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Abstract: This paper presents a systematic approach for accurate short-time cloud coverage prediction
based on a machine learning (ML) approach. Based on a newly built omnidirectional ground-based
sky camera system, local training and evaluation data sets were created. These were used to train
several state-of-the-art deep neural networks for object detection and segmentation. For this purpose,
the camera-generated a full hemispherical image every 30 min over two months in daylight conditions
with a fish-eye lens. From this data set, a subset of images was selected for training and evaluation
according to various criteria. Deep neural networks, based on the two-stage R-CNN architecture,
were trained and compared with a U-net segmentation approach implemented by CloudSegNet. All
chosen deep networks were then evaluated and compared according to the local situation.

Keywords: machine learning; generation; ground-based sky image; irradiation; load scheduling;
photovoltaic power; short-term forecasting; solar irradiance; solar photovoltaics; total cloud cover

1. Introduction and Motivation

Electric power load forecasting has been an integral part of managing electrical energy
markets and infrastructure for many decades. Consequently, experiences, regulations, and
planning by utilities and independent system operators are the dominant considerations
for research and commercial development in this field. The cost of generating power from
non-traditional energy sources can be reduced through the integration of solar energy
into classical energy supply structures. However, such an integration has its challenges
and costs [1,2]. These are mainly caused by the unstable conditions of renewable energy
sources such as the dynamic change of sky conditions. Clouds are considered one of the
key elements causing fluctuation in solar energy availability [3]. Thus, cloud coverage
determines direct and non-direct solar irradiance. Accurate, short-term forecasting of
cloud cover is required for a variety of applications, particularly for power generation from
photovoltaic solar power plants, as their power output is heavily dependent on sky cloud
coverage. The generated power decreases by up to 30 % with a light cloud cover of the
sun as compared to cloudless conditions. The yield could decrease by 75 % in the case of
sunshine dimmed by dense clouds [4].

The choice of a solar radiation forecast method depends significantly on the periods,
which may vary from a few days ahead (intraweek), to a few hours (intraday), or a few
minutes (intrahour). Depending on the forecasting application, different time horizons are
relevant. The forecasting of the distributed photovoltaic (PV) power generation, which
is the focus of this study, requires both intrahour and day-ahead forecasting of solar
irradiance [5].
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The parameter which is of interest for this study depends on the technology used
for power generation. For non-concentrating systems (such as most PV systems), global
irradiation (GI) on the inclined surface is required above all.

For different time horizons, however, different approaches are required:

• For relatively long time horizons, of the order of 6 h or more, physics-based models
are typically used [6,7].

• Two- to six-hour time horizons use a combination of methods based on observations
or predictions of clouds through Numerical Weather Prediction Models (NWPM) and
satellite images with information about the optical depth of the cloud and the motion
vector of the cloud [6,8].

• For a very short time (<30 min), a range of ground-based imaging techniques were
developed for GI using the information on cloud positioning and deterministic mod-
els [9,10].

The different solar forecasting techniques and their inputs are summarized in Table 1.

Table 1. Main characteristics and inputs for different solar forecasting approaches [11].

Approach Sampling Rate Spatial Resolution Forecast Horizon Application

Total-sky imagery 30 s 10–100 m minutes Short-term ramps, regulation

Satellite imagery 15 min 1 km 5 h Load following

NAM 1 weather model 1 h 12 km 10 days Unit commitment
1 North American Mesoscale Model (NAM) is a numerical weather prediction model for short-term weather forecasting.

Numerical weather prediction and up-to-date geostationary satellite-based forecast
approaches are restricted in terms of their spatial and temporal resolution and are too
imprecise for very short-term forecasts. So, the use of a ground-based sky imager in
forecasting is a promising approach as it provides high temporal and spatial cloud cover
resolution [12].

Short-term cloud coverage prediction involves two main stages. The first stage in-
cludes the detection and segmentation of clouds using available images. The results
obtained in the first stage are of great importance, as the quality of the actual prediction
(the second stage) depends on the most elaborate representation possible of the clouds.
This work presents a camera-based short-term cloud coverage prediction based on machine
learning methods. The main contribution is the comparison and evaluation of deep neural
network architectures, for instance, segmentation for clouds.

