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Abstract: This paper presents a system for compensating DC link current pulsation in four-wire
inverters with energy storage operating under unbalanced load conditions. This phenomenon occurs
when an inverter with an independent power control in each of the phases attempts to locally balance
the voltage imbalance in the grid. Such a condition creates a DC link current pulsation, which is
destructive for energy storage connected to the DC link. The conditions when this situation appears
are presented in detail in the paper. A solution to this problem is proposed in the form of a dual active
bridge converter and a capacitor bank to actively compensate this pulsation. The control algorithm is
proposed based on a proportional-resonant controller. This paper presents the technical background
and method by which the controller parameters were calculated, implemented and tested in a real-
time system. The test results are presented and discussed, concluding that the proposed solution is
an attractive option for protecting the energy storage from DC link current pulsation. The dual active
bridge converter combined with resonant controller can compensate the DC link current pulsation
almost entirely.

Keywords: energy storage; supercapacitor; dual active bridge; three-phase four-wire converter;
multi-resonant control

1. Introduction

A significant increase in renewable energy sources installed in households has been
observed in the past few years. Instead of only consuming energy, the households become
prosumers—entities that both produce and consume energy. Additionally, the number
of receiving devices increases as well, including pulse power supply-based ones. This
may create the problem of a grid load imbalance, and further—a grid voltage imbalance,
which can then lead to the local power transformer operating in non-nominal conditions,
increasing fault risk and reducing its lifespan. With both pulse loads and renewables
present in the grid, the worst-case scenario would mean an overvoltage in one phase and
undervoltage in another phase of a three-phase system (Figure 1). The easiest solution to
this problem would be to reduce the power output of the household renewables—but that
method creates losses, and renders the renewables partially pointless.

There are other methods of solving the grid unbalance problem, mainly based on Dual
Vector Current Control methods and three-phase, four-wire inverters [1–3]; however, while
these methods still generate balanced currents and voltages and can maintain the operation
of the grid, they have no means of compensating the imbalance.

In order to be able to locally balance the power flow in the grid, a solar inverter must
be equipped with energy storage. The inverter in this situation should have independent
control over power in each of the phases, effectively working as three single-phase invert-
ers [4,5]. Utilizing the energy storage as a buffer for grid imbalance compensation creates
the problem of an AC current component appearing in a DC link between the inverter
and the energy storage. This AC component creates losses in the electrochemical energy
storage and causes it to heat up. This phenomenon is utilized in a controlled way in electric
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vehicles—low AC current is used to pre-heat the batteries when the ambient temperature
is too low for the charging process [6,7]. Higher AC components can cause the battery
to overheat and the BMS (battery management system) to interrupt the operation of the
storage in order to prevent potential damage. Additionally, this process accelerates the
aging of the electrochemical energy storage, so it is imperative to minimize this effect. The
most common approach to DC link pulsation reduction is to limit the inverter current
asymmetry to a level tolerated by the energy storage. Another method would be adding
an additional DC/DC converter in parallel to the DC interface of the inverter—e.g., a non-
isolated buck-boost converter with a capacitor energy storage. These methods, however,
do not guarantee optimal operation of the inverter and energy storage. In this study, a dual
active bridge (DAB) topology with supercapacitor was proposed as a solution for the DC
link current pulsation problem. This solution increased the dynamics of the system due to
the dynamics of the DAB converter itself. Additionally, using isolated topology allowed
the implementation of a transformer with optimal voltage ratio for better utilization of the
supercapacitor in applications with high voltage DC links. Furthermore, we present herein
a novel control algorithm that compensates the current pulsations in DC link, based on
proportional-resonant regulators. Using the proportional-resonant controllers and the DAB
converter allows compensation of almost all AC pulsation in the DC link, even in cases of
high asymmetry operation in the inverter.
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Figure 1. Worst-case scenario of energy flow and grid voltage unbalance.

