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Abstract: Considering rising pollution as well as fuel expenses, it has now become critical to transition
to a sustainable method of transportation. As a result, automakers have begun to spend on research
and development in the electric vehicle (EV) industry. The amount of EVs has expanded rapidly in
recent years. This is owing to new improved technology, particularly in electric motor engineering,
as well as government initiatives to limit the level of environmental impact produced by combustion
engines. Because EVs are powered by electricity, implementing their charging stations presents
certain complications. In this paper, we have discussed the different types of EVs, such as BEVs,
FCEVs, HEVs, PHEVs, and REHEVs. Even though the capacity of many of these electric car models
has been substantially enhanced within the past few years, some challenges remain as a selection
barrier for several customers. Considering these challenges, we have also implemented a fuzzy
AHP-TOPSIS-based unified model to evaluate the different types of EVs. The study’s technical
importance is the identification of various evaluation factors, implementation of a unified model
for measuring performance, and computation using the fuzzy MCDM technique. The outcomes of
the unified model approach also were validated. We concluded that FCEVs are excellent for long
journeys, and have the resources to cause minimal disruption.

Keywords: electric vehicles; renewable energy; fuzzy comprehensive evaluation; usage analysis;
fuzzy logic

1. Introduction

Currently, the world is facing environmental degradation and an energy crisis as
carbon emissions increase rapidly. A dramatic shift from internal combustion engine
vehicles (ICEVs) to electric vehicles (EVs) can be observed in the automotive sector. Because
petroleum is the principal fuel utilized in ICE vehicles, which are a significant contributor to
the overall environmental catastrophe, EVs are the perfect alternatives [1,2]. An EV is one
that runs on electricity rather than an internal combustion engine, which produces energy
by consuming a mixture of oil and gases. As a result, EVs are seen as a potential alternative
to current-generation cars to counter increasing pollution, environmental degradation,
natural resource depletion, etc. [3]. Although there has been a very long period of the
notion of electric vehicles, they have attracted significant interest in the last decade in
the face of increasing carbon emissions and the other repercussions of fuel vehicles in
the ecosystem.

As environmental issues continuously increase, governments across the globe have
implemented numerous carbon dioxide and nitrogen oxide emission limits. From those
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perspectives, EVs, primarily based on electricity, would be able to soon replace traditional
internal combustion engine vehicles, utilizing state-of-the-art electronic power systems,
engine motors, electricity-generation systems, production of sustainable energy, as well as
smart grids. EVs may be split into hybrid EVs (HEVs), plug-in HEVs (PHEVs), and EVs,
based on the current design of the power generation and the system content. Industrialized
nations have aggressively established numerous economic considerations in recent times in
order to further support electrical engineering firms and research initiatives. Indeed, in the
past 10 years, the power electronics industry and its infrastructure have grown rapidly [4,5].
Vehicles generate much carbon pollution that enters our natural surroundings, exposing us
to pollution and global warming. An electric vehicle is a big step towards improving the
quality of the environment effectively. EVs receive their energy from their rechargeable
batteries. These batteries not only control the vehicles, but they are also utilized to power
the lights and wipers. The batteries of electric automobiles have higher fuel economy
and have lower fuel costs than a conventional petrol car. It is the same kind of battery
that is commonly required when a gasoline engine is running. The advantages of electric
vehicles are clear. With the development of new technology that promises to decrease
the charging durations in minutes, increase the range, and achieve efficient security and
technology, there has never been a greater moment to move to an EV. Figure 1 shows the
several benefits of using EVs.
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Figure 1. Several benefits of electric vehicles.

Consumers anticipate additional technological advancements and the introduction
of new variants. Consumer behavior in the electric vehicle market is shifting from early
buyers and technophile buyers to widespread adoption. Substantial advancements in
technology, as well as a greater range of electric vehicle models on the market, have
influenced consumer purchasing preferences. Automobiles will remain as a primary factor
in energy requirements. China, India, and the Middle East are increasingly placing so many
new automobiles on the road that the usage of oil for transportation fuel will continue
to expand, and by 2035, it will require 12% more barrels compared to 2016. However,
after 2025, there will still be a serious challenge for electric vehicles. Market shares are
expanding tremendously above forecasts, with battery advancements boosting quicker
than anticipated. In the present basic case, we perceive that the accumulation of EVs will be
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almost 100 million by 2035, with a daily fuel demand of approximately one to two million
barrels per day. Figure 2 shows the intense growth in the electric vehicle market as per the
report [6] published by Wood Meckenzie.
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The emergence of the EV industry triggered a global economic transformation. There-
fore, evaluation of different EVs’ effectiveness is a significant and challenging task. There
seems to be no ideal strategy for EV evaluation. Even a well-planned evaluation method
may encounter difficulties. To meet this objective, multicriteria decision-making (MCDM)
approaches are used in conjunction with the fuzzy set concept to establish a unified model
for the effectiveness assessment of different EVs, given that each EV can have its own set of
mechanisms and quality to evaluate. Furthermore, a lack of resource availability causes
decision makers to make judgments under high ambiguity, resulting in unanticipated out-
comes. As a result, dealing with ambiguous and contradictory information necessitates the
use of a fuzzy-based unified model for collecting and organizing technical and analytical
data. In this paper, we used a fuzzy-based unified model approach for evaluating the
effectiveness of different EVs.

