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Abstract: In this study, two different parameter estimation algorithms are studied and compared.
Iterated EKF and a nonlinear optimization algorithm based on on-line search methods are imple-
mented to estimate parameters of a given permanent magnet synchronous motor whose dynamics
are assumed to be known and nonlinear. In addition to parameters, initial conditions of the dynami-
cal system are also considered to be unknown, and that comprises one of the differences of those
two algorithms. The implementation of those algorithms for the problem and adaptations of the
methods are detailed for some other variations of the problem that are reported in the literature. As
for the computational aspect of the study, a convexity study is conducted to obtain the spherical
neighborhood of the unknown terms around their correct values in the space. To obtain such a range
is important to determine convexity properties of the optimization problem given in the estimation
problem. In this study, an EKF-based parameter estimation algorithm and an optimization-based
method are designed for a given nonlinear dynamical system. The design steps are detailed, and the
efficacies and shortcomings of both algorithms are discussed regarding the numerical simulations.

Keywords: EKF; nonlinear optimization; parameter estimation; state estimation; system identification

1. Introduction

The question of system identification when it comes to nonlinear dynamical systems
becomes more challenging due to the immense implications that nonlinearities cause. Al-
though it is a standard practice to determine whether a given LTI system is observable,
this process is not standard and there is no one unique algorithm for a given nonlinear
system [1]. There are some linear algebra-based techniques that are available in the litera-
ture to conduct that process; however, those methods have certain limitations depending
on the nonlinearity. In the literature, there are nonlinear observer types that are quite
popular and have the ability to deal with the modelling uncertainties, some of which can
be listed as SMO (sliding mode observer) [2], HGO (high gain observer) [3], EKF (extended
Kalman filter), and variations thereof [4,5]. For mild nonlinearities, EKF seems to be the
prominent choice due to its straightforward design and working principle. EKF is often
used to estimate the states that are not measurable, and there is an available system model
based on which the estimator is designed.

Although EKF may result in sufficient accuracy in many real-world applications, there
are some cases where the assumptions of EKF may not hold. It is important to address
under which conditions EKF might fail. There are two main starting points that cause the
Kalman filter to work efficiently: the normal distributed process and sensor noise terms
and the invariance of a random variable with normal distribution under liner operations
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as in linear time invariant systems. The assumption that process noise with a normal
distribution may not hold in practice but as the central limit theorem suggests that it can
be reached for certain circumstances as time progresses [6]. Another factor, the invariance
property, allows the Kalman filter to update the state estimation error pdf at each iteration
rather than storing the complete pdf, as in the case of a particle filter. Especially for linear
systems or systems that can be represented as linear for a stated operating point, it is
known that Kalman filter operates satisfactorily. For nonlinear systems, however, since a
stochastic signal with normal distribution operated by a nonlinear term results in another
stochastic signal with a distribution different than the input signal, the notion that only
mean and variance terms can be stored and updated fails. There are some methods that
focus on the higher-order moments of the stochastic signal; however, these cases do not
cover a wide range of applications. EKF tries to linearize the nonlinear system model
at each time step using its own state estimates. For highly nonlinear and discontinuity
possessing systems this technique may diverge. However, especially when sampled at
a sufficiently high frequencies and for smooth nonlinearities, EKF generally converges.
A variation of EKF focuses on the mean and variance computation of the output signal
obtained by a stochastic input signal with normal distribution passing through a nonlinear
operation [7]. UKF employs some heuristic techniques to compute central moments of the
output signal rather than linearizing the nonlinear system. This technique is especially
popular in SLAM applications. Another parameter estimation method that is situated in
the same class as EKF is a particle filter, which, like EKF, uses Bayesian estimation but
focuses on the problem with more general settings. PF tries to reconstruct the stochastic
pdfs at each time step. For the cases where it is evident that the stochastic signals that are
present in the problem are non-Gaussian and/or multi-modal, this technique outperforms
its counterparts at the expense of increased computational load. There are techniques that
employ PF as a main parameter estimator tool for certain system identification problems,
but the computational aspect is the only drawback [8].