2. DC Link Pulsation in a Four-Wire Multi-Resonant Inverter

As mentioned in the previous section, a DC link pulsation would occur in an inverter
operating with unbalanced currents: for example, when one phase is drawing energy
from the grid, one is idle and one is delivering energy to the grid. Another such scenario
would be realized when two phases were delivering active power and a single-phase were
delivering reactive power to the grid. This kind of operation is possible only in four-wire
systems with independent power control in each of the phases. The system presented in
(Figure 2) is considered as three separate single-phase inverters.
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Figure 2. Three-phase, four-wire inverter (three-level, T-type with LCL filter) and unbalanced current
output during local grid balancing operation.

Three separate current reference signals are set by an external controller (local grid
operator) in order to compensate grid voltage unbalance (Figure 3). These signals are
used to generate sine and cosine signals based on a sawtooth signal generated from a
robust synchronization algorithm, for example DDSRF-PLL (Decoupled Double Reference
Frame—Phase Locked Loop) [8,9].
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Figure 3. Control algorithm of a single phase of a three-phase four-wire inverter.

The synchronization algorithm is required to operate under asymmetric conditions,
which is why basic algorithms would not work. Sinusoidal references are compared against
measurements, and an error is passed to resonant controllers, with resonant frequencies
matching the main frequency of the grid and its harmonics. Resulting power output to the
grid can be described as:

p3 f =
3

∑
k=1

1
2

Vk Ik(cos(ϕvk − ϕik)− cos(2ωt + ϕvk + ϕik)) (1)

where: p3f—power in DC link, Vk—phase voltage magnitude, Ik—phase current magnitude,
φvk—phase voltage angle, φik—phase current angle.

If the efficiency of the inverter is omitted, then Equation (1) can be used to approximate
power output in the DC Link. When the inverter operates with symmetric currents, the
sum of time-variant components cos(2ωt + ϕvk + ϕik) of three phases is equal to zero, and
there is no pulsation in the DC link. When asymmetry is introduced, for example, one



Energies 2021, 14, 6141 4 of 10

phase starts drawing energy from the grid, while two others deliver energy to it, the sum of
the time-variant components does not equal zero, and resulting power pulsation appears
in the DC link. The frequency of this pulsation is double the frequency of the main grid
voltage component.

The magnitude of the AC component of the DC link current (IAC_DCLink) as a function
of the magnitude of the AC component of the neutral wire current (In) can be described as:

IAC_DCLink =
V1

2VDC
In (2)

where: V1—phase RMS voltage, VDC—DC link voltage.
Instantaneous value of the AC component, based on Equations (1) and (3) can be

described as:

iAC_DCLink = IAC_DCLink sin(2ωt + ϕn) =
V1

2VDC
Insin(2ωt + ϕn) (3)

where φn—phase of neutral wire current.
This AC component of the DC link current is a problem for energy storage applications:

it can be ignored in applications without an electrochemical energy storage, but at the same
time, those applications cannot locally balance any grid unbalances. It can be reduced
by increasing the capacitance of the DC link—but a 10 times increase in capacitance will
reduce the pulsation only by 20%. A promising solution is presented in (Figure 4), where
there are two energy storages connected in parallel: a main electrochemical energy storage
connected via isolated DC/DC converter to DC link, and an auxiliary energy storage in the
form of a supercapacitor, connected via another isolated DC/DC converter to the same DC
link. The DC/DC converter connected to electrochemical energy storage serves as charging
and discharging interface, maintaining DC components of the DC link, while the other
DC/DC converter is meant to take over any pulsation created by an unbalanced operation
mode. Since the AC component requires the converter to switch between charging and
discharging at a rate of 100 Hz, the DC/DC converter must possess high dynamics. One
of the best solutions in this case is dual active bridge topology (DAB) [8,9], which can
smoothly transition between charging and discharging mode. The proposed topology and
control algorithm are described in the following section.
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Figure 4. Three-phase four-wire inverter with an energy storage and pulsation compensating circuit.