2. Materials and Methods
2.1. Camera-based Cloud Coverage Prediction

Over the last two decades, many studies have proposed various statistical methods for
image processing [13,14]. These include various parametric approaches such as Bayesian
model averaging [15], or non-homogeneous regression [16], or combined methods such as
quantile mapping [17,18].

In recent times, machine learning methods have become increasingly popular in image
processing [19]. The work of Taillardat et al. uses quantitative regression forests (QRF) to
improve the accuracy of temperature and wind speed forecasts [20]. In [21], an approach
based on neural networks to process ECMWF near-surface temperature predictions using
QRF as a reference model is presented. Bakker et al. [22] propose several machine learning
approaches for the post-processing of Numerical weather prediction (NWP) predictions
for solar radiation based on quantum regression, including random forests, gradient
amplification, and neural networks.

The detection of clouds in sky imager scenarios is also developing rapidly from
classical approaches based on support vector machines and Bayes classifiers, as in [23], to
systems employing deep learning techniques. After starting with simple neural structures
for remote sensing images, as in [24], current systems are built upon segmentation-based
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approaches. These rely on encoder-decoder structures, first proposed in [25] and adapted
recently for cloud coverage prediction in [26,27]. The importance and influence of image
quality for object detection has been incorporated into deep learning approaches only
recently, e.g., in [28].

In contrast to basic segmentation level tasks, the prediction of coverage improves
when considering individual cloud objects for tracking and prediction. For this application,
segmentation methods are the algorithms of choice. Most prominent and, in fact, ubiquitous
in computer vision tasks such as pedestrian recognition is the two-stage approach of
Mask R-CNN [29], which allows instance segmentation and bounding box prediction
for a given set of classes. A third class of deep learning architectures is the so-called
transformer networks, originally invented in the context of speech and natural language
recognition. Current research focusses on applying transformers to object detection [30]
and segmentation tasks [31].

2.2. Hardware and Imaging
Sky Camera

The present study used a ground-based sky camera to monitor the sky. It is situated at
Offenburg University, where it was built based on the optical systems described in [32–34].
It comprises a high-sensitivity CCD-based camera chip combined with a 180◦ fish-eye lens
for full hemispherical imaging. The camera system is combined with additional sensors to
measure the actual ground solar irradiance and temperature. The resulting measurement
station is shown in Figure 1.
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Figure 1. The ground-based camera sensor system positioned at Offenburg University.

Data acquisition was carried out based on a LabVIEW application that stores the
captured sky images as an exposure series at a given time interval. The whole hardware
setup for image capturing and data storage is described in [35]. The sky imager system was
calibrated beforehand based on non-linear distortion models of spherical lenses [36,37].

With classic image processing steps, attempts were made to detect and segment clouds
on these images to subsequently be able to make a short-term prediction. It turned out that
good detection and segmentation of the clouds is essential for later solar irradiance pre-
diction. With the classical approach, based on a sky illumination prediction and adaptive
thresholding as presented in [38], an accuracy of 76.7% could be achieved. In this subse-
quent work, the aim is to evaluate whether neural networks-based approaches with deep
learning are more suitable for detection and segmentation, in the sense of computational
speed and accuracy.

The ground-based camera system continuously generates a full hemispherical image.
Images are selected from this data stream. Present clouds are marked in the images using
pixelwise annotation. The classical system is able to work without a sun disc to block solar
rays by using HDR images and a solar position prediction. It is therefore not necessary to
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mark the sun or other objects to compare the neural network approach on equal terms. The
labeled images are treated as a small database, separated into training and validation sets,
only holding back a small sub-set for testing.

2.3. Neural Network-Based Instance Segmentation

Instance segmentation in computer vision has been dominated by deep neural net-
works since their advent, culminating in the publishing of Mask R-CNN. In this work, we
compare and evaluate the power of two prominent neural network architectures, namely
Mask R-CNN, which was adapted and trained for the given data set, and Cloud SegNet,
an actual state-of-the-art segmentation network already trained on generic cloud data.

2.3.1. Mask R-CNN

Mask R-CNN, although published in a canonical form, allows for variation and
adaptation, not only in hyperparameters, but also in more profound ways, such as feature
generator architecture, loss functions, or mask sizes.

