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Abstract: As a clean fuel combustion technology, the circulating fluidized bed (CFB) has been
developed rapidly in recent years, but one of its disadvantages is high N2O emissions. With the
implementation of increasingly strict pollution control standards, N2O decomposition and removal
technologies have become the main focus of current research. This paper reviews the latest research
on noble metals, metal oxides, the molecular sieve and other new catalysts and decomposition
methods for N2O removal. The research methods and functions of catalysts are compared and the
existing problems are summarized. The future directions of development in N2O decomposition and
removal are considered. Noble metals and the molecular sieve show satisfactory activity at relatively
low temperatures, but their catalytic efficiency is obviously hindered by O2, NO and H2O. In addition,
high costs and insufficient thermal stability limit their widespread industrial application. The metal
oxide catalytic technology, especially oxygen carrier-aided combustion (OCAC), is expected to be the
ideal method for N2O removal in CFB boilers due to its stability and economical feasibility.

Keywords: CFB; fuel; metal oxide; N2O decomposition; OCAC

1. Introduction

Carbon is a resource with huge reserves in China and is mostly used in direct com-
bustion [1]. Although China is rich in various types of carbon resources, the proportion of
low-quality carbon such as high ash is large. Meanwhile, carbon gangue, slime and other
low-calorific-value by-products are produced in the process of coal mining and processing.
Therefore, its clean and efficient combustion is of great significance in the field of energy [2].

CFB combustion technology is an economic and effective clean carbon combustion
technology [3,4]. Due to its advantages of strong fuel adaptability, high combustion
efficiency, low operational costs and low pollutant emissions, it has been developed rapidly
and has been widely used in recent years, offering a solution to the problem whereby
the above inferior fuel is difficult to apply effectively in the traditional pulverized carbon
combustion technology [5,6].

At present, in China, the CFB boiler occupies an internationally advanced level in
terms of installed capacity, application quantity and pollution control [7]. By the end of
2020, 48 supercritical CFB boiler units were in service, including 3 units of 600–660 MW
and 45 units of 350 MW [8].

Due to the low combustion temperature, the CFB boiler creates high N2O emissions [9].
N2O exists in the atmosphere for a long time, up to 120 years [10]. Its contribution to the
greenhouse effect is 2.5 times that of CH4 and 310 times that of CO2 [11]. Due to its
long residence time in the atmosphere and serious greenhouse effect, it has a highly
detrimental impact on the atmosphere [11]. It also exacerbates the ozone hole, growing
at a rate of 0.2% per year. With the introduction of the latest national ultra-low pollution
emission standard, the CFB boiler is facing strong pressure regarding pollutant emission
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reduction [12]. Effectively controlling and reducing N2O emissions has become an urgent
environmental problem to be solved.

The mainstream emission reduction methods for N2O include high-temperature
decomposition, catalytic decomposition, selective removal, improvement of combustion
processes, etc. [13]. Among them, catalytic decomposition has become a promising N2O
removal technology due to its many advantages. Its operation cost is very low and the
process is simple. Moreover, its decomposition products are clean, with no secondary
pollution to the environment and no CO2. Equation (1) is the overall decomposition
reaction of N2O [13].

2N2O→ 2N2+O2(Ho
298 = −163kJ/mol) (1)

N2O sources include adipic acid production, nitric acid production, fossil fuel and
biomass combustion and vehicle emissions [14]. Noble metals, the molecular sieve, metal
oxides and other types of catalysts can produce certain effects on N2O decomposition [15].
Noble metals are mainly used in nitric acid production and vehicle exhaust emissions;
there are many kinds of metal oxides, which are widely used in the above fields. The
molecular sieve can be used in the petrochemical and acid industries [16,17]. CFB boilers
have broad prospects in the combustion of inferior fuel and biomass [4]. Therefore, it is
preferable to consider metal oxide catalysts, with low costs and good stability under the
main combustion temperature range of CFB and complex environment conditions [18].