Another significant usage of the observers is for parameter estimation. In cases where
there are enough measured signals and some parameters are required to be estimated for
monitoring or control purposes, EKF also can be used by extending the state vectors by
the parameters to be estimated. For a small set of unknown parameters, that technique
works sufficiently accurately. However, for the cases where the number of parameters is
much greater than the number of states, there can be some numerical issues raise during
the estimation process. To circumvent that problem, it is a common practice to design two
separate EKFs, one for the state estimation and other for the parameter estimation, and
the information exchange between the two estimators is regulated by another regulation
mechanism [9]. In doing so, the numerical problems are mitigated to an extent. The same
type of method is also used for the parameter estimation of systems where the number of
parameters is greater than the state dimension and there are enough data points to work
with. In industrial applications, those requirements often arise for system monitoring and
fault-detection problems [10].

As for the plant that was tested as the test problem, PMSM is considered to be the
main counterpart of induction motors that are widely utilized in a wide range of industrial
applications. The generator version is prominent not only for consumption, but also due
to the increased wind energy harvesting systems. Owing to its power-to-volume ratio,
it is used in applications where the weight of the total system is limited, such as in EV
applications and surveillance tools [11].

In this study, a line search-based nonlinear optimization technique is implemented,
and one of the most important developments in recent years in the control and estimation
literature is the implementation of many optimization techniques in controller and estima-
tor design processes. Starting with the LMI techniques that have been used in robust linear
controller design, some other convex optimization techniques have become prominent
in the field of control [12]. Due to the increased computational power, many Lyapunov
function construction problems for stability analysis in nonlinear systems can be reduced to
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linear programming using some heuristic methods [13,14]. In this study, a line search-based
nonlinear optimization method is discussed. Furthermore, whether the problem is convex
is also discussed. This question is important due to the fact that the presence of convexity
for such a problem may result in a possible on-line nonlinear observer construction.

Another significant subject where optimization algorithms are widely used is model
predictive control, which basically solves the optimal trajectory and optimal input signal
problem for a limited horizon. For linear cases, since there is a structure to be exploited that
results in less computational load, MPC is especially preferred. However, depending on
the availability of computation power and the importance of the application, MPC is also
deployed in many nonlinear systems [15,16]. Using MPC-based methods, it is also possible
to address some specific controllability and observability problems for LTI or nonlinear
systems. For example, it is possible to compute a linear static controller so that the given
hard input signal amplitude constraints are satisfied, and the stability of the closed loop
is guaranteed. Although recent compared to the linear quadratic controller-type control
design techniques, the literature on this subject is quite rich.

In this study, another method that is used to compare against the EKF-based method
and the line-search nonlinear optimization method is genetic algorithms. GAs are utilized in
parameter estimation and many optimization problems, especially for the problems where
the decision variable number is too high and/or the optimization problem cannot be written
in closed form and only a cost function can be generated for a given decision variable. GAs
are used to estimate the parameters of PMSM and the results of these three algorithms are
analyzed [17]. The importance of the research can be stated as the comparison of three
separate classes of parameter estimation methods: the EKF, a sequential MMSE-based
method; a convex optimization-based identification algorithm; and a heuristic parameter
estimation method GA. In electromechanical systems drive and in power electronics
literature, comparisons of these type of separate classes of parameter estimation algorithms
are not prevalent. Estimating the parameters by using the algorithms detailed in the
paper can make it possible to obtain an adaptive control scheme that has the potential to
mitigate the performance degradation due to parameter variation, and by monitoring the
parameters can contribute to designing a fault-detection strategy that can be desired in a
critical operation.

An EKF-based iterative parameter estimation algorithm and line search-based non-
linear optimization algorithm are given and the efficacies of the estimation methods are
examined through a numerical simulation. The plant dynamics are given in Section 2.
The parameter estimation techniques, EKF-based search algorithm, and line-search algo-
rithm are detailed in Section 3. Validation of the performance simulation problem and the
corresponding results are given in Section 4. Finally, in Section 5 the results are discussed.

