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Abstract: Improving the efficiency of renewable energy and electricity utilization is an urgent problem
for China under the objectives of carbon peaking and carbon neutralization. This paper proposes
an optimization scheduling method of electric vehicles (EV) combined with wind and photovoltaic
power based on the Frank-Copula-GlueCVaR. First, a joint output model based on copula theory
was built to describe the correlation between wind and photovoltaic power output. Second, the
Frank-Copula-GlueCVaR index was introduced in a novel way. Operators can now predetermine
the future wind-photovoltaic joint output range based on this index and according to their risk
preferences. Third, an optimal scheduling model aimed at reducing the group charging cost of
EVs was proposed, thereby encouraging EV owners to participate in the demand response. Fourth,
this paper: proposes the application of a Variant Roth–Serve algorithm; regards the EV group as a
multi-intelligent group; and finds the Pareto optimal strategy of the EV group through continuous
learning. Finally, case study results are shown to effectively absorb more renewable energy, reduce
the consumption cost of the EV group, and suppress the load fluctuation of the whole EV group,
which has a practical significance and theoretical value.

Keywords: renewable energy; carbon neutralization; wind-photovoltaic; demand response;
Frank-Copula-GlueCVaR

1. Introduction

Wind and photovoltaic power each play an important role in carbon neutralization.
However, due to their intermittent and unstable characteristics, the expansion of wind and
solar energies will jeopardize the stability of the power grid. On the demand side, electric
vehicles (EVs) can serve both as energy consumers and energy storages [1]. Scientific
charging and discharging scheduling of EVs can save charging costs for EV owners and
mitigate the impact of uncoordinated EV charging on the distribution network. Therefore,
the optimization of EV charging and discharging scheduling, considering the application
of wind power and photovoltaics, has the potential to benefit both grid security and EV
owners’ benefits. Therefore, accurate prediction of wind power, photovoltaic power, and
the charging/discharging load of EVs is a contemporary research hot spot [2–7].

Many scholars have studied the impact of the combination of renewable energy
and other distributed energy sources on modern power systems [8–10]. Zhang et al.
have considered the uncertainties of wind power and photovoltaic power in a short-
term optimal operation and have proposed a wind-solar-hydro hybrid system optimal
scheduling model [11]. Han and Valizadeh have used the copula theory to apprehend
the correlation of wind and photovoltaic energy output [12,13]. The binary normal and
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Archimedes copulas were applied, respectively. This paper proposes that the Frank copula
is more suitable to predict wind power and photovoltaic output.

At the same time, uncoordinated EV charging patterns may lead to undesirable effects
in power systems, such as higher peak loads and lower valley loads. Therefore, B Aluisio
et al. [14–18] studied the optimization scheduling problem when EVs were connected to the
grid. F Mwasilu et al. [19] comprehensively review and evaluate research on the interaction
between EVs and smart grids, depicting future power system models with EV integration.
Zhang K et al. [20] have proposed a decentralized valley-filling charging strategy, with the
effectiveness of the model verified in a typical scene simulation in Beijing, China. With
the increasing complexity of EV scheduling, there have been numerous attempts in the
research to adopt model-free reinforcement learning (RL) methods. RL methods have good
generalization and applicability to systems with unknown dynamics or that are affected
by significant uncertainties. Sadeghianpourhamami N et al. [21–26] have also applied RL
algorithms to the optimal scheduling of EVs. This paper applies the Variant Roth–Erev (RE)
reinforcement learning algorithm. Compared to the RL algorithm applied in the previous
paper, the Variant RE algorithm is simple in theory, more suitable for the actual situation,
and has a shorter calculation time, thus can be used for day-ahead optimization scheduling.