Scholars have conducted a large amount of research in this area and made great
progress [19–22]. Noble metals show good catalytic performance at low temperatures, and
the molecular sieve shows good catalytic activity and environmental tolerance, but their
costs are high, the preparation process is complex, and the catalytic efficiency is hindered
by O2, NO and H2O [23]. Compared with the above catalysts, metal oxide catalysts not
only have low costs and good thermal stability, but also have excellent redox performance
and high N2O catalytic decomposition activity, making them very promising catalysts [18].
Interestingly, mixed metal oxides composed of two or more specific proportions of a
single oxide can exhibit completely different structural, electronic and chemical properties
to the parent oxide. However, there are limited reports on the progress of N2O catalytic
decomposition, but the development of highly active, stable and low-cost catalytic materials
requires an overall understanding of the catalyst, which is very important for the effective
control of N2O emissions from industry and energy.

Therefore, this paper summarizes the research progress regarding N2O decomposition
in recent years and introduces the structural characteristics of various catalysts (noble met-
als, the molecular sieve, metal oxides, etc.) and the effects of catalyst support, preparation
methods and reaction conditions on catalyst performance. Meanwhile, we also discuss the
advantages and disadvantages of catalysts in detail, so as to provide ideas for subsequent
research on N2O decomposition catalysts. The future research directions regarding N2O
catalytic decomposition are also proposed.

2. The Noble Metal

The noble metal is the earliest N2O catalytic remover and includes Rh, Ru, Pd, Pt,
Au, In, etc. [24–26]. They are usually supported on porous carrier materials in the form
of ions or a single metal [27,28]. Porous materials mainly include Al2O3, MgO, SiO2, TiO2
and ZrO2 [29,30]. The performance of a catalyst is not only related to the type of active
components, but also to the type and structure of the support used [31–35].

2.1. Catalytic Mechanism

There are two typical mechanisms involved in the action of noble metal catalysts on
N2O: the Kondratenko mechanism and the Hinshelwood mechanism. According to the
Kondratenko mechanism [25], N2O is reversibly decomposed into N2 and adsorbed oxygen
on the surface through Formula (2). The adsorbed oxygen reacts with N2O through Formula
(3) to produce N2 and O2, which is irreversible. Therefore, the mechanism considers
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that half of the O2 comes from adsorbed oxygen and half from N2O. The Hinshelwood
mechanism [36] posits that O2 comes from adsorbed oxygen. N2O forms adsorbed N2O on
the Pt surface through Formula (4), which is then decomposed into nitrogen and adsorbed
oxygen, and the adsorbed oxygen is combined to form O2 [36].

N2O + s→ N2+O− s (2)

N2O + O− s→ N2+O2 (3)

N2O + s→ N2O− s (4)

N2O− s→ N2+O− s (5)

2O− s→ O2+2s (6)

2.2. Research Progress

Rh, Ru, Pd, Pt, Au and In show certain catalytic activity for the decomposition of N2O,
and Rh displays the highest activity [37,38]. Doi et al. [38] prepared Rh/Al2O3, Pd/Al2O3
and Pt/Al2O3 catalysts for the N2O decomposition reaction, as shown in Figure 1. The N2O
catalytic decomposition activities were in the following order: Rh/Al2O3 > Pd/Al2O3 >
Pt/Al2O3. Aviles et al. [39] simulated the change in bond energy in N-N under the condition
of containing Rh as the active component of the catalyst by means of quantum chemistry.
Marco et al. [40] studied the decomposition performance of a Rh-based catalyst for N2O.
The results showed that when the Rh content in the catalyst was 1%, it had excellent
decomposition performance for a high concentration of N2O.
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Hans et al. [41] studied the effects of particle size and support on the activity of a Rh
catalyst, and prepared a series of Rh-supported catalysts, such as MgO, TiO2, SiO2, CeO2
and Al2O3 (diameter 0.5–4.0 nm). It was found that when the average particle size was
2.1–2.4 nm, Rh/MgO and Rh/SiO2 showed good low-temperature activity and the activity
temperature window was 200–300 ◦C in an aerobic environment. Rh particle size is the
main factor affecting catalyst activity, and the redox capacity of the active components is a
secondary factor. Figure 2 shows the conversion achieved using a Rh(N)/MOx catalyst in
an aerobic environment. According to the temperature required to achieve 50% conversion
(T50), the overall activity of the catalyst has the following order: Rh(N)/MgO (T50 = 249 ◦C)
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≈ Rh(N)/SiO2 (T50 = 249 ◦C) > Rh(N)/CeO2 (T50 = 289 ◦C) > Rh(N)/Al2O3 (T50 = 341 ◦C)
≈ Rh(N)/TiO2 (T50 = 342 ◦C).
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Parres et al. [42] supported noble metals on γ-A12O3 and pure CeO2 to prepare
catalysts with high activity. At 300 ◦C, the decomposition efficiency of the Rh-supported
catalyst could reach more than 98%. The activity of noble metal catalysts is also closely
related to the properties of the support. For example, the catalytic activity of Rh/CeO2 is
significantly higher than that of Rh/γ-A12O3.