2. Nonlinear Dynamical Model of PMSM

In this study, to test the parameter accuracy of the estimation algorithm that is to be
presented in the next section, a PMSM model was given whose model possesses non-severe
nonlinearities that are suitable for designing an EKF. There are four states, two of which
are available for measuring, and five related system parameters to be estimated [18]. The
lower and upper bounds of the parameters are considered to be known and the process
and measurement noises have normal distributions. The plant model is given as

d
dt

x1 =

(
−P1

P2

)
x1 +

(
P3

P2

)
x3 sin(x4) +

(
1
P2

)
u1 (1)

d
dt

x2 =

(
−P1

P2

)
x2 +

(
−P3

P2

)
x3 cos(x4) +

(
1
P2

)
u2 (2)

d
dt

x3 =

(
−3P3

2P4

)
x1 sin(x4) +

(
3P3

2P4

)
x2 cos(x4) +

(
−P5

P4

)
x3 (3)
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d
dt

x4 = x3 (4)

The relevant parameters to be estimated and their respective definitions and units are given
in Table 1.

Table 1. The plant parameters and definitions.

Parameter Unit Definition

P1 Ω Winding resistance
P2 H Winding inductance
P3 - Magnetic flux constant of the motor
P4 kg m2 Moment of inertia of the rotor and the load
P5 - Viscous friction constant of the rotor

The system states are given in Table 2 with their respective units.

Table 2. The plant states and definitions.

Parameter Unit Definition

x1 A Direct-axis stator winding current
x2 A Quadrature-axis stator winding current
x3 rad/s Rotor mechanical rotation speed
x4 rad Rotor mechanical position

At this stage, to prevent the numerical problems that can arise due to division opera-
tion, a given change of parameters is introduced in Equations (5)–(9).

p1 = −P1

P2
(5)

p2 =
P3

P2
(6)

p3 =
1
P2

(7)

p4 =

(
−3P3

2P4

)
(8)

p5 =
−P5

P4
(9)

As a result of this change of variables, the nonlinear system model based on which
the estimation algorithms are designed is given in Equations (10)–(13).

d
dt

x1 = p1x1 + p2x3 sin(x4) + p3u1 + w1 (10)

d
dt

x2 = p1x2 − p2x3 cos(x4) + p3u2 + w2 (11)

d
dt

x3 = p4x1 sin(x4)− p4x2 cos(x4) + p5x3 + w3 (12)

d
dt

x4 = x3 + w4 (13)

With the introduced change of variables, the estimation algorithm was designed based
on this model. However, the first two states were assumed to be measured as given in,

y1 = x1 + v1 (14)

y2 = x2 + v2 (15)
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where the process noise and sensor noise are given by the w and v terms, respectively.
Their statistics are given in the simulation section.

3. Parameter Estimation Algorithms
3.1. EKF-Based Parameter Estimation Algorithm

In this section, an EKF-based parameter estimation algorithm is presented for system
identification purposes. As stated in the previous section, there are five parameters and
the bounds of them are known. Two of the four states are measured, and the rest of
the state signals are to be estimated, which results in seven variable estimations, five
of which can be considered constant signals. Instead of extending the state vector by
stacking the parameters and designing an observer for a nine-dimensional system with
two measured states, which would result in numerical difficulties, five separate EKFs
were designed. In each EKF, whose design steps are to be presented, four states and one
parameter are considered while fixing the rest of the parameters. This type of iterative
parameter estimation has a considerable computational complexity; however, compared to
the one with larger dimensions and numerical stability issues, there may be some cases
where the parameter estimation algorithm or a version thereof is desired. The overall
scheme of the method is presented in the block diagram given in Figure 1.
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Figure 1. Block diagram and illustration of the EKF-based parameter estimation algorithm.

