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Abstract: Heat flow patterns variability related to the age of the consolidated, and differences in,
sedimentary thickness of the sedimentary succession are important constraints upon the thermal
state of the sedimentary fill and its geothermal energy potential. Heat flow in the Permian basin
of central Europe varies from a low of 40 mWm−2 in the Precambrian Platform to 80 mWm−2 in
the Paleozoic basement platform influencing temperature for geothermal potential drilling depth.
Continuity of thermal patterns and compatibility of heat flow Q across the Permian basin across the
Polish–German basin was known from heat flow data ever since the first heat flow map of Europe in
1979. Both Polish and German heat flow determinations used lab-measured thermal conductivity on
cores. This is not the case for the recent heat flow map of Poland published in 2009 widely referenced
in Polish geological literature. Significant differences in heat flow magnitude exist between many
historical heat flow maps of Poland over the 1970s–1990s and recent 21st century patterns. We find
that the differences in heat flow values of some 20–30 mWm−2 in Western Poland exist between
heat flow maps using thermal conductivity models using well log interpreted mineral and porosity
content and assigned world averages of rock and fluid thermal conductivity versus those measured
on cores. These differences in heat flow are discussed in the context of resulting mantle heat flow and
the Lithosphere-Asthenosphere Boundary depth modelled differences and possible overestimates of
deep thermal conditions for enhanced geothermal energy prospects in Poland.

Keywords: heat flow; LAB; central Europe basin; tectonic units

1. Introduction

The knowledge of heat flow Q, (Q = λ*gradT, where λ is thermal conductivity and
gradT is geothermal gradient of temperature T) is crucial for the prediction of deep geother-
mal resources below maximum depth of temperature logs and the estimate of geothermal
energy potential of sedimentary basins and potential of the enhanced geothermal systems
(EGS) [1–4]. The Central European transition from the Precambrian platform to younger
tectonic basement Caledonian, Variscan, Alpine terrains shows significant differences in
crustal structure, age (Figure 1a,b), [5,6] and magnitude of Q, especially evident in Poland
where all these differing tectonic elements are present under sedimentary succession
reaching as high as 13 km [7] in the axis of the Polish–German basin.

In this paper I review the evolution of Polish heat flow maps since the first ones of 1972–
1973 by Majorowicz [8,9] through some four decades by many contributors [10–17]. All the
heat flow data in Poland, except a few wells reaching crystalline rocks of Sudetes [10], come
from wells into the sedimentary strata. I will focus on apparent differences in magnitude
of some 20–30 mWm−2 between Polish heat flow maps. The context of such discrepancy in
surface heat flow upon heat flow at the consolidated basement and mantle heat flow will
be reviewed. The patterns of heat flow and depth level temperatures run across different
age tectonic units/terrains and its relationship to these has been difficult to pinpoint [18].
The estimates of depth of LAB (Lithosphere-Asthenosphere Boundary) from the observed
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differing heat flow maps of Poland and seismological constraints on the LAB boundary
will be reviewed and discussed.

Figure 1. Newly drafted compilation of major division of the Poland area on tectonic mega-units
according to (a) [6] and (b) [19]. Note: The original colors were modified to show both maps in the
same common color pattern.

2. The Tectonic Background

Tectonic subdivision of the consolidated basement in Poland is shown in Figure 1a
according to Karnkowski [20] and in Figure 1b according to Żelaźniewicz et al. [19]. The
age of the basement is given, and it changes from less than 100 Ma for the Carpathian
forefront zone to >1000 Ma for the Precambrian basement of the East European Platform
as shown in Figure 1a,b. The Alpine zone of the Carpathian is an external zone of the
Carpathians with an older basement beneath (Figure 1a,b).

