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Abstract: The efficiency issue of energy systems in the oil and gas industry is a crucial factor
nowadays. Energy share in the production costs of oil and gas can reach 50%. Among the most
important energy equipment are the electric drives of the pumps, compressors, auxiliary units, etc.
The paper considered the lifecycle of the electric drives used at oil and gas fields and evaluated
their efficiency parameters during periods of operational wear or malfunctioning. At the same time,
the lifecycle of the energy equipment was seen as its technical state during operation. Based on
the spectral analysis of the current using the finite Fourier transform (FFT), the main frequency
components were identified that characterize the type and level of malfunction, taking into account
defined efficiency indicators of the electric drive. A technique for assessing the technical state of
an electric drive was proposed based on the normalized levels of the amplitudes of the frequency
components. Predictive management of the electric drive was implemented in terms of correcting the
control system when a malfunction occurs, providing the required efficiency indicators. Boundaries
for the technical state of the electric drive were determined. Recommendations for further operation,
terms of maintenance and repair or preventive management were presented.

Keywords: electric drive; spectral analysis of current; harmonic distortion coefficient; pulsation
coefficient of electromagnetic moment; technical state boundaries; predictive control algorithms

1. Introduction

Prospects for the development of enterprises in the fuel, energy and mineral resources
industries in the context of growing economic, environmental and technical requirements
are associated with an increase in the efficiency of electromechanical equipment. Such
devices, including electric motors and electric drives (ED), account for up to 85% [1–3]
of electricity consumption and are the main production unit in automated and robotic
systems.

Solution to the issues of increasing the energy efficiency of oil and gas production is
directly related to the use and improvement of a variable electric drive. Nowadays it is
implemented to a greater extent based on an asynchronous motor (AM) with a squirrel
cage rotor. Its widespread use in electric drives is due to its simplicity of design and low
cost. At the same time, the problems of large starting current, relatively low power factor
and reactive power consumption from the network are solved by using power frequency
converters, in particular, converters with an active rectifier [4,5]. Despite this, various
effects (thermal, electrical, mechanical, environmental, etc.) on the electric drive lead to
wear and tear during its operation. Unregulated operating modes, frequent overloads,
switching and natural degradation processes create malfunctions. They lead to a decrease
in the electric drive’s life cycle, energy efficiency indicators (power loss, efficiency of AM
and electric drive) and mechanical characteristics (efficiency of the executive body (EB),
speed and torque on the shaft). Untimely detection of defects at the stage of their origin
and development without preemptive action leads to their active growth and impact on
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the associated units of electromechanical equipment with subsequent economic damage to
the enterprise [6,7].

Therefore, issues of assessing the current state of the electrical equipment used, timely
diagnosis of emergency and pre-emergency modes of its operation and assessment of
the residual resource are of particular importance. Despite the fact that enterprises are
transitioning to predicting the state of their assets within the framework of digital transfor-
mation, complexity and high cost of using damage detection and control systems for each
piece of equipment does not allow enterprises to abandon the existing system of scheduled
repairs [8,9]. This system involves decommissioning electrical equipment and replacing
components with new parts at fixed intervals. However, this approach does not take into
account the real load of the equipment and its real technical condition. Thus, downtime
and even replacement of equipment that has not yet worked out its resource are possible.
At the same time, the probability of sudden failures remains if the equipment develops its
resource earlier than planned. Nevertheless, the economic effect of repair work often turns
out to be unreasonably low.

Repair and maintenance cost of electrical equipment is a significant part of the total
operating costs for enterprises, especially in the mineral resources industry [10,11]. More-
over, their total share in the process of operation increases as the equipment resource is
depleted. The complexity of technical diagnostics for electrical equipment in technological
systems of the oil and gas industry is due to its wide range, specifics of performance and
operating modes, as well as difficult operating conditions and being in hard-to-reach places
that may be dangerous for the servicing personnel [12].

Currently, various devices based on vibration, electromagnetic and other methods are
used to diagnose an asynchronous motor. A method for diagnosing malfunctions of an
asynchronous motor based on the analysis of the consumed currents is presented in [13,14].
The method provides the identification of defects by the calculated frequency components,
but at the same time, it is difficult to assess the level of influence.