In addition, because there are many factors that affect the charging/discharging power
of EVs, various factors should be included in the optimal scheduling of the power system
with EV integration. C.L. Guo et al. [27] have proposed an analysis model to analyze
the overall value of EVs, an analysis model to evaluate the pollution reduction degree of
photovoltaic power generation, and a model to transfer the inherent savings of wind power
to off-peak charging loads without considering the optimal scheduling of charging and
discharging of EVs. When Bin Zhang et al. [28] used reinforcement learning to optimize
the scheduling of EV charge and discharge, the cost of the system operator was considered,
but the interests of EV owners were not considered. Therefore, it is difficult to schedule EV
owners to participate in the scheduling.

This paper applied a reinforcement learning algorithm and considered the interests of
EV owners to build an EV charge and discharge optimization scheduling model with wind
power and photovoltaic combined contribution.

The contributions of this paper may be summarized as follows:

(1) The Variant GlueCVaR risk measurement tool is proposed. The advantages of the
Variant GlueCVaR are the ability to measure the risk or benefit of two related variables,
the replacement of the defective VaR term in the original GlueVaR, and the ability to
be effectively applied to the multivariate state.

(2) The Frank copula function is applied to model the correlation of wind power and
photovoltaic output, thus proposing the Frank-Copula-GlueCVaR index. The index
can select the output value according to the risk preferences of decision makers, and
can meet the different risk preferences of aggregators in different operation centers.

(3) The Variant Roth-Erve algorithm is used to optimize the scheduling of EVs. Compared
with the original Roth-Erve algorithm, the Variant Roth–Serve algorithm can further
contribute to non-positive revenue, which is more suitable for the research of swarm
optimization scheduling of EVs.

The remainder of the paper is organized as follows: Section 2 introduces basic theories
and output models of the optimal scheduling; Section 3 describes in detail the mathematical
models of each part of the system, as well as the influencing factors of the model, the
optimization subjective, and their constraints; in Section 4, the application of Variant Roth–
Erev reinforcement learning to the optimization of EVs is presented; Section 5 conducts an
in-depth analysis and discussion on the simulation results, including sensitivity analysis,
comparative analysis, scenario analysis, and carbon tax policy analysis; finally, Section 6
offers conclusions. As shown in Figure 1.

The case study presented in this paper demonstrates that the proposed index may be
more effectively applied to aggregators with different preferences and that the effectiveness
of the proposed algorithm is concurrently verified.
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Figure 1. The basic structure of the regional energy management model.

2. The Output Model of Optimal Scheduling
2.1. Related Basic Theories
2.1.1. Copula Theory

In this paper, the copula theory is used to model the correlation between wind and
photovoltaic output. The copula is derived from Sklar’s theorem, which was proposed by
Sklar in 1959. Sklar’s theorem is defined as follows [29]:

Let H be the joint distribution function of the random variable (X1, X2, . . . , Xd), and
F1, F2, . . . , Fd is the edge cumulative distribution function. There is a copula function
C(•) that:

H(x1, x2, . . . xd) = C(F1(x1), F2(x2), . . . , Fd(xd)) (1)

The copula function can be obtained by using the inverse function of the joint distri-
bution function and marginal distribution.

C(u1, u2, . . . un) = F(F−1
1 (u1), F−1

2 (u2), . . . , F−1
n (un)) (2)

As stated by Sklar’s theorem, any multivariate joint distribution can be written in
terms of N univariate marginal distribution functions and a copula function. Therefore,
the joint distribution modeling can be carried out from two aspects: edge distribution
modeling and correlation structure modeling, so as to separate the correlation information
and use the copula function for in-depth study.
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2.1.2. Variant GlueCVaR Theory

The value at risk (VaR) and condition value at risk (CVaR) are used as measures to
assess risks and calculate returns. VaR at level α is the α− quantile of a random VaRiable X
(which is called loss or benefit).

VaRα(X) = inf{x|FX(x) ≥ α} (3)

where FX(·) is the cumulative distribution function of X, and 0 ≤ α ≤ 1 is the confidence
level. However, VaR is not a coherent risk measure. In view of this problem, scholars have
proposed the condition value at risk (CVaR) shown in Equation (4).