This research work is presented in different sections. Section 2 deliberates several
similar existing pieces of literature. An overview of the different types of electric vehicles is
discussed in Section 3, and Section 4 presents the method and results of this study. Section 5
recapitulates and concludes the research work.

2. Related Works

Wang et al. [7] presented an assessment of trust for the heterogeneous network of
vehicles in sustainable development with electric vehicles. The benefits of low energy usage
and high assessment precision were derived from the transport trust assessment compared
to the standard trust evaluation process. Hashemnia and Asaei [8] analyzed various electric
motors and compared the advantages of each motor with that which is more appropriate
for EV deployments. The five basic types of electric engines were explored, including
DC, induction, permanent synchronous magnet, switching reluctance, and brushless DC
motors. In their study, they found that the induction motor technology had progressed
more than the others, and that brushless DC and permanent magnet motors were much
more appropriate than others for electric vehicles.

Prud’homme and Koning [9] presented a methodology in the form of a computerized
model. It analyzed the expenses and efficiency of an electric vehicle in relation to a fuel-
powered vehicle. This was a comparable assessment. It compared an electric automobile
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with a conventional car that provides approximately the same kind of service over a similar
time. This was done from three main perspectives: customer costs, societal costs, and
environmental impacts.

Iclodean et al. [10] demonstrated the flexibility of an electric car using four distinct
battery types: lithium-ion (Li-ion), molten salt (Na-NiCl2), nickel metal hydride (Ni-MH),
all with a similar reserve capacity of electrical power. The originality of this research
was the application in a real-time computerized simulation of four different rechargeable
batteries for EVs in a similar model, in order to assess the autonomy and effectiveness of
these rechargeable batteries in the driving process.

Oh [11] discussed and determined which drivetrain arrangement was the best to
use in a commercially obtainable test motor as a train for hybrid vehicles. The engine
feature could be simulated, as well as the actual characteristics evaluated when used in
the car for a distinct driving and operating condition. Qiu and Wang [12] carried out
extensive research on the structure and operation of the electrically powered regenerative
braking component of EVs. The contribution process and assessment methods provided by
regenerative braking were addressed and assessed by the circulation of energy to enhance
the energy effectiveness of EVs. They presented a methodology for the calculation of
the renewable frequency contribution. Furthermore, a novel regenerative braking control
approach was presented, termed the “Serial 2 control technique.” In addition, as a contrast
control approach, two control techniques were provided, namely the “parallel control
strategy” and the “serial one control strategy”.

Pfeiffer et al. [13] discussed the alternative time delay estimation (TDE) techniques.
All options were evaluated by means of real data with EV energy trains. They focused not
only on the correctness of the TDE, but also on computing performance to facilitate the
operation of vehicle electronic control units (ECUs). Even modest noise, as well as offsets,
were found in the measuring data in the recommended linear regression (LR) methodology,
which were not suited for our purposes. The variance minimization (VM) technique is a
good option. After the initial execution, it is not only noise-proof, but also very effective.

Song [14] presented an integrated framework to assess the consequences of various
solutions for power management. Three energy management strategy (EMS) considerations
were included in their suggested strategy. The first was the durability of the fuel cell. Fuel-
saving was the second priority for assessing fuel efficiency, and was dependent on a
dynamic algorithm created for optimal worldwide driving distances. The synthesis of
weighted fuel-cell durability was the third priority for the EMS.

Wang et al. [15] presented an assessment indicator system for use patterns focused
on data of the battery electric vehicle (BEV) to examine the use of car-sharing vehicles
and private vehicles, in order to analyze their usability patterns. The assessment indicator
system was built on the state transition strategy and defined the three-dimensional use
pattern for BEVs. The time and space components of travels defined the time as and space
properties of the pattern of use. The decisive dimension represented a decision-making
pattern based on a perceptual psychological model as a reason for the state transformation
at the microlevel.

Zhang et al. [16] investigated the requirements for charging stations while considering
the plug-in electric vehicle (PEV) operational cost, as well as BEV feasibility. The area
of research and PEV specifications were determined depending on the early cars used
in the evolving trade market in California. An appropriate charging strategy based on
24 h travel trends was suggested to minimize operating costs. The findings demonstrated
that the charging timelines were the main tool in minimizing PEV operating costs, while
more charging locations offered to decrease advantages for plug-in hybrid electric vehicles
(PHEVs).

This paper is unique in various ways [17–25]. First, in contrast to many other studies,
our paper focuses on the expert-centric hierarchical structure for multicriteria decision
making in the evaluation of different EVs. Second, this work presents a straightforward
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fuzzy-based unified methodology in the form of a computational model. This model
helped to compare the efficiency of EVs to that of other types.

3. Different Types of Electric Vehicles

It is a very interesting opportunity to go shopping for cars, especially for people
attempting to improve the ecosystem. The EV industry is changing fast, and one would
then probably buy one of those five kinds of electrical vehicles (EVs) if they reached the
conclusion that they wanted to buy or rent a car that is better for the atmosphere.