3.1.1. General EKF Design for Parameter Estimation

For the parameter estimation, the state vector is expanded by the parameters and a
new dynamic artificial system is defined. The system is represented as

xk = fk(xk−1, uk−1, wk−1) (16)

yk = gk(xk, uk, vk) (17)

For the given system, four Jacobian matrices are defined as

Ak =
∂ fk(xk−1, uk−1, wk−1)

∂xk−1
, Bwk =

∂ fk(xk−1, uk−1, wk−1)

∂wk−1
(18)
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Ck =
∂gk(xk, uk, vk)

∂xk
, Dvk =

∂gk(xk, uk, vk)

∂vk
(19)

The EKF steps are given below:

x̂k|k−1 = fk

(
x̂k−1|k−1, uk−1

)
(20)

ŷk|k−1 = gk

(
x̂k−1|k−1, uk−1

)
(21)

Ak =

[
∂ fk(xk−1, uk−1, wk−1)

∂xk−1

]∣∣∣∣ xk−1 = x̂k−1|k−1
uk−1 = uk−1

wk−1 = 0

(22)

Bwk =

[
∂ fk(xk−1, uk−1, wk−1)

∂wk−1

]∣∣∣∣ xk−1 = x̂k−1|k−1
uk−1 = uk−1

wk−1 = 0

(23)

Σx̃x̃k|k−1
= AkΣx̃x̃k−1|k−1

AT
k + Bwk QkBT

wk
(24)

Ck =

[
∂gk(xk, uk, vk)

∂xk

]∣∣∣∣ xk = x̂k|k−1
uk = uk
vk = 0

(25)

Dvk =

[
∂gk(xk, uk, vk)

∂vk

]∣∣∣∣ xk = x̂k|k−1
uk = uk
vk = 0

(26)

Kk = Σx̃x̃k|k−1
CT

k

[
CkΣx̃x̃k|k−1

CT
k + Dvk RkDT

vk

]
(27)

x̂k|k = x̂k|k−1 + Kk

[
yk − ŷk|k−1

]
(28)

ŷk|k = gk

(
x̂k|k, uk

)
(29)

Σx̃x̃k|k = [I − KkCk]Σx̃x̃k|k−1
(30)

The related parameters are given in the Table 3 below.

Table 3. EKF-related terms and definitions thereof.

Parameter Definition Parameter Definition

x̂k|k−1 Predicted state Σx̃x̃k|k−1
A priori state error covariance matrix

ŷk|k−1 Predicted output Σx̃x̃k|k
A posteriori state error covariance matrix

Qk Process noise covariance matrix x̂k|k Estimated state
Rk Measurement noise covariance matrix ŷk|k Estimated output

Ak, Bwk , Ck, Dvk

Jacobian matrices
Linearized around the current operation point Kk Kalman gain

3.1.2. EKF Design for p1

The system on which the EKF is based is given as

d
dt

x1 = x5x1 + p2x3 sin(x4) + p3u1 + w1 (31)

d
dt

x2 = x5x2 − p2x3 cos(x4) + p3u2 + w2 (32)
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d
dt

x3 = p4x1 sin(x4)− p4x2 cos(x4) + p5x3 + w3 (33)

d
dt

x4 = x3 + w4 (34)

d
dt

x5 = w5 (35)

This model is obtained by renaming p1 as x5 and additionally defining the x5 dynamics.
The term w5 is introduced to make it possible for the observer to change the estimation
value. The four prominent Jacobian matrices are given as

Ak =


x5 0 p2 sin(x4) p2x3 cos(x4) x1
0 x5 −p2 cos(x4) p2x3 sin(x4) x2

p4 sin(x4) −p4 cos(x4) p5 p4x1 cos(x4) + p4x2 sin(x4) 0
0 0 1 0 0
0 0 0 0 0

Ts + I (36)

Bwk = ITs, Ck =
[

I2 02x3
]
, Dvk = I2 (37)

The p1 term is to be estimated in addition to the four state signals while four parame-
ters are fixed and assumed to be known for this subsystem.