2.3. Effect of Support

The N2O decomposition activity of a noble metal catalyst is closely related to the type
of support. Hussain et al. [43] compared the activity of Rh of MCM-41, KIT-6, SBA-15
spherical and SBA-15 conventional catalysts and found that the SBA-15 spherical catalyst
not only exhibited the highest activity, but also had the best anti-aging impact and long-
term stability.

Lin et al. [44] studied the activity of RhOx/M-P-O (M = Mg, Al, Ca, Fe, Co, Zn,
La) catalysts for N2O decomposition under oxygen conditions. The activity increased in
the order of RhOx/Zn-P-O ≈ RhOx/Fe-P-O< RhOx/Al-P-O < RhOx/Co-P-O < RhOx/
Mg-P-O < RhOx/La-P-O < RhOx/HAP, indicating that the supports had significant effects.
Among these catalysts, RhOx/HAP showed the highest activity. RhOx/HAP has small
RhOx particles (average 1.2 nm), rich basic sites (104.1 µmol/g), abundant surface hydroxyl
groups, and it can easily desorb O2 from RhOx/HAP at relatively low temperatures. These
characteristics make RhOx/HAP the most active catalyst among RhOx/M-P-O catalysts.
Different supports can affect the size of RhOx particles and subsequently their activity, but
the particle size and surface area of RhOx particles are not the only factors affecting the
catalytic activity. The relatively rich basic sites, O2 adsorption sites and surface hydroxyl
groups also play an important role [45].

Figure 3 shows the activity of different mesoporous silica-supported Rh for N2O
decomposition. The Rh-MCF catalyst demonstrates the highest activity [40]. MCF-type ma-
terials have three-dimensional mesopores with very large cavities, so that small, diamond-
shaped particles are evenly distributed on the inner surface area.
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Dou et al. [46] explored the N2O catalytic decomposition performance of modified
noble metal catalysts at different pH values. Although the activity of the two modified
catalysts was good, the conversion decreased in varying degrees after 10 h in the presence
of O2 and steam.

The noble metal can show good N2O decomposition performance at low temperatures,
so it has been used since the 1970s. However, because of its high cost, narrow temperature
window and the risk of poisoning due to the inhibition of oxygen and water vapor, its
large-scale application in industry is limited [47].

3. The Molecular Sieve

The molecular sieve catalyst is a silicon aluminum salt catalyst with a uniform pore
structure and strong ion exchange performance [48]. It has been of great interest in the field
of catalyst research and attracted extensive attention because of its non-toxic nature, lack of
pollution, high activity and wide temperature window [49].

3.1. Research Progress

The molecular sieve catalyst is mostly based on transition metals, such as Fe, Cu, Mn,
Co, Ni, Ce, etc. [50–53]. A large number of scholars have studied the existing molecular
sieves, such as ZSM-5, ZSM-11, USY, beta, etc. [54–58]. The molecular sieve generally has
a large specific surface area, uniform pore size, regular pore structure and high selective
surface, which can make the active components loaded on its surface highly dispersed,
thus increasing the active site of the catalyst.

Guzman et al. [59] prepared Fe-BEA, Fe-FER and Fe-ZSM-5 by the ion exchange
method. It was found that the properties of the main molecular sieve had a great impact
on the activity of Fe species, and the activity of Fe-FER was the best.

Wu et al. [60] prepared iron-based molecular sieves pretreated with nitric acid for
different times. It was found that long-term acid treatment affected the catalytic perfor-
mance of Fe-ZSM-5 samples and the activity increased slightly with the extension of the
acid treatment time. The catalytic performance of the Fe-beta sample showed the clearest
improvement. The increase in catalytic activity could be explained by the increase in active
iron loading caused by structural changes.