Framework

Our implementation is based on PyTorch and the Detectron2 archetypes as described
in [39]. The structure is highly modular, allowing networks to be adapted and trained for
detection and segmentation, the latter as a classic instance, or for panoptic variation.

In this contribution, we use transfer learning and fine-tuning of a pre-trained version.
As the clouds do vary in scale and shape, we employed pyramid networks as a backbone
to ensure scale invariance, and the data augmentation stack of PyTorch to substantially
increase our image database and emulate variations in brightness and color. The following
sections briefly explain the structure and adaptation of the chosen network architecture.

Base RCNN-FPN as Backbone

We employ Feature Pyramide Networks (FPN) [40], trained with a focal loss on the
MS Coco data set. The FPN backbone is important in detecting clouds on several scales.
The network is an object detector with a multi-task loss to allow for class prediction and
bounding box estimation. The whole network is basically divided into three components:

The backbone network is a basic convolutional neural network to extract features on
different scale levels. The feature maps of several layers are used to ensure scale invariance;
the underlying ResNet architecture is reasonably fast for computation.

The classical two-stage approach makes reuse of these features in the Region Proposal
Network, which is the second main component of the architecture. The feature maps are
used as input and the ROI-align method is used to interpolate regions as possible object
proposals for the last main component of the network.

The third stage, the so-called Box Head, consists of fully connected layers that predict
the object class and perform a bounding box regression with a multi-task loss, in the case
of the R-CNN-FPN base, on the proposed focal loss.

After the post-processing of the detector, non-maxima suppression ensures the efficient
pruning of overlapping and wrong object detections. All in all, the RCNN-FPN network
produces the typical output of an object detector, namely the most probable class and
bounding box, which is exemplarily shown in Figure 2 for the detection of different clouds
for a typical output of our system.
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Figure 2. Object detection with retina net-like two-stage detector.

Mask Head

Mask R-CNN is the next step in augmenting the base network described above. An
additional third head is added to the object detection-based network. This last head is called
a mask head, and estimates a binary mask, based on two subsequent convolutional layers.
Training can be performed in one seamless stage, adapting the weights and parameters of
all the networks (region proposal, bounding box, class, and mask) simultaneously. This
instance of segmentation is shown in Figure 3, adapting the seminal picture in [29] slightly
for our case.
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Figure 3 closely summarizes the two preceding paragraphs, depicting the base R-
CNN backbone and the subsequent box head, called class box within the figure. The two
additional convolutional layers for the segmentation step with Mask R-CNN are depicted
symbolically to show the upsampling of the detected masks in the final image.

2.3.2. CloudSegNet

The second architecture this contribution evaluates is CloudSegNet. This is a classical
encoder–decoder neural network. CloudSegNet focuses on its initial training set on the
segmentation of day and night images within a single framework and achieved state-of-
the-art results [26]. The network architecture and the associated training data are also
open-source [41].

CloudSegNet Architecture

CloudSegNet is a semantic segmentation network specifically designed to segment
clouds from the background. In comparison to large image databases and classes, the cloud
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segmentation has significantly less texture, structure, and classes, as a plain architecture is
chosen. The CloudSegNet architecture has the classical encoder–decoder structure used
before U-Net. It is therefore comparable to the fully convolutional nets as described in [42].
This allows for few layers and thus few parameters to be trained. An overview of the
architecture is shown in Figure 4, showing the encoder and decoder layers.
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Encoder

The network’s encoder block is built upon only three layers; the input size of the
image is assumed to be 300 × 300 pixels, limiting the possible resolution. As described in
its origins in [43,44], the lower convolution layers encode basic image features, e.g., lines.
Later layers set together more and more complex features and can detect clouds in larger
receptive fields. The input is condensed into a representation of 38×38×8 pixels.

Decoder

The subsequent decoder upsamples the image based on the deconvolution operation.
The output is upsampled by three layers back to its original size, but only one channel with
the probabilities for the classes of each pixel. This output is finally converted to a binary
mask by a simple threshold.