3.1. Battery Electric Vehicles (BEVs)

BEV denotes a battery electric vehicle that is operated by a battery-powered full
electric engine. These are also called pure electric vehicles (PEVs) because they use only
electricity as the primary source. The battery in these vehicles must be charged at regular
intervals, often by connecting them to a charging station. One of the most significant
barriers to BEV acceptance is “range anxiety” [26–33], which occurs when owners are
concerned about being stuck in the middle of the highway with a completely depleted
battery [17,18]. BEVs are capable of transforming about 80% of the power stored in the
batteries into action. Teslas (all variants), the Nissan Leaf, and the Volkswagen e-Golf are a
few examples of BEVs. Figure 3 shows the architectural diagram of battery electric vehicles.
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3.2. Fuel-Cell Electric Vehicles (FCEVs)

Fuel-cell electric vehicles (FCEVs) are different from other EVs. Fuel-cell EVs are
powered by a fuel cell of hydrogen, and do not generate harmful emissions, only water
vapor and warm air. In FCEVs, chemical power is transformed into electrical energy in the
fuel cell; however, the hydrogen fuel is kept in a storage tank, therefore energy density and
range are less likely to be an issue [19]. Like BEVs, FCEVs also primarily feature an electric
motor, but employ a different storage and electricity supply technology. The propulsion
battery in FCEVs is mostly substituted by the hydrogen tank, as well as by the chemical
reaction, in which a number of fuel cells transform hydrogen into electricity as well as
water vapor. The Toyota Mirai, Honda Clarity, and Hyundai Nexo are some examples of
FCEVs. Figure 4 shows the architectural diagram of fuel-cell electric vehicles.
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3.3. Hybrid Electric Vehicles (HEVs)

Hybrid electric vehicles are the most common type of EV. HEVs include a compact
rechargeable battery that is not charged by plugging in, but instead by an inner combustion
electric motor and/or the braking mechanism. The HEV is a multienergy system; unlike
traditional vehicles that can only generate power, HEV batteries can both generate and
absorb electricity. HEVs can already meet the needs of customers and therefore their
numbers will increase at a quicker rate in the future. The key difficulty with HEVs is
determining how to optimize the many sources of energy in order to achieve the optimum
fuel economy or lowest pollution at the lowest cost [20]. There are various types of hybrids;
however, on average, most are really battery-assisted automobiles instead of automobiles
that are entirely powered by batteries. The Toyota Prius was first released in Japan in the
late 1990s, and it made its way to the United States in 2001. Figure 5 shows the architectural
diagram of hybrid electric vehicles.
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3.4. Plug-In Hybrid Electric Vehicles (PHEVs)

Plug-in hybrid EVs (PHEVs) have relatively smaller rechargeable batteries than those
of BEVs. The idea behind plug-in hybrids is to make short journeys powered by battery
capacity. PHEVs are now becoming increasingly common. PHEVs are charged by either
plugging into such an electric connection, or by using onboard energy generation. These
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vehicles have a limited selection in electric-only mode, and can operate at maximum
throttle. PHEVs provide important fuel versatility. Although PHEVs contain a larger
battery and a more robust motor compared to HEVs, the overall variety is still quite
limited [21]. A plug-in hybrid, from a technical perspective, is basically a large hybrid
with extra technology. The main distinction between a full hybrid and a plug-in hybrid
(PHEV) is that the full hybrid EV battery is charged entirely by using internal combustion,
whereas the plug-in hybrid’s expanded traction battery is also charged by using a charging
station. This means that these plug-in hybrids can only go about 100 km on battery without
any internal combustion engine ignition. In particular for tiny towns and short round-trip
commutes, this is a significant advantage. This version also permits the lowest potential
CO2 emissions between different hybrid systems. The Chevy Volt, Hyundai Ioniq PH EV,
and VW Golf GTE are some examples of PHEVs. Figure 6 shows the architectural diagram
of plug-in hybrid electric vehicles.
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3.5. Range Extender Hybrid Electric Vehicles (REHEVs)

Range extender hybrid EVs are much like hybrid plug-in EVs; however, they are
distinct in technology. REHEVs are most often regarded as PHEVs; however, REHEVs
are often more powerful than PHEVs. The Chevy Volt is the most excellent example of a
REHEV. This is arguably the appropriate choice for those who have experience in the EV
market because it has a high all-battery portfolio and is driven by a combustion engine
with which people are familiar. Figure 7 shows the architectural diagram of range extender
hybrid electric vehicles.
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4. Methods and Results
4.1. Hierarchical Design for the Evaluation of Different EVs

Electric vehicles are a revolutionary innovation that has yet to reach consumers outside
of the “innovator” and “early adopter” groups in most regions [33]. Promoting a different
and innovative technology creates hurdles, and the appropriate strategy may be quite
beneficial in improving widespread approval. Under the challenges of energy efficiency
and atmospheric pollution, several nations should reform their current energy utilization
structure in order to minimize fuel energy demand and CO2 emissions. Acceptance of EVs
has the potential to decrease reliance on foreign oil energy while also addressing specific
environmental pollution issues. When compared to a regular gas-powered automobile,
EVs have a significantly higher purchase price, lower availability of charging facilities,
and a longer charging time, making people reluctant to acquire an EV. In this paper, we
used a fuzzy AHP-TOPSIS-based unified technique to evaluate the different types of EV
alternatives such as BEVs, FCEVs, HEVs, PHEVs, and REHEVs, which are represented as
T1, T2, T3, T4, and T5, respectively.