3.1.3. EKF Design for p2

The system on which the EKF is based is given as

d
dt

x1 = p1x1 + x5x3 sin(x4) + p3u1 + w1 (38)

d
dt

x2 = p1x2 − x5x3 cos(x4) + p3u2 + w2 (39)

d
dt

x3 = p4x1 sin(x4)− p4x2 cos(x4) + p5x3 + w3 (40)

d
dt

x4 = x3 + w4 (41)

d
dt

x5 = w5 (42)

This model is obtained by renaming p2 as x5 and additionally defining the x5 dynamics.
The term w5 is introduced to make it possible for the observer to change the estimation
value. The Jacobian matrix related to the state vector is given as

Ak =


p1 0 x5 sin(x4) x3x5 cos(x4) x3 sin(x4)
0 p1 −x5 cos(x4) x3x5 sin(x4) −x3 cos(x4)

p4 sin(x4) −p4 cos(x4) p5 p4x1 cos(x4) + p4x2 sin(x4) 0
0 0 1 0 0
0 0 0 0 0

Ts + I (43)

The p2 term is to be estimated in addition to the four state signals while four parame-
ters are fixed and assumed to be known for this subsystem.

3.1.4. EKF Design for p3

The system on which the EKF is based is given as

d
dt

x1 = p1x1 + p2x3 sin(x4) + x5u1 + w1 (44)

d
dt

x2 = p1x2 + p2x3 cos(x4) + x5u2 + w2 (45)
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d
dt

x3 = p4x1 sin(x4)− p4x2 cos(x4) + p5x3 + w3 (46)

d
dt

x4 = x3 + w4 (47)

d
dt

x5 = w5 (48)

This model is obtained by renaming p3 as x5 and additionally defining the x5 dynamics.
The term w5 is introduced to make it possible for the observer to change the estimation
value. The Jacobian matrix related to the state vector is given as

Ak =


p1 0 p2 sin(x4) p2x3 cos(x4) u1
0 p1 −p2 cos(x4) p2x3 sin(x4) u2

p4 sin(x4) −p4 cos(x4) p5 p4x1 cos(x4) + p4x2 sin(x4) 0
0 0 1 0 0
0 0 0 0 0

Ts + I (49)

3.1.5. EKF Design for p4

The system on which the EKF is based is given as

d
dt

x1 = p1x1 + p2x3 sin(x4) + p3u1 + w1 (50)

d
dt

x2 = p1x2 − p2x3 cos(x4) + p3u2 + w2 (51)

d
dt

x3 = x5x1 sin(x4)− x5x2 cos(x4) + p5x3 + w3 (52)

d
dt

x4 = x3 + w4 (53)

d
dt

x5 = w5 (54)

This model is obtained by renaming p4 as x5 and additionally defining the x5 dynamics.
The term w5 is introduced to make it possible for the observer to change the estimation
value. The Jacobian matrix related to the state vector is given as

Ak =


p1 0 p2 sin(x4) p2x3 cos(x4) 0
0 p1 −p2 cos(x4) p2x3 sin(x4) 0

x5 sin(x4) −x5 cos(x4) p5 x5x1 cos(x4) + x5x2 sin(x4) x1 sin(x4)− x2 cos(x4)
0 0 1 0 0
0 0 0 0 0

Ts + I (55)

The p4 term is to be estimated in addition to the four state signals while four parame-
ters are fixed and assumed to be known for this subsystem.

3.1.6. EKF Design for p5

The system on which the EKF is based is given as

d
dt

x1 = p1x1 + p2x3 sin(x4) + p3u1 + w1 (56)

d
dt

x2 = p1x2 − p2x3 cos(x4) + p3u2 + w2 (57)

d
dt

x3 = p4x1 sin(x4)− p4x2 cos(x4) + x5x3 + w3 (58)

d
dt

x4 = x3 + w4 (59)
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d
dt

x5 = w5 (60)

This model is obtained by renaming p5 as x5 and additionally defining the x5 dynamics.
The term w5 is introduced to make it possible for the observer to change the estimation
value. The Jacobian matrix related to the state vector is given as

Ak =


p1 0 p2 sin(x4) p2x3 cos(x4) 0
0 p1 −p2 cos(x4) p2x3 sin(x4) 0

p4 sin(x4) −p4 cos(x4) x5 p4x1 cos(x4) + p4x2 sin(x4) x3
0 0 1 0 0
0 0 0 0 0

Ts + I (61)

The p5 term is to be estimated in addition to the four state signals while four parame-
ters are fixed and assumed to be known for this subsystem.