CVaRα(X) =
1

1− α

∫ 1

α
VaRκ(X)dκ (4)

CVaR is the mathematical expectation beyond VaR. CVaR can satisfy the nature of the
risk consistency measurement. Meanwhile, CVaR can quantify the risk potential beyond
VaR. Therefore, it has better control of tail risk.

Jaume et al. [30] proposed the GlueVaR theory in 2013, with risk as a measure of
multiple risk preferences.

GlueVaR(X) = ω1CVaRβ(X) + ω2CVaRα(X) + ω3VaRα(X) (5)

ω1 + ω2 + ω3 = 1 (6)
where α and β are the confidence levels that satisfy 0 ≤ α < β ≤ 1.

However, the GlueVaR shown in Equation (5) has two defects. First, GlueVaR only
applies to one random variable, X, and thus cannot satisfy the case of multivariables.
Second, terms in GlueVaR have VaR, but VaR is not a coherent risk measure. Aiming at
these two problems, this paper proposes a new risk measurement tool defined as follows:

Definition 1. (Variant GlueCVaR) For two correlated random variables X and Y, the following
equation can be obtained:

GlueCVaR(X) = ω1CVaRα(G(X, Y)) + ω2CVaRα(X) + ω3CVaRα(Y) (7)

ω1 + ω2 + ω3 = 1 (8)
where G(X, Y) means the joint random variable of X and Y. α is the confidence level that satisfies
0 ≤ α ≤ 1.

2.2. Related Basic Theories

The joint distribution function in GlueCVaR should be characterized according to the
historical data of wind and photovoltaic power in a certain area. The joint distribution
of wind and photovoltaic power output can be characterized by correlation structure
modeling and marginal distribution modeling.

The copula function is an efficient tool for describing the correlations between two
variables. Different types of copula functions have different accuracy in describing tail
correlations, so appropriate copula functions should be selected for describing different
application scenarios. Among the commonly applied copula functions, Frank copula is fat-
tailed. Moreover, the Frank copula can characterize the positive and negative correlations.
These characteristics render the Frank copula appropriate to characterize the correlation
between wind and photovoltaic power outputs.

The Frank copula belongs to Archimedean copulas, of which the copula distribution
function can be generated by a generator. The Frank copula generator is
ϕ(t) = − ln(e−θt − 1)/(e−θt − 1), θ ∈ (−∞,+∞)\{0}. The corresponding copula dis-
tribution function is:

c(u1, u2) = −
1
θ

log(1 +
(e−θu1 − 1)(e−θu2 − 1)

e−θ − 1
) (9)

where θ is the relevant parameter, and u1, u2 are the variables.
In this paper, the marginal distribution is obtained by a kernel density estimation based

on historical data. Marginal distribution modeling and correlation modeling constitute the
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joint distribution of wind and photovoltaic power output. The specific steps are introduced
as follows and are intuitively shown in Figure 2.
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Figure 2. Wind–photovoltaic combined output prediction based on Frank-Copula-GlueCVaR.

(1) Obtain marginal distribution of wind and photovoltaic power outputs. Based
on n days of historical wind and photovoltaic output data (sampling period is 1 h), the
probability density of wind and photovoltaic output within each hour is established by
using the following kernel density estimation method:

fh,t(u1(t)) =
1

nh

n

∑
d=1

K(
u1(t)−U1(d, t)

h
) (10)

fh,t(u2(t)) =
1

nh

n

∑
d=1

K(
u2(t)−U2(d, t)

h
) (11)

where h is window width, and U1(d, t), U2(d, t) are, respectively, the wind power output
and photovoltaic output at time t on the n h day. K(•) is the kernel function.

(2) Obtain correlated power output of wind and photovoltaic. According to the Frank
copula function, the joint probability density function of wind and photovoltaic output is
specifically expressed as follows:

f (u1, u2) =
−θ(e−θ − 1)e−θ(u1+u2) f (u1) f (u2)

[(e−θ − 1) + (e−θu1 − 1)(e−θu2 − 1)]2
(12)

According to the joint probability density function of the wind and photovoltaic power
output, sample through Latin hypercube sampling technology. The wind and photovoltaic
power output in each hour can be obtained by an inverse transformation method.