As shown in Figure 8, the four significant criteria at level one and corresponding sub-
criteria at level two in the present method that contributed to the evaluation of different
EVs were clearly recognized and constructed based on a survey of the literature, as well as
input from several automobile specialists. The primary factors at level one that can have a
substantial impact on EVs performance were divided into five categories; i.e., regulatory,
technical, business, and design, denoted by S1, S2, S3, and S4, respectively. The regulatory
level included three subfactors; i.e., government policies, traffic policies, and internal
policies, denoted by S11, S12, and S13, respectively. Further, the technical level included
four significant subfactors; i.e., efficiency, coverage, environmental, and safety, denoted
by S21, S22, S23, and S24, respectively. Furthermore, the business level included three
subfactors; i.e., consumer satisfaction, servicing, and investment, denoted by S31, S32, and
S33, respectively. Lastly, the design level included three subfactors; i.e., battery, recyclable,
and compatibility, denoted by S41, S42, and S43, respectively. Figure 8 illustrates the
hierarchical structure used for the multicriteria decision making in this research. This
hierarchical structure assisted in evaluating the performance of five alternatives.
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4.2. Fuzzy AHP-TOPSIS Methodology

The analytic hierarchy process (AHP) was introduced by Saaty in 1990 [22]. Both
numerical and subjective aspects were taken into account in the decision-making procedure.
Given that AHP uses a discreet scale of 1 to 9, this technique is usually criticized because
it does not include uncertainty during the decision-making procedure. The fuzzy-AHP
approach has also been utilized in other disciplines to tackle multicriteria challenges.
This method was used by Haq and Kannan [23] to choose the best supplier in a delivery
chain. This was utilized by Huang et al. [24] for R&D shortlisting. For the selection of
the most appropriate method of bridge building, Pan [25] employed this technique. For a
staff-selection process, Güngör et al. [26] used this methodology. The fuzzy set theory, as
developed by Zadeh, is a generalized variant of the classical set theory. It is an affiliate and
assigns a grade of 1 to 10. In this paper, different types of EVs were classified using TOPSIS
on the basis of characteristics [27].

In order to deal with uncertain numerical values in reality, Zadeh [34] invented fuzzy
numbers. A fuzzy number is an amount for which a single-valued figure is not accurate,
but imprecise. Classification of fuzzy numbers is a significant decision-making technique.
Fuzzy decisions represent the effectiveness of different alternative models in the modeling
of real-world situations by using fuzzy variables. Generally, a fuzzy-based approach is any
system in which the variables vary over fuzzy values rather than real figures. These fuzzy
values could reflect linguistic terms like “very small”, “moderate”, and so on, depending
on how they are perceived in a specific scenario [35]. The defuzzification process is the
technique of extracting a single value using the aggregated outcome of fuzzy numbers.
This is used to convert the findings of fuzzy rules into a crisp output. In another word,
defuzzification is accomplished through the use of a decision-making mechanism that
determines the best crisp output from a fuzzy set.
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A number of fuzzy criteria are used for a finite series of alternatives; i.e., the values
of the alternatives are fuzzy figures. An additional process maps each m-tuple of fuzzy
values into one fuzzy value, which is the alternative as per the entire set of criteria.

Let A =
{

Ai
i = 1, . . . , n

}
be a finite group of possibilities for decision making, and let

K =
{Kj

j = 1, . . . , m
}

be a finite group of fuzzy criteria, through which activity is regarded
to be desirable. The estimates of the alternatives are fuzzy values. It must decide on this
set of alternatives as a ranking challenge or decision problem. It is a two-stage technique:

(i) Compliance with all criteria aggregating judgments (fuzzy-numbers);
(ii) Ranking alternative decision making in relation to aggregating judgments.
In this research, two alternatives, the negative ideal solution (d−i) and positive ideal

solution (d+i) were investigated. Further closeness coefficients (CCi) were calculated.
We denoted CC−i as the degree of satisfaction in the i-th alternative and CC+i as the
degree of gap in the i-th alternative. From a fuzzy collection of possible choices, we
could evaluate which, as well as how, gaps must be closed in order to achieve ambitious
goals and attain the ultimate findings. Closeness coefficients were used to rate all of the
alternatives. Furthermore, CCi demonstrated the alternative closest to d+i and farthest
from d−i. TOPSIS was determined by the choice of the ultimate solution or EVs that
went beyond the perfect negative solution and were nearest to the ideal solution for the
positive. The positive and the negative ideal solutions correspondingly had the highest
advantages and lowest advantages. The final evaluations of the EVs were based on relative
proximity to the optimal solution [28]. Figure 9 shows the integrated fuzzy AHP-TOPSIS
methodology for the evaluation of different EVs.
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4.3. Statistical Results

This integrated fuzzy AHP-TOPSIS methodology was used to evaluate the perfor-
mance of different EVs. To acquire accurate information and insights, the investigators
used comparative opinions of 75 automobile specialists from varied organization and
scholarly backgrounds. It has been previously discussed that analyzing the performance of
various EVs is extremely difficult in terms of competitive efficacy. The EVs were selected
by using predetermined qualitative and quantitative assessment criteria during the process
of different EVs’ evaluation; however, the criteria demonstrated the requirement of the
judgment, so herein unpredictability and fuzziness were included in the statistical and
observational data evaluated by the decision makers with specific intelligence. A total of
75 automobile specialists, DM (k = 1, 2, 3,..., 75), were involved in analyzing the optimum
available decision in linguistic variables. These 75 decision makers comprised 20 academics
with 15 years of expertise, 20 researchers with 7 years of vehicle research experience, and
35 professionals from various automobile firms with 15 years of experience. The weights
of the local criterion and subcriteria were derived using pairwise comparative matrices.

