSE, MSE, and MAPE have been illustrated to show the superiority of the proposed
model in only RMSE and MAPE, while ConvLSTM-BiLSTM has the upper hand in the case
of the averaged MSE value.

Table 6. Comparison of the evaluation metrics on the univariate NYISO electricity dataset.

Model RMSE MSE MAPE

CNNLSTM 0.634 0.485 432.3
LSTM-LSTM 0.646 0.457 441.2

ConvLSTM-BiLSTM 0.617 0.411 395.13
ConvLSTM-LSTM 0.610 0.368 350.97

Figure 14. Daily total actual consumption vs. prediction results over a test samples for different days in a week with
NYISO dataset.
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Figure 15. Evaluation metrics for different days in a week with NYISO electricity dataset.

We used Keras (https://keras.io/) library with TensorFlow (https://www.tensorflow.
org/) in the backend to build the deep learning models. All experiments were performed
using an NVIDIA GeForce GTX 970 running on a Microsoft Windows 10 (operating system)
machine with an Intel Core-i7 processor and 8 GB RAM.

7. Conclusions

This paper proposed a novel ConvLSTM-LSTM encoder–decoder-based load forecast-
ing model for challenging task of individual residential load forecasting on a daily basis
for over a week. The proposed model consists of multiple ConvLSTM layers which encode
the input and LSTM-based decoder to deal with the uncertainty, long-range dependency,
and dynamic characteristics of spatio-temporal electricity load data. ConvLSTM proved its
ability to recognize the energy consumption pattern to produce the activation map consist-
ing of the salient features of input data which were later fed to the LSTM layers to output
prediction results. The proposed ConvLSTM-LSTM-based load forecasting model was
comprehensively tested and compared with the multiple benchmark DNN architectures on
a real-world dataset, i.e., UCI individual household dataset and NYISO dataset. The results
proved that the proposed model qualitatively as well as quantitatively outperformed the
existing DNN architectures by reducing the error by a good percentage.

Since this work was limited to the univariate input dataset for training the DNN
architectures, future work will focus on including some more influencing factors which are
highly correlated with the energy consumption of a particular household or a power grid,
such as weather data (temperature), household occupancy, lagged load, etc. Data analytics
has made an option available, i.e., data-centric artificial intelligence which focuses on
furnishing the data rather than modifying the model parameters. One more way to further
research is to consider other variants of the ConvLSTM such as bidirectional ConvLSTM,
ConvLSTM 3D, etc. Furthermore, there is the potential of implementing edge computing
(EC) in smart grids to reduce the computing constraints performed by ICT in smart grids,
which can speed up the power grid operations such as controlling, dispatching, scheduling,
and energy trading.
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