(4) N groups of scenarios of wind power and photovoltaic power output are selected,
and the occurrence probability of the corresponding scenario γ is p(γ).

(5) The Frank-Copula-GlueCVaR of wind and photovoltaic power output is established
as follows:

GlueCVaRα = ω1CVaRα + ω2CVaRα,wp + ω3CVaRα,pv (13)

CVaRα = min

{
β0 +

1
1− α

N

∑
γ=1

pγ,o · p(γ)
}

(14)
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CVaRα,wp = min

{
βwp +

1
1− α

N

∑
γ=1

pγ,wp · p(γ)
}

(15)

CVaRα,pv = min

{
βpv +

1
1− α

N

∑
γ=1

pγ,pv · p(γ)
}

(16)

ω1 + ω2 + ω3 = 1 (17)

Equations (14)–(16) represent the CVaR of the correlated wind-photovoltaic power
output, the CVaR of wind power, and the CVaR of photovoltaic power output at confidence
level α, respectively. pγ,0, pγ,wp, and pγ,pv are the power outputs of correlated wind and
photovoltaic, wind power output, and photovoltaic output under scenario γ, respectively.
p(γ) is the probability of scenario γ. GlueCVaRα means that the probability of the com-
bined output of wind power is 1− α, not less than GlueCVaRα. That is, as long as the
probability is within the risk acceptance range of decision makers, the wind power output
can be considered as GlueCVaRα.

3. Modeling
3.1. Pricing Mechanism of EV Charging

In this paper, an aggregator in an operation center develops a real-time charging/
discharging pricing mechanism for EVs. In this pricing mechanism, the price of electric-
ity fluctuates according to load fluctuations, and the electricity price is a rising convex
function of the total load [31–33]. In the proposed model, the combined output of wind-
photovoltaic is taken into account, so that the function of determining electricity price
is changed in response, and the relationship between electricity price and total load is
shown in Equation (18). When the total load is lower than the given load value L0, the
charge/discharge price of EVs will be charged according to the standard price ρ0, as shown
in Equation (19).

ρ(t) =
{

ρ(L(t))
ρ0

,
,

L(t) ≥ L0
L(t) < L0

(18)

ρ0 = ρ(L0) (19)

L(t) =
Nl

∑
i=1

PEV(l, t) + Pbase(t)− GlueCVaRα(t) (20)

In this paper, the total load is shown in (20). PEV(l, t) is the load of the l-th EV at
time t; When PEV(l, t) is positive, the EV is charging; when PEV(l, t) is negative, the EV is
discharging; when PEV(l, t) is zero, the EV is not charging or discharging. Pbase(t) is the
regional base load at time t, which may include residential power consumption, commercial
power consumption, and industrial power consumption, with different scopes according
to different selected areas.

3.2. Objective Function

When an EV charges, it will receive information from the aggregator’s operation
center. The information includes the following:

V =
{

SOCin, SOCend, tin, tout, Etype
}

(21)

Etype =
{

EQ, PC, PD, ηC, ηD
}

(22)

where SOCin and SOCend represent the state of charge (SOC) of an EV when it connects to
the grid and the SOC it must reach when it is disconnected, respectively. tin and tout are
the times an EV starts and finishes charging, respectively. Etype is the type of an EV. Etype
includes the EV charging and discharging power (PC, PD), EV charging and discharging
efficiency (ηC, ηD), and EV battery capacity (EQ).