The aggregated fuzzify pairwise comparison matrix at Level 1 was formed, and can be
seen in Table 1. The fuzzy-aggregated pairwise comparison matrix at Level 2 for regulatory,
technical, business, and design is presented in Tables 2–5. For each second-layer aspect, the
global weights were deliberate. These are tabulated in Tables 6–10. Further, Table 11 shows
the overall weights and rankings of the methods. Table 12 presents the subjective cognition
results for evaluators in linguistic terms. Table 13 shows the normalized fuzzy-decision
matrix. Table 14 shows the weighted normalized fuzzy-decision matrix. In addition, with
the support of the hierarchical structure, Table 15 and Figure 10 show the complete and
final relative closeness of the alternatives.

Table 1. The aggregated fuzzify pairwise comparison matrix at Level 1.

S1 S2 S3 S4

S1 1.000000, 1.000000, 1.000000 1.750254, 2.345258, 3.036563 1.485854, 1.956375, 2.526873 1.129628, 1.555351, 1.989625

S2 - 1.000000, 1.000000, 1.000000 0.576528, 0.786562, 1.168524 0.565263, 0.728568, 0.969954

S3 - - 1.000000, 1.000000, 1.000000 0.628656, 0.816575, 1.075846

S4 - - - 1.000000, 1.000000, 1.000000

Table 2. The fuzzy-aggregated pairwise comparison matrix at Level 2 for regulatory.

S11 S12 S13

S11 1.000000, 1.000000, 1.000000 0.237552, 0.287963, 0.367526 0.342154, 0.447785, 0.824763

S12 - 1.000000, 1.000000, 1.000000 0.661454, 1.172563, 1.693686

S13 - - 1.000000, 1.000000, 1.000000

Table 3. The fuzzy-aggregated pairwise comparison matrix at Level 2 for technical.

S21 S22 S23 S24

S21 1.000000, 1.000000, 1.000000 0.694154, 0.895356, 1.112485 0.234596, 0.287864, 0.364168 0.711256, 0.954163, 1.351257

S22 - 1.000000, 1.000000, 1.000000 0.493154, 0.642362, 1.241435 0.271354, 0.351565, 0.521635

S23 - - 1.000000, 1.000000, 1.000000 1.085484, 1.329762, 1.558235

S24 - - - 1.000000, 1.000000, 1.000000
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Table 4. The fuzzy-aggregated pairwise comparison matrix at Level 2 for business.

S31 S32 S33

S31 1.000000, 1.000000, 1.000000 0.665365, 1.172384, 1.697465 1.157663, 1.447254, 1.704365

S32 - 1.000000, 1.000000, 1.000000 1.007762, 1.524765, 1.934368

S33 - - 1.000000, 1.000000, 1.000000

Table 5. The fuzzy-aggregated pairwise comparison matrix at Level 2 for design.

F41 F42 F43

S41 1.000000, 1.000000, 1.000000 1.197856, 1.588385, 2.156465 0.491541, 0.642285, 1.009958

S42 - 1.000000, 1.000000, 1.000000 0.224165, 0.295684, 0.427969

S43 - - 1.000000, 1.000000, 1.000000

Table 6. The defuzzified pairwise comparison matrix.

S1 S2 S3 S4 Weights

S1 1.000000 2.372530 1.981590 1.556640 0.392511

S2 0.421550 1.000000 0.824630 0.744770 0.152321

S3 0.504560 1.213520 1.000000 0.835090 0.202531

S4 0.642650 1.342880 1.203550 1.000000 0.252637

CR = 0.000602.

Table 7. The aggregated pairwise comparison matrix at Level 2 for regulatory.

S11 S12 S13 Weights

S11 1.000000 1.173540 0.494564 0.275854

S12 0.852550 1.000000 1.172547 0.328627

S13 2.024340 0.853545 1.000000 0.395519

CR = 0.0488003.

Table 8. The aggregated pairwise comparison matrix at Level 2 for technical.

S21 S22 S23 S24 Weights

S21 1.000000 0.892654 1.173554 0.994547 0.246313

S22 1.121242 1.000000 0.691526 0.372546 0.182575

S23 0.852562 1.447256 1.000000 1.298541 0.272112

S24 1.006624 2.688354 0.770435 1.000000 0.299000

CR = 0.034904.

Table 9. The aggregated pairwise comparison matrix at Level 2 for business.

S31 S32 S33 Weights

S31 1.000000 1.172541 1.363652 0.382000

S32 0.853345 1.000000 1.491224 0.353026

S33 0.733754 0.670725 1.000000 0.255047

CR = 0.002506.
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Table 10. The aggregated pairwise comparison matrix at Level 2 for design.

S41 S42 S43 Weights

S41 1.000000 1.633244 0.691844 0.3259211

S42 0.612477 1.000000 0.303457 0.2731254

S43 1.447247 3.300347 1.000000 0.3112540

CR = 0.0052045.

Table 11. The overall weights and rankings of methods.