3. Experimental Results with Selected Neural Networks
3.1. Creation of the Data Sets
3.1.1. Selection of Images

The given camera systems provide sky images for several months, taken with a
frequency of one image every 10 min. Since its installation two years ago, a large amount
of data is available that needs to be pre-sorted for the given task. To obtain sensible
comparisons, the images were screened and several situations and weather scenarios have
been pruned in advance. These include insects on the lens, too many raindrops upon the
lens, dirt on the lens, a closed cloud cover, and heavy fog.

Examples of the removed images are shown in Figure 5.
From the remaining data, 76 images were randomly selected for the training data set

and 14 for the test set. The training was performed using k-fold cross-validation, with the
aim of minimizing the necessary amount of training data. To achieve a greater variation of
the displayed clouds, the time interval between selected recordings was set to at least one
hour and limited to between 8:00 a.m and 5:00 p.m.
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The overall numbers and characteristics of the image database used for training are
summarized in Table 2.

Table 2. Overview of the collected image data set.

Number of
Training Images

Number of
Validation Images

Number of Cloud
Objects

The Time Interval
between

Recording

Time Interval of
Recording

67 18 956 60 min 8:00 a.m–5:00 p.m.

If a later contribution uses the segmentation as input, the interval can be easily scaled
up. An exemplary image sample is shown in Figure 6.
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3.1.2. Marking the Clouds

To complete instanced segmentation, the time-consuming part is the pixel-wise label-
ing of the training data. Open-source tools were used and a representative segmentation
was completed at the pixel level. Examples are again shown, this time in Figure 7.
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For the input, we chose images that were non-rectified and not preprocessed to allow
on the one hand for a comparison with CloudSegNet, and on the other hand for a test of
the capability of cloud detection under severe optical distortions. The problem arose in the
peripheral areas, where clouds are labeled with large difficulties, as shown in Figure 8.
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The masks are binary in both cases, but Mask R-CNN also uses additional bounding
box information generated from the positive areas.

3.2. Mask R-CNN

Given the training and test data, the hyperparameters and overall pipeline for Mask
R-CNN had to be set up.

3.2.1. Training

For the training, the hyperparameters were adapted to our problem and data set.
Using ADAM optimization [45], the learning rate was scheduled, starting with α = 0.00025.
Validation and training data were separated with k-fold cross-validation. Convergence of
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the training loss could be observed after roughly 10,000 epochs. No further improvement
could be achieved by varying the hyperparameters.

3.2.2. Visualization and Qualitative Assessment

After completing the training as described above, the results for the test data set were
visually inspected. Results of the network forward pass are shown in Figure 9. On the left
side, the input image is shown; the right side depicts results with the object mask and its
detection bounding box.
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Figure 9. Visualization of the trained Mask R-CNN network using the test set data (left without a
mask, right with mask, successful segmentation above, insufficient segmentation below).

Two possible outcomes are shown in the figure. In the upper half, a successful
detection and segmentation of the clouds can be seen. It should be noted that the network
is somewhat robust concerning disturbances, as the sun was not falsely detected as a cloud.
The lower half of the figure shows a very large cloud that was only detected partially.
Another problem is that a large portion of the remaining cloud was not detected at all. Our
best solution so far is to massively extend the training data set. The quantitative evaluation
follows in subsequent sections.

3.2.3. Evaluation

The evaluation was performed with the fine-tuned network for the test set data. As
the training loss function is not very helpful in determining the overall quality, we chose
the common recall or hit-rate value and the precision or accuracy to assess the quality of
the segmentation. As we have a large number of negatives in the image, we calculated the
F-score, defined as 2 · precision·recall

precision+recall , where the precision is the so-called positive prediction
value, the quotient of all correctly identified objects (true positive value), and all positively
classified objects (true positive cases and false-positive cases). The F-Score combines this
value with the recall, or sensitivity, which is the quotient of the true positive values and the
combination of true positive and false negative (missed objects) cases. We found that the
F-Score is a superior quality measure compared to individual cases, clearly indicating the
relevance of the results.
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In addition, we detailed the evaluation in further categories: the cloud segmentation
was assessed for bounding box accuracy and pixel-wise segmentation, and separated for
different sizes of clouds for detection. Finally, large clouds covering roughly a third of the
input image are called large, those half the size of large are medium, and the remaining
ones are small. Total area means all results summed up. The detailed results are listed in
Table 3.

Table 3. Evaluation of Mask R-CNN for quality measures.