Sedimentary fill in the Polish basins vary from just few hundred meters in Northeastern
Poland and exposed crystalline rocks in Sudetes of southwestern Poland to some 15 km
thickness in the Polish Trough in the central-northern Poland as based on 3D seismological
modeling by Grad and Polkowski [7] from numerous seismic profiles cutting across sedimen-
tary basins (Figure 2). The 3D geometry of the crust and upper mantle down to 60 km was
studied before [7,21], and the creation of Moho depth which in Poland varies from 29 km in
the Variscan southwestern Poland to 49 km in the Precambrian platform (Figure 2b).

Figure 2. Thickness of sedimentary succession (a) and Moho depth (b) in Poland from Grad et al. [21],
modified/redrafted.
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3. Historical Evolution of Heat Flow Maps of Poland—Materials and Methods

We can observe significant differences existing between many historical heat flow
maps of Poland published over the 1970s–1990s with no paleoclimatic correction applied
and recent 21st-century maps for which Q data had paleoclimatic influence taken into
corrections. Heat flow maps drawn from different density Q data and based on different
approaches to its calculations show differences of some 20–30 mWm−2. These are observed
despite recent maps that considered paleoclimatic correction for glacial-interglacial surface
forcing (Szewczyk and Gientka, [17], Majorowicz and Wybraniec [22]).

The terrestrial heat flow Q was calculated as a product of geothermal gradient grad
T(z), where T is temperature at depth z and thermal conductivity for rocks λ in depth
interval ∆z for which grad T(z) was determined. Thermal conductivity λ at an interval ∆zi
(number “i“of rock components) may be determined by:

(1) averaging the measurement made on core samples from the interval;
(2) using the mean values for stratigraphic lithologic layers calculated for a large territory

by numerous borehole data;
(3) building a geophysical log-based model of the volume of number “i“ of rock compo-

nents with l i-thermal conductivity of mineral components from tables, Vi-volume of
component “i“ and porosity.

Method (1) was used to calculate λ for Q determinations for the first heat flow maps
of Poland, by Majorowicz [9,23,24], based on N = 52 data. The same method was used by
Plewa published in Majorowicz and Plewa [14], who made Q determinations in Poland
and in the latest compilation listed N = 87 Q values.

Method (2) was used by Gordienko and Zavgorodnyaya [11]) who estimated Q for
N = 176 data points and by Karwasiecka and Bruszewska [12] for N = 274 Q data used
for heat flow maps of Poland. They were verifying the patterns by Q data from thermal
equilibrium geothermal gradients and λ measured on cores.

Method (3) was used by Szewczyk and Gientka [17]) for N = 308 Q based heat flow
map (unlisted data points).

The Q magnitude difference is observed between maps for Poland (Figures 3–5).
These are based accordingly on Q calculations from return grad T(z) corrected for thermal
equilibrium from deep well temperature profiles and measured averaged thermal con-
ductivity λ from core samples by Majorowicz [9,23,24], Majorowicz and Plewa [14], and
Karwasiecka and Bruszewska [12], versus Grad T(z) and thermal conductivity profiles
build from models of rock content and porosity from geophysical well logs and assigned
table averages of λ for these rocks by Szewczyk and Gientka [17].

High surface heat flow Q0 = 65–80 mWm−2 is a regional feature characteristic for the
South-Western part of Poland. This enlarged Q ‘height’ (Figure 5) occurs between the Mid-
dle Odra Horst to SW and the Variscan Deformation Front (Majorowicz and Wybraniec [22],
Majorowicz and Šafanda [26], Puziewicz [16] and Figure 5 in this paper). Despite the differ-
ences in absolute values of some 20–30 mWm−2 due to differences in thermal conductivity
models, estimated from well logs by Szewczyk and Gientka, [17] versus those measured on
cores (Majorowicz and Plewa [14], Karwasiecka and Bruszewska [12], and Majorowicz and
Wybraniec [22]), Q patterns are similar in several maps (Figures 3–5). However, analysis
of this difference in Q between maps shows that heat flow values in Figure 4b of some
100 mWm−2 are likely overestimates. This will be discussed in further analysis.
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Figure 3. Historical heat flow maps of Poland according to different authors: (a) Majorowicz [24])–in
this map Q values are in old heat flow units HFU (1 HFU = 10−6 cal/(cm2 s) = 41.84 mWm−2).
(b) Majorowicz and Plewa [14]. (c) Gordienko and Zavgorodnyaya [11]). (d) Plewa [15]. For figures
(b–d) heat flow values are in mWm−2. (New figure).