Level 1 Methods Local Weights of
Level 1 Level 2 Methods Local Weights of

Level 2 Overall Weights Overall Ranks

S1 0.392511
S11 0.275854 0.108276 3
S12 0.328627 0.128990 2
S13 0.395519 0.155246 1

S2 0.152321

S21 0.246313 0.037519 12
S22 0.182575 0.027810 13
S23 0.272112 0.041448 11
S24 0.299000 0.045544 10

S3 0.202531
S31 0.382000 0.077367 6
S32 0.353026 0.071500 7
S33 0.255047 0.051655 9

S4 0.252637
S41 0.325921 0.082340 4
S42 0.273125 0.069000 8
S43 0.311254 0.078634 5

Table 12. The subjective cognition results for evaluators in linguistic terms.

T1 T2 T3 T4 T5

S11 5.3600, 7.3006, 8.7300 5.5500, 7.5500, 8.9100 0.6400, 2.2700, 4.2700 5.3600, 7.3600, 8.7300 4.1800, 6.0900, 7.6400

S12 3.7300, 5.5500, 7.2700 4.4500, 6.4500, 8.1800 1.6400, 3.5500, 5.5500 3.5500, 5.5500, 7.3600 5.0000, 7.0000, 8.4500

S13 2.3600, 4.2700, 6.2700 5.3600, 7.3006, 8.7300 5.5500, 7.5500, 8.9100 0.6400, 2.2700, 4.2700 5.3600, 7.3600, 8.7300

S21 4.8200, 6.8200, 8.5500 3.7300, 5.5500, 7.2700 4.4500, 6.4500, 8.1800 1.6400, 3.5500, 5.5500 3.5500, 5.5500, 7.3600

S22 5.5500, 7.5005, 9.2700 2.3600, 4.2700, 6.2700 2.4500, 4.2700, 6.2700 1.3600, 3.3600, 5.3600 4.4500, 6.4500, 8.1800

S23 4.2700, 6.2700, 8.1800 4.8200, 6.8200, 8.5500 4.6400, 6.6400, 8.5500 0.8200, 2.6400, 4.6400 4.4500, 6.4500, 8.2700

S24 5.3600, 7.3006, 8.7300 5.5500, 7.5500, 8.9100 0.6400, 2.2700, 4.2700 5.3600, 7.3600, 8.7300 5.7300, 7.7300, 9.2700

S31 3.7300, 5.5500, 7.2700 5.3600, 7.3006, 8.7300 5.5500, 7.5500, 8.9100 0.6400, 2.2700, 4.2700 5.3600, 7.3600, 8.7300

S32 2.3600, 4.2700, 6.2700 3.7300, 5.5500, 7.2700 4.4500, 6.4500, 8.1800 1.6400, 3.5500, 5.5500 3.5500, 5.5500, 7.3600

S33 5.3600, 7.3006, 8.7300 5.5500, 7.5500, 8.9100 0.6400, 2.2700, 4.2700 5.3600, 7.3600, 8.7300 4.4500, 6.4500, 8.1800

S41 3.7300, 5.5500, 7.2700 4.4500, 6.4500, 8.1800 1.6400, 3.5500, 5.5500 3.5500, 5.5500, 7.3600 4.4500, 6.4500, 8.2700

S42 2.3600, 4.2700, 6.2700 2.4500, 4.2700, 6.2700 1.3600, 3.3600, 5.3600 4.4500, 6.4500, 8.1800 5.7300, 7.7300, 9.2700

S43 4.8200, 6.8200, 8.5500 4.6400, 6.6400, 8.5500 0.8200, 2.6400, 4.6400 4.4500, 6.4500, 8.2700 5.1800, 7.1800, 8.8200
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Table 13. The normalized fuzzy-decision matrix.