3. Dual Active Bridge as a DC Link Current Pulsation Compensator

Dual Active Bridge (DAB) topology is the most popular topology in bidirectional
electric vehicle charger applications. This type of converter serves as the main charging
controller, controlling both charging current and voltage. It has also gained popularity
in power distribution, especially in the field of solid-state transformers [10,11]. The main
advantage of this topology is that it is fully symmetric (Figure 5) and it can transition
between charging and discharging an electric vehicle without any change in the control
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algorithm: the same algorithm can be used in both cases. Over the years several con-
trol schemes for DAB converters were developed, extending the number of degrees of
freedom [12–14], which are utilized to increase efficiency, reduce circulating currents, etc.
In this application, two DAB converters are used as interfaces between the DC link, the
energy storage and the capacitor bank. The DAB converter, connected to an electrochemical
energy storage, operates as a standard DC current charging controller, based on the DC
link state. It operates in a single-phase shift mode, and uses a dual phase shift mode
during precharge. The converter when connected to a supercapacitor operates in a different
manner: single-phase shift during normal operation, and as phase-shifted full bridge with
passive rectification during precharge. This approach allows the converter to build the
voltage on the supercapacitor without putting high current stress on semiconductors for
the period of precharging the capacitance.
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Several works describe the dynamics of the dual active bridge with varying complexity.
The most common approach used small signal modeling and a state-space approach to
describe the system as MIMO [15–17] with 2, 3, 4 and 5 state variables. For the application
presented in this paper a linearized description is sufficient [18]. Linearized, small signal
transfer function of the DAB converter is described as:

Gdab(s) =
VdTs

2Llk
(1 − 2D)Zo(s) (4)

where: Vd—DC link voltage, Llk—equivalent leakage inductance, Ts—switching period,
D—phase shift (per unit), Zo—filter impedance. The component VdTs

2Llk
(1 − 2D) directly

describes the relation between the current id and phase shift D. This relation is valid and
any delays can be neglected, provided the frequencies are at least an order of magnitude
lower than the switching frequency.

The presented application of the DAB converter aimed to compensate a 100 Hz AC
current appearing in the DC link of an inverter operating with unbalanced phase loads. A
control algorithm was proposed as depicted in (Figure 6). This algorithm was based on
a group of parallel resonant controllers [19]. The first resonant controller was tuned for
100 Hz; additional controllers were required when operating under island conditions. A
low pass filter was present (LPF) in the system, to filter out any DC components present in
the feedback (icap). The mathematical description of this algorithm is as follows:

GDAB_res = ∑N
n=1

KnH2ωr_nHs
s2 + 2ωr_nHs + ω2

0

s
s + ωLPF

(5)

where KnH—resonant controller gain, ωrnH—resonant span parameter, ω0—controller
resonant pulsation, ωLPF—proportional controller gain.
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Since this system had high rejection of any DC components (Figure 7) it also prevented
the capacitor bank from overcharging or completely discharging.
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4. Results

The algorithm for compensating the current pulsation was implemented on a Texas
Instruments F28379D Delfino microcontroller. The current was measured on the output
of the DAB converter connected to the electrochemical energy storage using Hall sensor.
The placement of this measurement allowed the reference signal of the compensator to
be zero, and the energy storage current became the feedback. An alternative approach,
where current measurement was placed in the main DC link, would require the measured
current to become the reference, and the DAB output current would then become the
feedback of the control algorithm. The parameters of the resonant compensator were
tuned to compensate for the main frequency of the pulsation—100 Hz. Table 1 presents the
compensator parameters.

Table 1. Resonant compensator parameters.

Parameter Value

Base resonant gain G1 60
Resonant gain for first harmonic (100 Hz) KH1 60
Resonant gain for n-th harmonic KHn, where

H—number of the harmonic G1/H

Resonant span for first harmonicωR1H 6.28
Resonant span for n-th harmonicωRnH 2 × π × H

Resonant frequency for the first harmonicω0 100 Hz
Resonant frequency for the n-th harmonic 100 Hz × H

Low pass filter cutoff frequencyωLPF 0.1 Hz

The proposed algorithm was implemented in a dual active bridge converter and tested
with an energy storage and a capacitor bank. The test bench was assembled according
to the diagram presented in (Figure 4). Table 2 presents the key parameters of the tested
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system. The capacitor bank was precharged to 60 V to create stable startup conditions. The
currents were observed using a Tektronix MSO5034B oscilloscope and current probes. First,
an open-loop test was performed to evaluate whether there was, previously claimed, no
delay (Equation (4)) for low-frequency signals. The results are presented in (Figure 8). A
sinewave drove the phase D of the converter, and a magnitude step was performed. No
delay between command and input current was observed.