Figure 4. Heat flow maps of Poland according to Karwasiecka and Bruszewska [12]) (a) and Szewczyk
and Gientka [17] (b). Note some 20–30 mWm−2 difference in average heat flow magnitudes between
both maps. The original maps were redrafted and modified for common graphics (free software for
mapping is from [25].
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Figure 5. Surface heat flow map of Poland based on heat flow data corrected for paleoclimate
according to Majorowicz and Wybraniec [22]. White circles show the distribution of boreholes with
heat flow data. Big red dot shows location of the test site Rudna. Note some 20–30 mWm−2 difference
in average heat flow magnitudes between this map and the map in Figure 4b.

Major tectonic lines like TTZ are not evident as exact boundaries between low Q
east and west of it. Low heat flow at all depth levels like base of sediments and Moho
extends west of TTZ. In general, it extends to the magnetic line depicting the southern
margin of the Pomeranian Massif [27]. In the south-west of TTZ it extends partially into
the Cadomian area in Southern Poland [14,28], Figure 5. The boundary depicting the reach
of the Carpathian foreland (see Figure 2) is not showing as a Q boundary on any of the
analyzed maps in Figures 3–5. Q low increases from the eastern part of the Cadomian
basement beneath Northern Carpathians (compare Figures 2 and 5) and goes into Q high
in the west across the E-W boundary of the Carpathian foreland zone.

Heat flow values shown in Figure 5 are well within the heat flow vs. tectonic age
relation bounds (Figure 6). On the other hand, heat flow values range from the Szewczyk
and Gientka [17] map redrafted in Figure 4b are well above these bounds. It is an especially
strong discrepancy for the Variscan age area. This observation will be explored farther
down in the Discussion section.
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Figure 6. Comparison of average values of the continental heat flow Q for tectonic units of different
age. Averaged values, for “13 BB Star” array in northern Poland (marked A0) is shown by big brown
dot with line of age range. Average heat flow-age groups from Szewczyk and Gientka [17] marked SG
(red ellipses), and Majorowicz and Wybraniec [22] marked MW (brown ellipses), differs significantly.
MW data fit the expected heat flow versus age relationship much better. Heat flow-age compiled
from Jessop et al. [29] and Majorowicz and Jessop [14] are shown by yellow crosses with the range
shown yellow areas. Heat flow vs. age relationship lines marked by VH and the standard deviation
bounds (_+σ and −σ) are from Vieira and Hamza [30].

4. Heat Flow at the Base of Sediments (at the Consolidated Basement) and at the Moho

Heat flow at the base of compacted sediments (see [31,32] for the effect of compaction
and consolidation of sedimentary fill upon sedimentary thermal state) and at the Moho
(mantle [33] contribution below the crustal part) were calculated by Majorowicz et al. [18]
using the down-stripping method [34–37] for the heat generation parts of heat flow contri-
bution of the sediments and crustal heat generation heat flow contribution. These can be
compared respectively in Figures 7 and 8 below.
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Figure 7. Newly drafted base of sediments level heat flow map of Poland. Tectonic lines: 1—position
of the TTZ in Poland according to Narkiewicz et al. [38], 2—magnetic line, southern margin of the
Pomeranian Massif is after Królikowski [27], 3—basement borders after Karnkowski [6].