Smeets et al. [61] prepared Co-ZSM-5 catalysts with different Co content and studied
the effects on catalyst activity. It was found that the oxidized cobalt species did not
contribute significantly to the catalytic decomposition of N2O, but monatomic Co showed
high catalytic activity.

Meng et al. [62] performed a decomposition reaction experiment using a Cu ion
molecular sieve catalyst for N2O. As shown in Figure 4, the results showed that when
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the Cu content was 3% (Silicalite-1@Cu-ZSM-5), the catalyst had the best decomposition
activity, but when the flue gas contained oxygen and water vapor, its decomposition activity
decreased. Silicalite-1@Cu-ZSM-5 had more dimetric Cu ions upon thermal pretreatment
in He. In addition, less O2 could be adsorbed on Silicalite-1@Cu-ZSM-5. Both factors
contributed to the much higher activity of Silicalite-1@Cu-ZSM-5.
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Kondratenko et al. [63] studied the catalytic effect of Fe and Rh supported on the
molecular sieve ZSM-5 on N2O. The two catalysts were prepared by different methods. It
was found that the O2 desorption paths of the two modified ZSM-5 molecular sieves were
different. The adsorption of N2O by Rh species was significantly stronger than that by Fe
species, and it had higher catalytic activity (below 623 K).

3.2. Effect of the Preparation Method

The preparation method has a great impact on molecular sieve catalysts; the methods
include wet ion exchange, isomorphic substitution, solid-state ion exchange and chemical
vapor deposition [64]. Compared with other methods, wet ion exchange is simpler and
more feasible. The pH value of the suspension and the degree of ion exchange are the key
factors affecting the activity of the catalyst [64].

Panov et al. [65,66] determined that the iron-based molecular sieve is one of the most
active catalysts for the decomposition of N2O. Compared with the catalysts prepared by
chemical vapor deposition, the iron-based molecular sieve catalysts prepared by wet ion
exchange not only have higher N2O decomposition activity, but also better hydrothermal
stability. The metal cations outside the skeleton are considered to be the active center.

Du et al. [67] studied the effects of preparation methods and types of precursors on
the activity of a Rh/SBA-15 catalyst. The results showed that the activity of the catalyst
was closely related to the preparation method of the catalyst and the size of its precursor.
The activity change trend corresponded well with the dispersion state of Rh on SBA-15, i.e.,
the better the dispersion, the higher the activity.

Compared with noble metal catalysts, metal-ion-modified molecular sieves have the
advantages of higher activity and better low-temperature activity [68]. However, in the
presence of high-temperature water vapor, the collapse of the molecular sieve structure and
irreversible deactivation can easily occur, which can affect the activity of the catalyst [69].
Therefore, it is necessary to further improve the catalytic performance and hydrothermal
stability of the molecular sieve by pretreatment and surface modification.
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4. The Metal Oxide

Metal oxide catalysts have high catalytic activity for N2O decomposition and mainly
include transition metal oxides (Fe2O3, NiO, Co3O4, CuO, etc.), alkaline earth metal oxides
(CaO, BaO, MgO, etc.), rare earth metal oxides (La2O3, CeO2, etc.) and their composite
metal oxides [70–74].

4.1. Single Metal Oxide (Bare Oxide)

In the presence of oxygen, Ohnishi et al. [71] studied the activity of various metal
oxide catalysts, i.e., NiO, Co3O4, CuO and MnO2, in the N2O decomposition reaction. NiO
and Co3O4 showed strong low-temperature activity. The preparation conditions had little
effect on the activity of the NiO catalyst, but the activity of the Co3O4 catalyst depended
strongly on the preparation conditions, and the residual sodium content in the precursor
was the decisive factor affecting catalyst activity.

Wu et al. [75] studied the effect of CaO on the decomposition of N2O and the selectivity
of its decomposition products. The results showed that CaO could catalyze the decomposi-
tion of N2O, and the selectivity of N2 was higher than that of NO according to DFT. The
possibility of N2O decomposition to produce N2 is greater than that of the NO generation
path. The structure and composition of single metal oxides are relatively simple, so they
are more suitable for the study of the N2O catalytic decomposition reaction mechanism.