The purpose of this study is to minimize the charging cost of EVs, considering the
combined contribution of wind power and photovoltaic power, so as to stimulate the active
participation of EV owners in the demand response.
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Therefore, the objective function of the model is set as the minimum charging cost of
all EVs, as shown in Equation (23).

minC =
Nl

∑
l=1

Cl (23)

minCl =
tout(l)

∑
t=tin(l)

(PEV(l, t)ρ(t) · ∆t + aloss|PEV(l, t)|2 + bloss|PEV(l, t)|+closs) (24)

PEV(l, t) =
1
2
· (I0(l, t)(PC(l)ηC(l)− PD(l)ηD(l)) + I0(l, t)2(PC(l)ηC(l) + PD(l)ηD(l))) (25)

I0(l, t)= {−1 , 0, 1} (26)

where Cl is the charging cost of EV l, and aloss, bloss, and closs are the charging and discharg-
ing loss coefficients of an EV. I0(l, t) is the charging strategy of EV l at time t.

3.3. Constraints

EV charging and discharging need to meet the following constraints to satisfy the
traveling requirements of EV owners so that EV owners are willing to participate in the
demand response:

SOCin(l) +
tout(l)

∑
t=tin(l)

PEV(l, t)∆t/EQ ≥ SOCend(l) (27)

0 ≤ SOC(l, t) ≤ 1 (28)

Equation (27) ensures that the SOC of an EV reaches the expected value when the EV
drives away and that it does not affect the travel of EV owners. Equation (28) ensures that
the SOC of each EV at any moment shall not be lower than the minimum value 0 or greater
than the maximum value 1.

4. Optimal Scheduling of Electric Vehicles Based on Variant Roth–Erev
Reinforcement Learning

As can be seen from Equation (24) in Section 3, the solution of the model is complex.
Moreover, this is only for one EV. When the cost of all EVs is the lowest, the difficulty
in solving the problem will be further increased. Therefore, this paper proposes the
application of reinforcement learning to solve this problem.

In this paper, each EV is regarded as an agent, and the optimal scheduling of the EV
group in the region can be regarded as a multi-agent system. Traditional optimization
models cannot deal with a situation where multiple agents are simultaneously involved.
The Roth–Erev (RE) algorithm provides a solution to this problem. Compared with the RE
algorithm, the variant Roth–Erev (VAR) algorithm can handle cases where the net income
is zero and the tendency value is negative. Moreover, a VRE algorithm can solve the
problem of optimal scheduling of multi-agents. Therefore, this paper uses a VRE algorithm
to optimize the charging and discharging scheduling of EVs.

The variables in the iteration process of the VRE algorithm are shown as follows:

{al(d), ql(d), pl(d), πl(d)}, al(d) ∈ Sl (29)

where d is number of iterations. al is the action taken by agent l in the d-th iteration,
which comes from the action set Sl . Sl contains all possible actions of agent l. ql(d) is the
propensity value of agent l in d-th iteration, which is called the Q value. The Q value is
used to calculate the action probability value pl(d). πl(d) is the benefit from each action, as
defined by Equation (30):

πl(·) = Cs(l)− Cl(·) (30)

Cs(l) ≥ Cl(·), l = 1, 2, . . . , Nl (31)
where Cs(l) shown in Equation (31) is set as general standard cost, which increases as
the cost of EVs decreases. Cs(l) is the incentive for EV owners to participate in demand
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response strategy; the charge/discharge cost of EV l not participating in demand response
can be used as the standard value. In addition, times of iteration, or the convergence
threshold, can be set as the condition to terminate the learning process.

The VRE algorithm continuously updates ql(d) and pl(d) values in the iteration. In
the iteration process, the probability of an action to bring more benefits will be more likely
to be selected. Therefore, the optimization of each agent in a specific environment can
be achieved.

Updates of ql(d) and pl(d) values are, respectively, calculated by Equations (32) and (33):

ql(d + 1) =

{
(1− r)ql(d) + (1− ep) · πl(d) , al(d + 1) = al(d)

(1− r)ql(d) +
ql(d)
N−1 · ep , al(d + 1) 6= al(d)

(32)

pl(d + 1) = exp(
ql(d + 1)

CP
)/(

N

∑
i=1

qi(d + 1)
CP

) (33)

where r is the forgetting parameter, which means that the agent is more inclined to be
affected by the recent actions in the learning process, while the influence of the longer
actions on the next step is gradually weakened. ep is an experimental parameter. A
conservative agent chooses a smaller ep value, which means that it is less inclined to choose
a new action. An agent with a risk preference has a higher ep value, indicating a greater
tendency to choose unexplored new actions.