The sedimentary rocks contribute significant radiogenic heat production and Q0 at
the surface minus Q contribution of sedimentary cover is up to 20 mWm−2 with the largest
reduction of Q just west of TTZ in the Mid-Polish Swell, where the thickness of sedimentary
cover is >10 km (Figure 2). The comparison of the above Q maps at the base of sedimentary
fill and at the base of the crust at Moho (Figure 7 vs. Figure 8) shows that general patterns
(trends in heat flow) are similar. However, a large difference in magnitude of Q exists due
to a contribution of the radiogenic heat generation of the upper crystalline crustal rocks.
Crustal and mantle heat flow contributions studied elsewhere [20,37,39–42] point to large
un-certainty in calculations of crustal vs. mantle heat flow contributions with estimates
40% vs. 60% of total surface heat flow [20,37,39].
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Figure 8. Moho heat flow map of Poland (redrafted and color scale modified from Majorowicz et al.,
2019, [18]. Tectonic lines: 1—position of the TTZ in Poland according Narkiewicz [38], 2—magnetic
line, southern margin of the Pomeranian Massif after Królikowski [27], 3—basement borders after
Karnkowski (2008, [6]).

5. Polish Heat Flow in the European Map Context

The Q map for paleoclimate heat flow of the European continent was corrected
by Majorowicz and Wybraniec [22], and Figure 9 used heat flow data corrected for the
paleoclimatic effect.
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Figure 9. Heat flow map of Europe based on forcing heat flow values corrected for glacial-postglacial (Majorowicz and
Wybraniec, redrafted unpublished version). Q data used later in a published paper by Majorowicz and Wybraniec [22] are
available upon request as an Excel file.

The previous heat flow maps in the Geothermal Atlas of Europe (Čermak and Hur-
tig [43,44], Q map of Cloething et al. [45] and Q map of Hurtig et al. [46], had no paleocli-
matic correction applied.

The Q map of Europe by Majorowicz and Wybraniec [22] shows the context of Polish
heat flow transition between Precambrian and Paleozoic Platforms. The Central European
heat flow map (Figure 10) compiling Polish and neighboring heat flow data from heat flow
map of Europe of Majorowicz and Wybraniec [22] and of the European Permian basin
Q map by Guterch et al. [47] show that the Q transition between the Polish and German
basins is continuous in the patterns and magnitude across the German–Polish border in the
northern German–Polish Basin (GPB). This is also true for the data used in Figure 10 map
based on Majorowicz and Wybraniec [22] data corrected for glacial–postglacial surface
temperature change forcing paleoclimatic correction [13,22,26] (data upon request).
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Norden et al. [49] explore Q values for several km deep wells in the German basin west of 
the Polish study area for which heat flow was estimated for wells deeper than 1.5 km. 
Deeper than 1.5 km heat flow is less influenced by the glacial interglacial [50] surface tem-
perature cycle. The influence at such depth will be close to or less than the error on Q from 

Figure 10. Tectonics and heat flow. (a) Tectonic sketch of the pre-Permian Central Europe in the
contact of the East European Craton, Variscan and Alpine orogens compiled by Grad et al., 2016 [7,48]
and Narkiewicz et al. (2011 [38]) is redrafted/modified from Majorowicz et al. [18]. BT-Baltic
Terrane; FSS—Fennoscandia-Sarmatia Suture; HCM—Holy Cross Mountains; MB—Małopolska
Block; MLSZ—Mid-Lithuanian Suture Zone; NEGB—North-Eastern German Basin; PB—Polish
Basin; PM—Pomerania Massif; RG—Rønne Graben; RFH—Ringkøbing-Fyn High; STZ—Sorgenfrei-
Tornquist Zone; TESZ—Trans-European Suture Zone; TTZ—Teisseyre-Tornquist Zone; USB—Upper
Silesian Block; VDF—Variscan Deformation Front. (b) Central European heat flow map based on
corrected for paleoclimate heat flow data from Majorowicz and Wybraniec [22] with main tectonic
lines. Grey frames show the location of the study area.