Number of
Images Type Area Hit Rate Accuracy F-Score

67 Box small 0.124 0.057 0.0781
46 Box small 0.081 0.022 0.0346
67 Box medium 0.469 0.354 0.4035
46 Box medium 0.474 0.355 0.4060
67 Box large 0.506 0.519 0.5124
46 Box large 0.607 0.508 0.5531
67 Box total 0.506 0.633 0.5624
46 Box total 0.506 0.616 0.5556
67 Seg small 0.100 0.019 0.0319
46 Seg small 0.086 0.012 0.0211
67 Seg medium 0.432 0.314 0.3637
46 Seg medium 0.431 0.303 0.3558
67 Seg large 0.541 0.479 0.5081
46 Seg large 0.538 0.472 0.5028
67 Seg total 0.457 0.629 0.5294
46 Seg total 0.454 0.620 0.5242

3.3. CloudSegNet

The CloudSegNet network was used as described in the publication. The network
was also fine-tuned with our data set. The framework is based on TensorFlow with Keras,
the official repository that was used for the setup.

3.3.1. Preparation of the Data Sets and Training

The CloudSegNet network requires the image data in RGB format and the associated
ground truth mask is stored as a binary image. We also used data augmentation with
rotation, mirroring, and distorting to enlarge the training image data set.

3.3.2. Visualization

The trained CloudSegNet was visualized as Mask R-CNN, except for the bounding
boxes. Exemplary results are shown in Figure 10. The segmentation works well, even
for the small database. The upper half shows a near-perfect segmentation; the lower half
depicts a problem for misdetecting a bright cloud as the sun.
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Figure 10. Visualization of the CloudSegNet network using the evaluation data set (left side—input
image, right side—segmentation mask).

3.3.3. Evaluation

We used the same quality measures and images as for Mask R-CNN. The results with
respect to accuracy and F-Score are far superior to Mask R-CNN. Therefore, we also list the
results concerning training progress and complexity. The network could already be used
after 500 epochs of fine-tuning, and after 3500 epochs the results are converged. The actual
numbers are shown in Table 4.

Table 4. Evaluation of the CloudSegNet in different epochs.

Epoch Hit rate Accuracy F-Score Error

15 0.6843 0.6136 0.5915 0.1894
500 0.8047 0.7712 0.7726 0.0938

3500 0.8615 0.8428 0.8464 0.0753

4. Conclusions

The evaluation of two different deep neural network approaches showed promising
results, albeit with Mask R-CNN lacking in efficiency. As we also have access to a wholly
classical machine learning-based approach from [38], a comparison between the two deep
learning methods and the pre-neural network method is shown in Table 5. It is worth
mentioning that the semantic segmentation has the highest recall and precision, and
therefore also the highest F-score. In terms of usage for cloud movement prediction and
tracking, this could be used with an additional post-processing step as is needed for the
classical approach. Interestingly, the most sophisticated model, Mask R-CNN, performs
the worst. As this seems surprising, we conclude that this is due to the lack of training
data. CloudSegNet has far fewer parameters to train and is explicitly suited to dealing
with binary classes, whereas Mask R-CNN performs the best on large data sets and class
numbers.
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Table 5. Evaluation of the investigated cloud detection methods.

Method Hit Rate Accuracy F-Score

Classic image processing 0.692 0.767 0.728
Mask R-CNN 0.583 0.500 0.538
CloudSegNet 0.862 0.843 0.846

Another advantage of Mask R-CNN is the bounding box prediction, which allows it
to be used as direct input for the subsequent tracking and prediction of individual clouds.
The pixel-wise segmentation offers usage for the coverage prediction. Both algorithms are
reasonably fast in the evaluation (not training) and outclass the classical approach, which
has to generate HDR images out of a small image sequence first.

In conclusion, we propose using CloudSegNet for cloud segmentation and detection
but will try to facilitate Mask R-CNN with additional data augmentation techniques,
improving the amount of training data.

Another important task to look at is the viability for several different classes of clouds,
as there could be cirrostratus and misty layers in contrast to the rather well-defined
cumulus, cumulonimbus, or altostratus clouds. This will be tackled with advanced matting
techniques and deep learning, as presented in [46].
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