3.2. Line Search-Based Nonlinear Optimization Method

For parameter estimation, a line search-based nonlinear optimization is used. First,
the problem is stated such that input signal history and output signal history are available
and the terms that are desired to be computed are initial conditions of the state variables
and parameters of the nonlinear PMSM dynamical system. The optimization algorithm
focuses not only the parameter computation but also on the initial conditions of the state
variables. This strategy may result in a higher dimensional parameter estimation problem,
but as is the case in constrained optimization, manipulating the problem in such a way
that the dimension is increased may prove useful [19]. Since the relation between input
and output signals is affected not only by the internal parameters but also by the initial
values of the state variables, and for the cases where at least some bound is available to
the algorithm, it is reasonable to expand the decision variable dimension. In the original
problem it is stated that the state space dimension is four, and the number of parameters
to be estimated is five. Therefore, the problem is expressed as the optimization of those
nine numerical values. The model of the nonlinear dynamics is available and it is assumed
that the output signal is available, and for a given value of decision variables, the cost of
the optimization problem can be constructed as a mean square error of the real and the
estimated one. Therefore, the optimization problem can be stated as

min.
p̂1, . . . , p̂5

x̂1(0), x̂2(0), x̂3(0), x̂4(0)

{
N
∑

k=0

[
(x1(k)− x̂1(k))

2 + (x2(k)− x̂2(k))
2
]}

s.t.
∀k = 0, . . . , N


x̂1(k + 1)− x̂1(k) = Ts[ p̂1 x̂1(k) + p̂2 x̂3(k) sin(x̂4(k)) + p̂3u1(k)]
x̂2(k + 1)− x̂2(k) = Ts[ p̂1 x̂2(k)− p̂2 x̂3(k) cos(x̂4(k)) + p̂3u2(k)]

x̂3(k + 1)− x̂3(k) = Ts[ p̂4 x̂1(k) sin(x̂4(k))− p̂4 x̂2(k) cos(x̂4(k)) + p̂5 x̂3(k)]
x̂4(k + 1)− x̂4(k) = Ts[x̂3(k)]


(62)

However, for computational considerations the problem can be dissected into smaller
sequential optimization parameters and the problem can be stated as follows: First, random
values are assigned at the each of the decision variables subject to their box constraints.
In the optimization stage, only p̂1 is optimized while keeping other decision variables
fixed. This problem of optimizing over a single variable can be stated as a line search,
as the parameter takes values between the stated range. There are golden-section and
Fibonacci-search algorithms to reduce the computational burden of the problem. When
the optimization ends, the next decision variable, i.e., p̂2, is optimized while keeping other
decision variables fixed using the updated value of p̂1 determined in the previous step.
The process continues until convergence. It should be noted that for severe multi-model
functions this method faces some local-minima issues [20]. However, considering this
algorithm only computes the state trajectories and the cost function value, at multiple times
in each step instead of performing a matrix inversion, it is computationally more favorable
to the iterated EKF parameter estimation technique stated in the previous section.
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3.3. Genetic Algorithm Parameter Estimation

Genetic algorithms are a class of global optimization tools influenced by evolution [21].
It searches the parameter space to find a global minimum for a given evaluation function
with use of mutation and crossover followed by the selection of a population of parameters.
Even though the iterative nature of GAs guarantees no worse performance in the subse-
quent generations, depending on the non-linearity of the evaluation function with respect
to the parameters, GAs can get stuck on local minimums. GAs can also be sensitive to the
values of mutation and crossover rate as well as the choice of a selection technique [22].
Despite this, GAs are suitable candidates for non-convex optimization-related problems
and for problems where the typical assumptions of the optimization problem are not valid,
nor where the conventional methods are infeasible to implement.