In the neighboring Poland Danish and North German Basin NGB, Fuchs [48] and
Norden et al. [49] explore Q values for several km deep wells in the German basin west
of the Polish study area for which heat flow was estimated for wells deeper than 1.5 km.
Deeper than 1.5 km heat flow is less influenced by the glacial interglacial [50] surface
temperature cycle. The influence at such depth will be close to or less than the error on Q
from temperature T with depth z, grad T(z) and thermal conductivity λ errors towards Q
determination. The surface temperature forcing signal due to glacial-postglacial history [50]
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is diffused with depth to the point that the magnitude of the Q paleoclimatic correction
is <5 mWm−2 in the German—Polish Basin shown by Majorowicz and Šafanda [13], Ma-
jorowicz and Wybraniec [22] and Majorowicz and Majorowicz and Safanda 2018 [26]. In
Central Europe, heat flow is significantly higher west of the Trans-European suture zone
(TESZ) than for the East European Precambrian craton. High surface heat flow values
>70 mWm−2 in Majorowicz et al., [18] and locally reaching up to 90 mWm−2 in Majorowicz
and Šafanda [26] are the regional feature characteristic for the Western and South-Western
Paleozoic Platform south-west of TESZ (see Figure 10a,b). This elevated Q and tempera-
tures at different depth levels mainly occurs between the Odra Fault to South-West and
the Variscan Deformation Front to the North-East (see this paper Figures 10b, 11, 12
and 13 in Szewczyk and Gientka [17], Figure 1 in Majorowicz and Wybraniec [22] and
Figure 2 in Majorowicz and Šafanda [26]). This pattern stands out in all the published Q
maps of the area of Central Europe despite the differences in absolute Q values described
before, mainly due to differences in thermal conductivity λ models applied and assumed
by various authors. These are estimated from composition of rock from the standard
set of geophysical well logs and assumed from tables averages of λ for the components
(Szewczyk and Gientka [17]) versus measured λ on cores (by Majorowicz and Plewa [14],
Majorowicz and Wybraniec [22]). This elevated Q zone (Figure 1b) continues to the North-
Eastern part of the German Basin, where average Q = 77 ± 3 mWm−2 and it reaches up to
91 mWm−2 for the 68–91 mWm−2 range (Norden et al. [49]. See also Figure 2 in
Cloetingh et al. [45].) In southern Poland, heat flow increases from the modest values in
the foreland zone of the Polish Carpathians (Wroblewska and Majorowicz [51]) to much
higher values in the internal Carpathians, with the highest values in the Pannonian basin
(Figure 10b), Simonova et al. [52,53]. High Q in the Miocene Pannonian basin (90 mWm−2

average) is locally >110 mWm−2 (Figure 10a). It was shown that locally heat flow can reach
above 400 mWm−2 in active areas of Larderello and Monte Amiata in Tuscany, Italy but the
background heat flow in the surrounding areas is quite normal and 70 mWm−2 according
to Bellani [54].

6. Discussion

The observed 20–30 mWm−2 difference between heat flow maps of Poland and Ger-
many is obvious from the compilation of the Szewczyk and Gientka [17] Q map and
German Q data by Szuman et al. [55]. I highlighted the unbelievable ‘jump’ in values
across the political Poland—Germany border in Figure 11 (this paper). There are several
arguments discussed below for the possible reason for this likely overestimate in (Szewczyk
and Gietka [17]) Polish data.