T1 T2 T3 T4 T5

S11 0.3800, 0.6000, 0.8000 0.5400, 0.7500, 0.9200 0.5200, 0.7400, 0.9300 0.4200, 0.6900, 0.9900 0.5200, 0.7400, 0.9400

S12 0.5200, 0.7400, 0.9400 0.3800, 0.6000, 0.8000 0.5400, 0.7500, 0.9200 0.5200, 0.7400, 0.9300 0.4200, 0.6900, 0.9900

S13 0.3800, 0.6000, 0.8000 0.5200, 0.7400, 0.9400 0.5400, 0.7500, 0.9200 0.5200, 0.7400, 0.9200 0.2000, 0.4700, 0.7700

S21 0.3800, 0.6000, 0.8000 0.5400, 0.7500, 0.9200 0.5200, 0.7400, 0.9300 0.4200, 0.6900, 0.9900 0.5400, 0.7500, 0.9400

S22 0.5200, 0.7400, 0.9400 0.3800, 0.6000, 0.8000 0.5400, 0.7500, 0.9200 0.5200, 0.7400, 0.9300 0.4200, 0.6900, 0.9900

S23 0.3800, 0.6000, 0.8000 0.5200, 0.7400, 0.9400 0.5400, 0.7500, 0.9200 0.5200, 0.7400, 0.9200 0.2000, 0.4700, 0.7700

S24 0.3800, 0.6000, 0.8000 0.5400, 0.7500, 0.9200 0.5200, 0.7400, 0.9300 0.4200, 0.6900, 0.9900 0.5400, 0.7500, 0.9400

S31 0.5200, 0.7400, 0.9400 0.3800, 0.6000, 0.8000 0.5400, 0.7500, 0.9200 0.5200, 0.7400, 0.9300 0.4200, 0.6900, 0.9900

S32 0.3800, 0.6000, 0.8000 0.5200, 0.7400, 0.9400 0.5400, 0.7500, 0.9200 0.5200, 0.7400, 0.9200 0.2000, 0.4700, 0.7700

S33 0.3800, 0.6000, 0.8000 0.5400, 0.7500, 0.9200 0.5200, 0.7400, 0.9300 0.4200, 0.6900, 0.9900 0.5400, 0.7500, 0.9400

S41 0.5200, 0.7400, 0.9400 0.5400, 0.7500, 0.9200 0.3800, 0.6000, 0.8000 0.5400, 0.7500, 0.9200 0.5200, 0.7400, 0.9300

S42 0.3800, 0.6000, 0.8000 0.3500, 0.5800, 0.8100 0.5200, 0.7400, 0.9400 0.5400, 0.7500, 0.9200 0.5200, 0.7400, 0.9200

S43 0.5200, 0.7400, 0.9200 0.4600, 0.6700, 0.8600 0.3800, 0.6000, 0.8000 0.3500, 0.5800, 0.8100 0.4200, 0.6900, 0.9900

Table 14. The weighted normalized fuzzy-decision matrix.

T1 T2 T3 T4 T5

S11 0.00000, 0.00200, 0.00900 0.00200, 0.00700, 0.02200 0.00200, 0.00700, 0.02400 0.00100, 0.00500, 0.01800 0.00300, 0.01100, 0.03600

S12 0.00300, 0.01200, 0.04100 0.00000, 0.00200, 0.00900 0.00200, 0.00700, 0.02200 0.00200, 0.00700, 0.02400 0.00100, 0.00500, 0.01800

S13 0.00300, 0.01200, 0.04200 0.00300, 0.01200, 0.04100 0.00300, 0.01200, 0.04100 0.00500, 0.01600, 0.04800 0.00500, 0.01600, 0.04900

S21 0.00000, 0.00200, 0.00900 0.00200, 0.00700, 0.02200 0.00200, 0.00700, 0.02400 0.00100, 0.00500, 0.01800 0.00200, 0.00900, 0.03800

S22 0.00300, 0.01200, 0.04100 0.00000, 0.00200, 0.00900 0.00200, 0.00700, 0.02200 0.00200, 0.00700, 0.02400 0.00100, 0.00500, 0.01800

S23 0.00300, 0.01200, 0.04200 0.00300, 0.01200, 0.04100 0.00300, 0.01200, 0.04100 0.00500, 0.01600, 0.04800 0.00500, 0.01600, 0.04900

S24 0.00000, 0.00200, 0.00900 0.00000, 0.00200, 0.00900 0.00200, 0.00700, 0.02200 0.00200, 0.00700, 0.02400 0.00100, 0.00500, 0.01800

S31 0.00300, 0.01200, 0.04100 0.00300, 0.01200, 0.04100 0.00300, 0.01200, 0.04100 0.00500, 0.01600, 0.04800 0.00500, 0.01600, 0.04900

S32 0.00000, 0.00200, 0.00900 0.00000, 0.00200, 0.00900 0.00200, 0.00700, 0.02200 0.00200, 0.00700, 0.02400 0.00100, 0.00500, 0.01800

S33 0.00300, 0.01200, 0.04100 0.00300, 0.01200, 0.04100 0.00300, 0.01200, 0.04100 0.00500, 0.01600, 0.04800 0.00500, 0.01600, 0.04900

S41 0.00000, 0.00200, 0.00900 0.00200, 0.00700, 0.02200 0.00200, 0.00700, 0.02400 0.00100, 0.00500, 0.01800 0.00200, 0.00900, 0.03800

S42 0.00300, 0.01200, 0.04100 0.00300, 0.01200, 0.04100 0.00500, 0.01600, 0.04800 0.00500, 0.01600, 0.04900 0.00100, 0.00500, 0.01800

S43 0.00300, 0.01200, 0.04200 0.00300, 0.01200, 0.04200 0.00200, 0.01000, 0.03700 0.00200, 0.00900, 0.03800 0.00100, 0.00500, 0.01800

Table 15. The closeness coefficients for the aspired level among the different alternatives.

Alternatives d+i d−i Gap Degree of CC+i Satisfaction Degree of CC−i

Alternative 1 T1 0.0451540 0.0545250 0.6125450 0.38712741

Alternative 2 T2 0.0564570 0.0365260 0.3562560 0.64714356

Alternative 3 T3 0.0464570 0.0548740 0.5698570 0.44421424

Alternative 4 T4 0.0451270 0.0452450 0.5754820 0.43471445

Alternative 5 T5 0.0346570 0.0215470 0.5535680 0.45485126
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Figure 10. A graphical representation of the satisfaction degree of CC−i.

In this context, an evaluation of different electric vehicle alternatives was conducted
for the inclusion of fuzzy AHP in the fuzzy TOPSIS; i.e., two major MCDM techniques.
Although the proportional relevance of each aspect to the other can be expressed, the
intricacies of subjective judgments in the description of the challenge were taken into
consideration by fuzzy numbers. Ultimately, the suggested model was tested using a
statistical method showing how the highest efficient electric vehicle type was chosen. The
satisfaction degree (CC−i) of different alternatives was estimated as 0.38712741, 0.64714356,
0.44421424, 0.43471445, and 0.45485126 for T1, T2, T3, T4, and T5, respectively. As per the
findings shown in Figure 10, the second alternative (T2) was highly effective and proficient
among several other EV alternatives.