Table 2. Test system key parameters.

Parameter/Device Value/Type
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Further tests were performed with a three-phase four wire inverter connected to an
energy storage and the tested converter. Three cases are presented: when Ia = Ib = −Ic = 10 A
(Figure 9), Ia = 10 A, Ib = Ic = 0 (Figure 10) and Ia = 10 A, Ib = 7 A, Ic = 5 A (Figure 11).
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The three presented cases were the most significant: the first case (Figure 9) created
pulsation with zero crossing, and also transferred energy directly from one phase to
another; the second case (Figure 10) had only single-phase delivering power, and the
resulting pulsation had an offset—the energy was drawn from the DC link. The third case
(Figure 11) had three different currents being drawn and delivered by the inverter, with the
resulting current feeding the DC link.

The first case (Figure 9) was considered the most severe, since the energy was directly
transferred from one phase of the inverter to another. The phases A and B operated in an
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inverter mode, while phase C operated in a rectifier mode. In this case, the DC component
of the DC link current was at 3.7 A, while the AC component was at 5.2 A. In another case
(Figure 10), the inverter compensated voltage in the A phase. The DC link current was at
5 A for the DC component, and 3.5 A for the AC component. In the last case (Figure 11)
inverter output currents were adjusted to the level of asymmetry between the phases. This
scenario has the highest probability of occurrence in the grid and has the least level of
AC pulsation—2 A, where the DC component has a value of 8.5 A. Since the DC link was
under the current with only 100 Hz pulsation, the DC/DC converter response was almost
immediate, and only minor fluctuation is visible during the startup.

5. Conclusions

This paper presents a topology and an algorithm for compensating an AC component
of a DC link current. The problem covered in the paper relates to four-wire inverters
operating in high asymmetry mode in order to compensate voltage asymmetry in the
utility grid. The novelty presented in the paper is the introduction of a parallel DC/DC
converter with a supercapacitor along with a control algorithm, which was based on
resonant regulators in order to optimize operation of the supercapacitor and compensate
AC component of a DC link current.

This problem was studied in three cases: Ia = Ib = −Ic = 10 A, Ia = 10 A, Ib = Ic = 0,
and Ia = 10 A, Ib = 7 A, Ic = 5 A. In all the cases, the pulsation was reduced almost to
zero. This result was possible due to the dual active bridge converter response being
500 times faster than the compensated pulsation. The implemented control loop based
on resonant controllers allowed for quick and accurate elimination of 100 Hz pulsation,
appearing in systems feeding an unbalanced, 50 Hz utility grid. Using the high-gain
resonant compensators allowed absolute compensation of the DC link pulsation. As
shown in the results (Figures 9–11), the entire pulsation was taken over by the DAB
capacitor bank branch of the renewable system. DAB converter dynamics combined with
resonant controllers create an effective system to compensate AC pulsation in DC link
current. This solution is intended for systems with independent power control in each
of the phases operating with electrochemical energy storages, as these are the systems in
which the problem of DC link pulsation is likely to appear. Additional research should
focus on compensating higher harmonics appearing in the DC link—several harmonics
could be compensated using a single DAB converter. Another problem to be considered
would be compensating current pulsation caused by the four-wire inverter itself. Future
research focusing on the dual active bridge converter in this type of application would
include the effect of deadband in the converter on the symmetry of the generated sinewave.
Additionally, in this work, due to the utilization of a supercapacitor with a capacitance
of 93 F, the voltage fluctuation was able to be neglected; future work should attempt to
discover the minimal capacitance required for the device to operate in stable conditions.
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