Heat flow maps of Poland (Figures 3–5) commonly show an increase in Q from
low Q Precambrian-Cadomian and Caledonian terranes (Figure 5) to higher by some
20–30 mWm−2 Q in the Variscan basement platform area. The Variscan orogen of Europe
characterized by the elevated Q was subjected to rifting and volcanism later. There, the
latest volcanic Cenozoic lavas were locally migrating from the asthenosphere between 30
and 18 Ma at the T = 1400 ◦C (asthenospheric basanite solidus), [16,56]). Three-dimensional
modelling [16] shows that it will explain only a relatively small (<4 mWm−2) increase of
the current Moho and surface heat flow. Glacial-interglacial extent variability [57] will not
explain variability in deep >2km heat flow values. We cannot exclude that the Moho heat
flow calculated in [16] and here (Figure 8), which indicates “warm” lithospheric mantle,
can be an artefact, resulting from underestimation of radiogenic heat generation in the
crust A as we do not consider the volume of rhyolites/granites related to the Permian
igneous province which is not known. Q in the Polish Carpathian foreland has low to
moderate values representing older basement units beneath thrust over-folded sedimentary
succession. It increases towards the inner Carpathians and Pannonian basin.
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Figure 11. Compilation of heat flow map across the Germany–Poland border (modified and redrafted, based on
Szuman et al., [55] data compilation from Global Heat Flow database for Germany data and heat flow for Poland from
Szewczyk and Gientka [17]). Dotted blue line ellipse highlights the sharp jump of Q values at the border of Poland and
Germany observed and highlighted here in this paper and this figure. The LGM red line shows the southern extent of the
last glacial maximum at about 20–24 ka BP [50]. Note: the highlighted heat flow ‘jump’ at the political border is highly
improbable.

The apparent jump in heat flow across the Polish–German political border (Figure 11)
is in contrast with continuity of heat flow patterns in the Polish–German Basin when
Majorowicz and Wybraniec [22]) heat flow data are used as shown in Figure 10b. This is
also in contrast with what is known already from temperature at depth levels patterns
ever since the Majorowicz [9]) temperature map at 1 km depth level for and Eastern
Germany (Schloser [58]) shown here in Figure 12 according to [9]. These and deeper level
temperatures (Figure 13a–c) are well withing the values suituable for geothermal energy
use [59]. Recent deep temperature maps of Germany (Agemar et al. 0 [59]) show that
the Northern German Basin has high temperatures >150 ◦C in parts of that basin at 4 km
depth (see their Figure 3). A smooth transition of temperature patterns at 1 km, 2 km, 3 km
depth levels (this paper Figures 12 and 13) is evident in the GPB basin with continuous
geological-lithological transition between the border between Poland and Germany. It is
apparent that it exists when temperature at depths of 1 km, 2 km and 3 km are compared
(Figure 13a–c) in all three maps. A smooth transition of temperature patterns at 1 km,
2 km, 3 km depth levels is evident in the GPB basin with continuous geological-lithological
transition between the border between Poland and Germany and it supports a smooth heat
flow transition as in Figure 10b for the Variscan area.

It is impossible to have such continuity of temperature patterns across the German–
Polish border and at the same area an obvious ‘jump’ in heat flow as shown in Figure 11
for the case of use of Szewczyk and Gientka [17]) heat flow data for Poland. There is
no geological evidence of that “jump” relating to the thermal conductivity ‘jump” to be
needed for such a heat flow contrast. It would not make geological sense.

The German Q data 60–90 mWm−2 range are at the level of heat flow values in the
basin east of the German Polish border as in recent Polish heat flow maps [18], also seen in
heat flow maps in Figures 10b and 6 in this work. They are not in the range of Szewczyk
and Gientka [17] heat flow map (Figure 4b) values 90–110 mWm−2 just east of the border
with Germany (Figure 10). The most recent study in Templin deep well just northwest
of the Polish-German border in the German basin shows Q = 58–69 mWm−2 for depth
intervals within 1400–1600 m [33]. This depth is below the major influence of paleoclimatic
forcing due to glacial/interglacial history, [13,22,33].
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Figure 12. First temperature at 1 km map based Polish and Eastern Germany data redrafted and modified from Majorowicz
1973a, [9].

Figure 13. Compilation of temperature at depth (a) 1 km, (b) 2 km and (c) 3 km depth maps.

The difference of some 20–30 mWm−2 existing between the Q map of Poland exposed
in this paper is not to be ignored. We need an explanation for such differences.