Hou et al. [76] studied different metal oxides in a circulating fluidized bed and found
that the catalytic capacity gradually decreased from Fe3O4, Fe2O3, CaO, MgO, Al2O3,
CaSO4 and SiO2. Barisic et al. [77] observed that the higher the amount of catalytic active
oxides (Fe2O3 + CaO + MgO + Al2O3) in a 12 MW circulating fluidized bed, the higher the
activity of N2O decomposition. The experimental results of Yang et al. [78] showed that
iron and its oxides had a strong catalytic effect on N2O, but the effect was greatly reduced
when H2O and O2 were present in the environment. Figure 5 shows the catalytic activity
of samples with different Fe content (1, 5 and 10%) for N2O decomposition. At the reaction
temperature of 550 ◦C, when the added iron content increased from 1% to 10%, the N2O
conversion increased from 17.7% to 66.3%. Therefore, the increase in iron content improved
the decomposition rate of N2O and promoted the overall transformation of N2O. At 700 ◦C,
the N2O conversion could reach 100% in all cases. The catalyst activity increased with the
increase in reaction temperature.
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4.2. Mixed Metal Oxide

The catalytic activity of mixed metal oxides can be significantly improved, and such
catalysts have high thermal stability by stabilizing some active substances and adjusting
the composition ratio [78]. Mixed metal oxide catalysts mainly include spinel oxide,
hydrotalcite oxide, hexaaluminate oxide, cerium-based oxide, perovskite oxide, etc. [79,80].

The chemical formula of spinel oxide is AB2O4. Russo et al. [81] produced a variety
of AB2O4 spinel catalysts and found that the catalyst with Co at the B position had better
catalytic activity, especially MgCo2O4.

Hydrotalcite oxide is a new material with a layered structure that is composed of a
main cationic laminate and an anion-filled interlayer. Hydrothermal treatment and alkali
metal salts have a significant effect on the catalytic decomposition of N2O by hydrotalcite,
but O2 and CO have a negative effect on it. Pacultova et al. [82] studied the catalytic
reduction of N2O by CO on Co-Mn-Al calcined hydrotalcite and found that when there
was no oxygen in the feeding gas, CO strongly promoted the conversion of N2O. As shown
in Figure 6, in the presence of O2, CO acted as a non-elective reducing agent to inhibit the
destruction of N2O.

Energies 2021, 14, x FOR PEER REVIEW 8 of 14 
 

 

4.2. Mixed Metal Oxide 
The catalytic activity of mixed metal oxides can be significantly improved, and such 

catalysts have high thermal stability by stabilizing some active substances and adjusting 
the composition ratio [78]. Mixed metal oxide catalysts mainly include spinel oxide, hy-
drotalcite oxide, hexaaluminate oxide, cerium-based oxide, perovskite oxide, etc. [79,80]. 

The chemical formula of spinel oxide is AB2O4. Russo et al. [81] produced a variety 
of AB2O4 spinel catalysts and found that the catalyst with Co at the B position had better 
catalytic activity, especially MgCo2O4. 

Hydrotalcite oxide is a new material with a layered structure that is composed of a 
main cationic laminate and an anion-filled interlayer. Hydrothermal treatment and alkali 
metal salts have a significant effect on the catalytic decomposition of N2O by hydrotalcite, 
but O2 and CO have a negative effect on it. Pacultova et al. [82] studied the catalytic re-
duction of N2O by CO on Co-Mn-Al calcined hydrotalcite and found that when there was 
no oxygen in the feeding gas, CO strongly promoted the conversion of N2O. As shown in 
Figure 6, in the presence of O2, CO acted as a non-elective reducing agent to inhibit the 
destruction of N2O. 

 
Figure 6. Temperature dependence of N2O conversion [82]. Reprint with permission [82]; 2008, 
Elsevier. 