4.4. Comparison with the Classical AHP-TOPSIS Method

Whenever similar statistics are handled with different approaches, it produces con-
tradictory interpretations [29]. Researchers have employed one or more techniques to
check the correctness of anticipated methodology findings [30]. Therefore, in this study, we
employed the classical AHP-TOPSIS approach [31] to estimate the findings using another
approach and to check the effectiveness of consequences using fuzzy AHP-TOPSIS. The
procedure of accumulating and projecting relevant information in classical AHP-TOPSIS
is analogous to analyzing fuzzy AHP-TOPSIS without fuzzification. As a result, data
were used in their actual numerical format to evaluate the different EV performances
using traditional AHP-TOPSIS. Table 16 and Figure 11 show the differences in outcomes
between fuzzy and classical AHP-TOPSIS. The findings produced using the traditional
approach had a strong association with the ones produced using the fuzzy methodology.
The outcomes of the comparative analysis were not as varied and distinct from one another;
however, the precision of the findings varied. The correctness of the fuzzy-based method-
ology was higher and more accurate than that of the conventional methodology, as it was a
more powerful approach over the classical AHP-TOPSIS. The fuzzy-based AHP-TOPSIS
offered the capability of providing fuzzy set numbers for different parameters during the
evaluation process.
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Table 16. Comparison of the AHP-TOPSIS techniques.

Methods/Alternatives T1 T2 T3 T4 T5

Fuzzy AHP-TOPSIS 0.38712741 0.64714356 0.44421424 0.43471445 0.45485126
Classical AHP-TOPSIS 0.38547400 0.64528700 0.44542700 0.43654800 0.46358700
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4.5. Sensitivity Analysis

The sensitivity evaluation was accomplished by altering the variables that influenced
the report’s correctness. During this statistical study, the sensitivity of the generated
weights (variables) was assessed [32]. Following this, 13 variables were used throughout
the analysis to evaluate sensitivity with the use of 13 experiments. The rate of satisfaction
(CC−i) was calculated for each trial by taking into account weight alterations within each
variable, whereas the weights of some other full variables were maintained constant by inte-
grating the fuzzy AHP-TOPSIS methodology. The actual weights obtained in this research
work are shown in the first row of Table 17. Alternative-2 (T2) had a significant satisfaction
degree (CCi), as per the research findings. Thirteen experiments were performed, ranging
from Experiment 1 to Experiment 13. In these 13 experiments, the obtained conclusions
revealed that alternative-2 (T2) still had a higher satisfaction degree (CCi). Alternative-1
(T1) also was the lowest-weighted alternative in every trial. The variability in outcome
suggested that alternative rankings were sensitive to weights. Table 17 and Figure 12 show
the projected consequences.
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Table 17. The sensitivity analysis.

Experiments Weights/Alternatives T1 T2 T3 T4 T5

Experiment-0 Original Weights

Sa
ti

sf
ac

ti
on

D
eg

re
e

(C
C
−

i)

0.38712741 0.64714356 0.44421424 0.43471445 0.45485126

Experiment-1 S11 0.43576400 0.60004500 0.48962700 0.47718100 0.49393900

Experiment-2 S12 0.47776400 0.71004500 0.52912700 0.52018000 0.53493900

Experiment-3 S13 0.32806400 0.55804500 0.39112700 0.34048200 0.38563900

Experiment-4 S21 0.35976400 0.54044500 0.42412700 0.37798000 0.41803900

Experiment-5 S22 0.32916400 0.55554500 0.39612700 0.36368000 0.38383900

Experiment-6 S23 0.36076400 0.59104500 0.42712700 0.39817800 0.41783900

Experiment-7 S24 0.32916400 0.55554500 0.39612700 0.36368000 0.38383900

Experiment-8 S31 0.32916400 0.55554500 0.39612700 0.36368000 0.38383900

Experiment-9 S32 0.44446400 0.67604500 0.49912700 0.48167900 0.49743900

Experiment-10 S33 0.36076400 0.59104500 0.42712700 0.39817800 0.41783900

Experiment-11 S41 0.32916400 0.55554500 0.39612700 0.36368000 0.38383900

Experiment-12 S42 0.32176400 0.56004500 0.38362700 0.36018000 0.38293900

Experiment-13 S43 0.47816400 0.72654500 0.54062700 0.52768100 0.54343900
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5. Conclusions

Although technological increases in worldwide transportation and society have en-
hanced life on this planet, they also have resulted in massive environmental devastation.
As a result, people are paying close attention to the environment and its long-term sustain-
ability. Renewable-power vehicles are one contributor to global challenges. BEVs have
a reasonable consumption and good power generation, as long as the overall weight is
not excessive. The vehicle weight depends on the number and capacity of the batteries
installed. As a result, light BEVs that travel short distances have the highest efficiencies.
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FCEV automobiles can store a greater amount of energy in comparison to their vehicle
weight, and fuel-cell recharging can be done more speedily. FCEVs are thus ideal for long-
distance travel and resources to create little interruption. The prospect of transportation
will play a significant role in energy in systems centered on the interchange of modes
of transportation, a future in which battery electric vehicles, as well as fuel-cell electric
vehicles, will be supportive instead of combative.
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