Heat flow continuity between German and Polish basins is observed from the Q
maps of Europe by Majorowicz and Wybraniec [22]) and in Central Europe (Majorowicz
et al. [18] and Figure 10b). Such continuity is not the case for the Q map compiled by
Szuman et al. [55] for which the Szewczyk and Gientka [17] heat flow map was used.

We suspect, and more evidence is due from further research, that the differences in
Q observed and described above are mainly due to differences in thermal conductivity
models used for Q calculations. These are those estimated from well logs and world
averages of rock thermal conductivities (Szewczyk and Gientka [17]) versus measured on
cores. Significant differences exist between many historical heat flow maps of Poland over
the 1970s, 1980s and recent 21st-century general patterns as to the above causes.

Q maps for which λ was a lab measure used by Karwasiecka and Bruszewska [12],
(Figure 4a) and Majorowicz and Wybraniec [22], (Figures 5, 9 and 10b) show differences
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with the Q map for which geophysical well log-based λ estimates were used (Szewczyk
and Gientka, [17] and Figure 4b). The latter are using mineralogical component of rocks
and their porosity with table-based world averages of thermal conductivity λ of these
components like in Table 4.3 in Barker [60]; Griffiths and Brereton [61]. Such a difference
is apparent when comparing mean measured thermal conductivity for deep Polish basin
sediments on cores. We have mean λ = 2.3 ± 0.4 Wm−1K−1 for Polish basin wells listed
by Majorowicz and Plewa [14] (their Tables 1–3) versus a well logs mean of λ = 2.85 ±
1 Wm−1K−1 estimated from geophysical data in Szewczyk and Gientka [1], their Figure 5c.
Such a difference in λ will easily explains difference in Q as high as 20 mWm−2 between
Q maps from the two methods used. In western Poland grad T(z) = 35 mKm−1. In such
a case, for λ1 = 2.3 ± 0.4 Wm−1K−1 Q1 = 80 mWm−2 and for λ2 = 2.85 ± 1 Wm−1K−1 Q2
= 100 mWm−2; 20 mWm−2. The suspected reason for this difference is poor calibration
of well-log-based λ estimates data due to poorly assumed literature tables of average l
components of rocks. These usually change in a large range (Blackwell and Steele [62];
Blackwell and Richards [63] and Fuchs [48]). Such models work but need to be properly
validated by TC laboratory data.

A large part of sedimentary clastics in the GPB are shales or sedimentary rocks with
large shale content. λ = 1.4 Wm−1K−1 assumed by Szewczyk and Gientka [17] is some
0.3 Wm−1K−1 higher than some of the measured cores as evident from their Figure 5a,b.
Thermal conductivity of shales or shaly sedimentary rocks analyzed by in situ experiments
in deep wells for which precise in situ measurements combined with lab measurements
compared by SMU David Blackwell lab [62–64] show that λ for shales can be closer to
1 W m−1K−1, e.g., which is some 0.4 Wm−1K−1 less than assumed in [17] for their well log
derived component of sediments. While Blackwell and Steele [62–64] data are on shales
from American basins, these may shed some light on overestimation of those assumed
from world data-based tables. In fact, Polish data analysis shows that in numerous cases
estimates of thermal conductivity from poorly calibrated well logs in [17] are higher than
measured conductivity values on rocks for the same well examples [51].

It is apparent from our modelling (Figure 8), that the assumption of the high
Q = 100 mWm−2 as a typical value for the western Poland after Szewczyk and Gien-
tka [17]), (also in Szuman et al. [55]) versus lower Q = 70–80 mWm−2 after Majorowicz
and Wybraniec and Majorowicz and Šafanda [22,26] would result in different Q at Moho,
55 mWm−2 vs. 35 mWm−2, respectively. Such high Moho heat flow of 55 mWm−2 does
not fit a general worldwide study and fits much younger tectonically active areas [37].
Some 40–50% of Q is from radiogenic heat in the crust and 50–60% comes from deeper
sources in continental settings. Pollack and Chapman [37], Artemieva, [39] and Artemieva
and Mooney [20]. Epelbaum et al. [41] suggest mantle heat flow is in the order of 15–84%
of total.