Hexaaluminate oxide is a crystal with a hexagonal layered structure formed by the 
alternate stacking of spinel structural units and mirrors [79]. The chemical formula can be 
written as AAl12O19 and A can be an alkali metal, alkaline earth metal or rare earth metal. 
Santiago et al. [83] synthesized hexaaluminate LaFeAl11O19 with a high specific surface 
area via the carbon template method. The use of the carbon template increased the surface 
area and improved the catalytic performance. There was a quasi-linear relationship be-
tween the reaction rate and the specific surface area of the sample. Catalytic high-temper-
ature decomposition (secondary abatement) of nitrous oxide over calcium aluminate 
12CaO center dot 7Al(2)O(3) (mayenite) was studied the model laboratory tests (TPSR) 
and pilot units (steady-state) using a real feed by Ruszak et al. [84]. It was found that the 
catalyst exhibited high efficiency and selectivity in N2O removal, reaching practically 
100% conversion at 1150 K, without appreciable total losses of NOx. A hexaaluminate cat-
alyst has a large specific surface area at high temperatures, with excellent sintering re-
sistance and thermal shock resistance. It is a good high-temperature, thermally stable ma-
terial, so it is the most promising high-temperature N2O decomposition catalyst. 

Figure 6. Temperature dependence of N2O conversion [82]. Reprint with permission [82];
2008, Elsevier.

Hexaaluminate oxide is a crystal with a hexagonal layered structure formed by the
alternate stacking of spinel structural units and mirrors [79]. The chemical formula can be
written as AAl12O19 and A can be an alkali metal, alkaline earth metal or rare earth metal.
Santiago et al. [83] synthesized hexaaluminate LaFeAl11O19 with a high specific surface area
via the carbon template method. The use of the carbon template increased the surface area
and improved the catalytic performance. There was a quasi-linear relationship between
the reaction rate and the specific surface area of the sample. Catalytic high-temperature
decomposition (secondary abatement) of nitrous oxide over calcium aluminate 12CaO
center dot 7Al(2)O(3) (mayenite) was studied the model laboratory tests (TPSR) and
pilot units (steady-state) using a real feed by Ruszak et al. [84]. It was found that the
catalyst exhibited high efficiency and selectivity in N2O removal, reaching practically 100%
conversion at 1150 K, without appreciable total losses of NOx. A hexaaluminate catalyst
has a large specific surface area at high temperatures, with excellent sintering resistance
and thermal shock resistance. It is a good high-temperature, thermally stable material, so it
is the most promising high-temperature N2O decomposition catalyst.
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Xue et al. [85] prepared a series of Co-based mixed metal oxides and found that the
activity of the Co-Ce mixed oxide catalyst was the best. Its activity was related to the molar
ratio of Ce/Co. The addition of Ce improved the catalytic ability by increasing the specific
surface area of the catalyst and the redox ability of the active site.

The chemical composition of perovskite oxide can be expressed as ABO3. A is usually
rare earth metal ions with a large radius, while B is transition metal ions with a small radius.
It has the characteristics of stable structure, strong chemical adsorption capacity and good
oxygen migration and storage capacity, which result in good catalytic performance [86].
Dacquin et al. [87] et al. prepared LaCoO3 through different preparation methods to explore
its catalytic decomposition effect on N2O. It was found that different surface compositions
may change the subsequent interaction between the surface and reactants and the related
catalytic properties. LaCoO3 prepared by reactive grinding is considered to be the most
active catalyst because of its high specific surface area, but the presence of Fe and Zn
impurities inherent in the preparation method can interfere with the catalytic performance.

4.3. Oxygen Carrier-Aided Combustion (OCAC)

In a CFB boiler, one of the basic functions of the bed material is to transfer heat between
different parts of the boiler to reduce the thermal gradient and make the operation stable.
In order to enhance the heat transfer and uniform heat distribution, inert fluidized bed
materials, such as silica sand, are usually used. Partial or total replacement of silica sand
with an oxygen carrier may help to promote the oxygen distribution in the combustion
chamber, which is referred to as oxygen carrier-aided combustion (OCAC) [88]. An oxygen
carrier is a kind of metal oxide that not only transmits heat through a chemical redox
reaction, but also transmits oxygen between oxygen-poor and oxygen-rich areas of the
boiler. It has the ability to alternately absorb and release oxygen, so as to improve the
distribution of oxygen in the whole furnace. Therefore, OCAC can be considered to be
used for N2O emission reduction in CFB boilers.

Carl et al. [88] examined silica sand under the same combustion conditions using
a synthetic material mixture of three alternative bed materials, namely manganese ore,
ilmenite and Fe2O3 on a zirconia support. The results showed that the content of carbon
monoxide in the exhaust gas can be reduced by using an activated bed material in the
combustion process when using a sub-stoichiometric air–fuel ratio.