A good choice for the evaluation function or the cost function of the GA can again
be as follows:

J =
N

∑
k=0

[
(x1(k)− x̂1(k))

2 + (x2(k)− x̂2(k))
2
]

(63)

This is due to our assumption of process and sensor noise being zero-mean Gaussian.
One benefit of this type of parameter estimation is the ease of extendibility to find a more
statistically reliable answer with the inclusion of simulation results with different sets of
initial conditions. Then, the cost function can be altered as

M

∑
i=0

N

∑
k=0

[
(xi,1(k)− x̂i,1(k))

2 + (xi,2(k)− x̂i,2(k))
2
]

(64)

where M denotes the number of simulations with different sets of initial conditions. Despite
this, GAs are suitable candidates for non-convex optimization-related problems and for
problems where the typical assumptions of the optimization problem are not valid or the
conventional methods are infeasible to implement.

4. Numerical Simulations

In this section, the numerical simulations that were conducted are discussed. Table 4
below states the important values that were used in the simulation.

Table 4. Simulation settings.

Terms Values

Duration 5 sec
Ts 0.01 sec

x(0) [0.1, 0.1, 0.1, 0.1]
plower [−5, 1, 1,−5,−5]
pupper [−0.1, 20, 20,−0.1,−0.1]

σ2
pro−noise 10−4 I4

σ2
sen−noise 10−4 I2
u1(t) 1 sin(2π[1]t)
u2(t) 1 sin

(
2π[1]t + π

2
)

[p1, p2, p3, p4, p5] [−1, 10, 10,−1.5,−1]

4.1. Simulation for EKF-Based Parameter Estimation Algorithm

For the given simulation-related terms, the EKF-based parameter estimation algo-
rithm was simulated, and the efficacy of the algorithm is presented in Figure 2. In the
simulation, to represent the fact that the initial point of the estimation is independent of the
convergence properties of the estimation algorithm, the different initial point of estimation
was employed and simulated for the same nonlinear model of the PMSM. It is noted that
the parameter estimates converged to the real values under the disturbing effects of the
process and measurement noise presence.
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4.2. Simulation of Line Search-Based Nonlinear Optimization Algorithm

For the given simulation-related terms, a line search-based algorithm was simulated
and the efficacy of the algorithm is presented in Figure 3. For the demonstration of the
consistency of the algorithm, four different initial estimates were given and the convergence
of the algorithm was observed.

4.3. Simulation for GA Optimization

To compare the performance of the two previously presented estimators, another
optimization GA was used to estimate both the initial conditions of the state variables and
the parameters. The performance is illustrated in Figure 4. It can be seen that there was a
dependence on the initial estimate values of the parameter estimates. Since the GA focused
on minimizing the objective function using the parameters but not in a sequential manner,
as was the case in the optimization algorithm previously stated, this type of local minimum
convergence can be seen. It can be also noted that there were some procedures to prevent
the GA from converging to a local minimum to an extent, but since this algorithm is only
included for comparative purposes, these details are not presented here.
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5. Conclusions

In this study, PMSM, whose nonlinear dynamical model is given, was studied. The
parameters of the system were estimated using the stated iterated EKF-based parameter
estimation algorithm and the line search-based method. For both of the cases, it was seen
that the convergence of the estimates was independent of the initial estimate points given
to the estimation algorithms, and for none of the starting points was a divergence observed,
which indicates that the algorithms performed reliably. Additionally, for comparison pur-
poses, GAs were used to find the parameters and the initial values of the state variables.
The numerical simulations were conducted in MATLAB. For the computational aspects of
the study, the matrix inversion operation that is present in the EKF-based method cause an
additional computational burden. Although, as the simulation results indicate, the perfor-
mances were similar, the line search-based nonlinear optimization method outperformed
in terms of time complexity. It is important to point out as final conclusions that these
types of parameter estimation analyses are significant in designing a parameter estimator
that is desired to be run on-line due to the fact that these analysis techniques or variations
thereof can conclude which parameters can be estimated or which parameters are easier
to estimate. For parallel parameter estimation operations or fault-detection mechanisms,
these questions are fundamental.
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