The difference in surface heat flow between 80 and 100 mWm−2 also results in a calcu-
lated difference in the thermal LAB depth by some 42 km (Majorowicz et al. [18]). Values of
mantle heat flow Q = 55 mWm−2 would be based on higher surface
Q = 100 mWm−2 are “extremely” improbable (see Čermak, 1993, [34]; Majorowicz et al. [18])
and fit a much younger thin lithosphere like the Pannonian basin and not an old Variscan
platform in south-western/western Poland. Puziewicz et al. [16]) who modelled input
from Cenozoic alkaline volcanism at approximately 30–18 Ma in the South-western Pol-
ish platform showed that QM is in some 28–36 mWm−2 range which agrees with our
QM = 26–38 mWm−2 range (see Figure 8). It locally may have been increased due to
localized alkaline volcanic rock. It increased slightly the presently observed Q0 and QM
by approximately 4 mWm−2 only. We see much lower LAB depth (56 km) assuming
Q = 100 mWm−2 for SW Poland from Figure 4b than assuming Q = 80 mWm−2 as
in Figure 5 for the same site (LAB depth = 98 km). The depth of LAB = 98 km based
on lower by 20 Q value is close, within 10 km, to the seismologically determined LAB
(Wilde-Piórko et al. [65]). Recent mapping of LAB depth from several seismological and
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thermal data shows that depth 90–100 km is typical for much larger areas of southwestern
Poland [18] and agrees with seismological LAB determinations.

7. Conclusions

Analysis of the difference between heat flow maps shown in this paper by several
historical works leads to the conclusion that heat flow calculated from poorly calibrated
thermal conductivity models from well logs [17]) and used in [55] for Poland are likely
overestimates. Heat flow values as shown for the Variscan basement of Western Poland
of some 100 mWm−2 and more in [17] are equal or higher than heat flow in the much
younger tectonic areas in Europe like the internal Carpathians in the extensional zone of the
Pannonian basin (Figures 9 and 10b). Heat flow in the Pannonian basin is 90–100 mWm−2

and locally reaches >110 mWm−2 (Figure 10b). There are evident geological and tectonic
differences in the area between the young inner Carpathians [52,53]) and old Variscan
basement Paleozoic Platform in Poland [16]. These tectonic and structural differences make
it quite improbable for the heat flow to be the same between old Paleozoic Platform in
southwestern Poland and the young Pannonian basin in Hungary [52,53].

The overestimated heat flow values in old platforms of Poland [17] need to be rejected
in deep geothermal energy prospect analysis. The overestimated heat flow [17] will lead
to overestimation of thermal conditions of deep basin below temperature log data in the
zones where there is no deep well’s control on in situ temperature. These are of interest for
the future deep EGS geothermal electrical power prospects in deep Polish basins.
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Europe; Čermak, V., Rybach, L., Eds.; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1979; pp. 240–252.

15. Plewa, S. Rozkład Parametrów Geotermalnych na Obszarze Polski; Wydawnictwo CPPGSMiE PAN: Kraków, Poland, 1998; 138p.
16. Puziewicz, J.; Czechowski, L.; Grad, M.; Majorowicz, J.; Pietranik, A.; Šafanda, J. Crustal lithology vs. thermal state and Moho

heat flow across the NE part of the European Variscan orogen: A case study from SW Poland. Acta Diabetol. 2019, 108, 673–692.
[CrossRef]

17. Szewczyk, J.; Gientka, D. Terrestrial heat flow density in Poland—A new approach. Geol. Q. 2009, 53, 125–140.
18. Majorowicz, J.; Polkowski, M.; Grad, M. Thermal properties of the crust and the lithosphere–asthenosphere boundary in the area

of Poland from the heat flow variability and seismic data. Int. J. Earth Sci. 2019, 108, 649–672. [CrossRef]
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