CP is the Boltzmann cooling parameter. Equation (33) demonstrates that this parame-
ter directly affects the relationship between the propensity value ql(d) and the probability
value pl(d). The selection of the CP value is one of the key points of the study. The appro-
priate CP value can quickly learn the optimal decision, while the inappropriate CP value
may lead to the failure of the learning algorithm.

Figure 3 shows a flowchart for the EV scheduling method. First, the combined
wind-photovoltaic output value is determined through the Frank-Copula-GlueCVaR index.
Then, in the background of the combined contribution of wind-photovoltaic power, and
considering the base load within the region, the grid connection optimization scheduling
problem of EVs is studied. Finally, because the solution to this problem is too complex,
this paper proposes applying a VRE reinforcement learning algorithm to learn the Pareto
optimal strategy of group charging and discharging of EVs.
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5. Case Study
5.1. Data Analysis

This paper collects the sales of EVs in Beijing from January to May 2020. The top four
best-selling EV models were selected, as in the case analysis. Their battery parameters and
market share are shown in Figure 4 and Table 1, respectively.

Energies 2021, 14, x FOR PEER REVIEW 11 of 16 
 

 

5. Case Study 

5.1. Data Analysis 

This paper collects the sales of EVs in Beijing from January to May 2020. The top four 

best-selling EV models were selected, as in the case analysis. Their battery parameters 

and market share are shown in Figure 4 and Table 1, respectively. 

Table 1. The type of EV. 

Name The Sales Ratio Battery Capacity ( kw h ) Charge/Discharge Power ( kw ) 

HG MINI 49% 13.9 1.6 

T 3 26% 55 5.5 

T Y 13% 77 7.7 

Han EV 12% 76.9 9.6 

 
Figure 4. The sales ratio of EV. 

As shown in Figure 4 and Table 1, the HongGuang Mini is currently the top-selling 

EV sold in Beijing. While its battery capacity is not high, its advantage lies in the small 

model, which is convenient for shuttles within cities. Tesla model 3 and Tesla model Y, as 

veteran brands in the EV industry, are relatively ahead in sales. BYD’s Han range of EV 

was close behind. 

The daily driving habits of EVs are randomly generated based on data from [34,35] 

the Department of Transportation in 2001. The data have reference value and accords 

with the general habit of urban residents. 

The Frank copula is used to predict the PV output of wind power, and the predicted 

values in different scenarios are given. Aggregators are equivalent to fund managers in 

the financial field. According to their risk preferences, aggregators give predicted values 

a risk confidence degree. Different risk confidence degrees determine different GlueCVaR 

index values, as is shown in Figure 5. 

Figure 4. The sales ratio of EV.

Table 1. The type of EV.

Name The Sales Ratio Battery Capacity (kw×h) Charge/Discharge Power (kw)

HG MINI 49% 13.9 1.6
T 3 26% 55 5.5
T Y 13% 77 7.7

Han EV 12% 76.9 9.6

As shown in Figure 4 and Table 1, the HongGuang Mini is currently the top-selling
EV sold in Beijing. While its battery capacity is not high, its advantage lies in the small
model, which is convenient for shuttles within cities. Tesla model 3 and Tesla model Y, as
veteran brands in the EV industry, are relatively ahead in sales. BYD’s Han range of EV
was close behind.

The daily driving habits of EVs are randomly generated based on data from [34,35]
the Department of Transportation in 2001. The data have reference value and accords with
the general habit of urban residents.