Fredrik et al. [89] investigated the use of slag as an oxygen carrier in a 12 MW boiler.
Bed material samples were studied in a laboratory fluidized bed reactor to determine
reactivity changes in common volatile fuel components (i.e., carbon monoxide, H2, methane
and C6H6). It was found that slag could be used as an oxygen carrier in the combustion of
biofuels, but the reactivity of syngas, CH4 and C6H6 decreased with time.

Wang et al. [90] used a small fluidized bed reactor to simulate the fuel conversion and
nitric oxide generation of OCAC and tested four oxygen carriers, two ores (ilmenite and
manganese ore) and two oxide scales (expressed as AQS and LDST). They used charcoal
as fuel and monitored the concentration of carbon dioxide, carbon monoxide, methane,
oxygen and nitric oxide in the waste gas. The results showed that the use of an oxygen
carrier reduced the emission level of carbon monoxide and improved the combustion
efficiency. The improvement in combustion efficiency could be attributed to the reactivity
of the oxygen carrier with carbon monoxide to a great extent. OCAC can reduce the level
of excess air, thereby reducing the emission level of nitric oxide.

Thunman et al. [91] found that after adding ilmenite into silica sand, the concentrations
of carbon monoxide and nitric oxide decreased by 80% and 30%, respectively, in a 12 MW
CFB boiler. The addition of ilmenite reduced the concentration of carbon monoxide and
total hydrocarbons in a cross-section of the furnace.

A possible problem is that, in the case of coal or any ash-containing fuel, there may
be an interaction between its derived ash and the oxygen carrier, which may lead to
the deactivation and agglomeration of the oxygen carrier. Esraa et al. [92] studied the
interaction between common oxides in ash and copper oxide oxygen carriers in terms of
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both experimental and thermodynamic aspects. CuO is a widely used oxygen carrier that
can release gaseous oxygen in an inert atmosphere. SiO2, Al2O3, Fe2O3, CaO and K2O were
used to represent the oxides in ash. In all cases, large amounts of copper oxide survived
without any interaction. Silicate base layers, especially potassium silicate, lead to strong
agglomeration, which is likely to reduce the service life and oxygen release capacity of
oxygen carriers.

5. Other Catalytic Removal Methods

In a CFB boiler, the bed material interacts with N2O in flue gas in the furnace and gas–
solid separator. These bed materials, composed of various metal oxides, can catalyze the
destruction of N2O, so as to accelerate the decomposition reaction. Circulating ash usually
has a narrower particle size distribution, larger specific surface area and less carbon content
than the bed material and may be an excellent catalyst to accelerate N2O decomposition.
Hou et al. [93] studied the catalytic decomposition of N2O by circulating ash in a coal-fired
circulating fluidized bed boiler. The results showed that different metal oxides had different
catalytic decomposition effects on N2O. CaO and Fe3O4 were very active, while Al2O3 and
SiO2 had little destructive effect on N2O. It was found that even if the oxygen content was
very small, it worsened the catalytic decomposition of N2O.

6. Conclusions

N2O is a non-negligible pollutant in CFB. This paper reviews the catalytic removal
technology of N2O and summarizes the latest research progress in catalytic decomposition
methods such as noble metals, metal oxides and molecular sieves. The main conclusions
are as follows:

1. Noble metals show good N2O decomposition performance at low temperatures, but
they have high costs, a narrow temperature window and can easily lead to poisoning
by oxygen and water vapor.

2. A metal-ion-modified molecular sieve has higher activity and better low-temperature
activity, but its hydrothermal stability is poor.

3. Metal oxides have high thermal stability, so they are more suitable for use in CFB.
Among them, hexaaluminate oxide has a large high-temperature specific surface area,
excellent sintering resistance and thermal shock resistance and has high removal
efficiency and selectivity for N2O. It is a very promising high-temperature N2O
decomposition catalyst.

4. Partial or total replacement of silica sand with an oxygen carrier may help to promote
oxygen distribution in the combustion chamber, which is called OCAC. OCAC can
significantly reduce the concentrations of carbon monoxide and nitric oxide in the
furnace. Therefore, it can also be considered to reduce N2O emissions in CFB boilers.
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