The Frank copula is used to predict the PV output of wind power, and the predicted
values in different scenarios are given. Aggregators are equivalent to fund managers in the
financial field. According to their risk preferences, aggregators give predicted values a risk
confidence degree. Different risk confidence degrees determine different GlueCVaR index
values, as is shown in Figure 5.

The 24 h data distribution of the GlueCVaR is shown in Figure 5. As is shown in
Figure 5, for a GlueCVaR with six different confidence degrees, the lower is the confidence
degree, the higher the value of the GlueCVaR; at the same time, the security is also lower.
The manager can choose the right degree of confidence according to their risk preferences.
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5.2. Case Result Analysis

In the case result analysis, the GlueCVaR with a confidence of 90% was selected as
the predicted value of scenic output. This means that there is a 90% probability that the
combined landscape output is not less than the GlueCVaR value. As is shown in Figure 6,
it is the output force of wind power output and combined output. The GlueCVaR is the
actual joint output for reference on the second day, while the green marked is the CVaR
value of joint output when the confidence is 90%. Although it has a certain reference value,
it is still not as safe as the GlueCVaR value.
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As is shown in Figure 7, the charging and discharging costs of EVs optimized by
the variant RE algorithms for scheduling proposed in this paper are compared with the
charging costs of EVs participating in disordered charging. The point where a negative
value appears is the actual income earned by the EV by participating in the optimization
scheduling model. As is shown in Table 2, the optimal scheduling model can save an
average of 80% of the cost of each vehicle owner.
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Table 2. Cost comparison.

Classification Disorder Cost (Yuan) VRE Cost (Yuan) Savings Rate (%)

Total cost 774.0504796 150.636386 0.805392038
Average cost 7.740504796 1.50636386 0.805392038

It can be intuitively derived from Figure 8 that the optimized scheduling proposed
in this paper can smooth the impact of group grid connection of EVs on the distribution
network. Table 3 presents the load variance and standard deviation based on VRE opti-
mization and the load variance and standard deviation of disordered charging, respectively.
As is shown in the table, the flat rate of the load exceeds 50%.

Table 3. Load comparison.

Classification VRE Load (kwh) Disorder Load (kwh) Flat Rate (%)

variance 31.73568 90.1875 0.648114
Standard deviation 5.633443 9.49671 0.406801
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6. Conclusions

China has put forward a dual carbon target that is achieved by improving the utiliza-
tion of renewable energy, increasing the use of electricity, and reducing greenhouse gas
emissions. Renewable energy has intermittency, uncertainty, and other characteristics that
endanger the safety and stability of the power grid. Therefore, the prediction of renewable
energy output is key to improving the utilization rate of renewable energy.

In this paper, Frank-Copula-GlueCVaR values are proposed to determine the com-
bined output of wind power and photovoltaic power. Decision makers choose different
confidence degrees according to their own risk preferences and select corresponding
Frank-Copula-GlueCVaR values. Under the background of wind power and photovoltaic
combined grid connection, aggregators encourage EVs to participate in optimal scheduling
by changing the electricity price so to reduce the impact of group charging and discharging
of EVs on the grid. This paper proposes an optimal charging and discharging scheduling
model for price EVs based on reinforcement learning variant RE algorithms. According to
the case analysis, the cost of EVs is reduced by 80% through the optimization scheduling
model proposed in this paper, while the variance and standard deviation of the load are
reduced by 64% and 40%, respectively.

The case analysis proposed in this paper is limited by the small number of electric
cars and tries not to bring down the demand side load fluctuations. In the future, com-
putational speed, increased EV use, and an increase in the number and the improvement
of the algorithms will allow for a more optimal dispatch of EV charging and discharging
concentration calculation, including to a broader range of scheduling to damp demand
side load fluctuations.

Unfortunately, this article does not compare other algorithms. In future studies,
the proposed method and the improved particle swarm optimization (PSO) algorithm,
column constraints generation algorithm, and other reinforcement learning algorithms will
compare and analyze so to work out the most applicable and WP–PV–EV joint optimization
scheduling algorithm.
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