An analysis of vibrations in an asynchronous motor in order to identify malfunctions
of the motor and the working body by analyzing the averaged components of vibration
movement, vibration velocity and vibration acceleration is presented in [15,16]. A method
for analyzing the harmonic components of vibration movement, vibration velocity and
vibration acceleration is described in [17]. However, there are only experimental methods
for assessing the level of defects and their effect on the performance of electromechanical
equipment by the vibroacoustic data of the electric motor.

Papers [18–20] describe an approach to wavelet analysis of frequency vibration and
electrical characteristics of electromechanical equipment. The method has high informative
value, but there are no methods and means of processing the wavelets themselves.

Analysis of the above-mentioned works allows us to outline the imperfection of
diagnostic methods for electromechanical equipment, which determines the relevance
of solving this problem. Solving the problem with identifying the level and type of
defect will make it possible to develop a method for assessing the technical condition of
electromechanical equipment.

The main aim of the work is the development of an ED diagnostic method based on a
comprehensive analysis of data with a calculation of the technical condition for pumping
units with a variable frequency drive.

2. Materials and Methods

The object of this research is a multi-motor electric drive in a system with asyn-
chronous motors of a medium power class (132 kW) for general industrial purposes in
continuous operating modes S1. The system is intended for pumping oil products. Shaft
rotation frequency is controlled by scalar U/f algorithms, and the motor is switched over
with synchronization to the electrical network when reaching the nominal parameters.
The power part of the converter is represented by a two-tier structure with a 6-pulse un-
controlled rectifier and a two-level autonomous voltage inverter. The system has rather
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low requirements for rotation frequency and electromagnetic torque, and the requirements
for uninterrupted operation are no more than 1 h [21,22]. Electric motors are powered
in nominal modes from an electric network with a sinusoidal voltage of an industrial
frequency (50 Hz). If the load is reduced, they are switched to power from an autonomous
inverter with a pulse-width modulation (PWM) of voltage and quasi-sinusoidal current
(Figure 1). Considering the nature of changes and commutations, methods based on the
analysis of electrical parameters and coordinates were chosen to identify the states of an
electric drive, taking into account the audit of modern diagnostic methods [23]. To measure
the distortions in current consumption by AM, which allow outlining the components that
characterize the state of the nodes, it is necessary to use current sensors on the Hall effect,
thereby ensuring measurement accuracy [24,25]. Subsequent transformations, calculations
and analysis were performed on a microcontroller, personal computer or server.
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Figure 1. Block diagram of the investigated electric drive. CS—closed switchgear; Tr—transformer;
QF—circuit breaker; ATR—automatic transfer of reserve; AVS—automatic vacuum switch; FKD—
filter-compensating devices; KM—magnetic contactor; M-asynchronous motor; P—pump.

Spectral analysis should be used considering the condition of motor power supply
from both sinusoidal and non-sinusoidal voltage, which determines the shape of the
current, as well as distortions caused by machine defects [26]. Energy-efficiency of an
electric drive (Figure 1) is determined by the operating mode of the motor and its state, but
is quantified by the power factor χ (1) with a non-sinusoidal current and voltage waveform,
taking into account the harmonic distortions for current KI and voltage KU, (2), and for
sinusoidal form of current and voltage KI = 1, KU = 1 [27].

χ = P/S = 3I1pU1p cos ϕ/3I ·U =
(

I1p/I
)(

U1p/U
)

cos ϕ = KIKU cos ϕ (1)

χ = KIKU cos ϕ = |K I = 1|K U = 1 = cos ϕ (2)

where KI, KU—current and voltage harmonic distortions (THD); I1p, U1p—amplitude of
the fundamental harmonic of current and voltage in a phase (A, V); I, U—effective value
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of current and voltage (A, V); P, S—net and apparent power (W, VAR); ϕ—shift angle
between fundamental harmonic of phase current and voltage (rad).

Composition of the current at the output of an autonomous inverter is described by
Equation (3) and is determined by three main parts: the first is the main harmonic of the
supply network; the second is harmonics determined by the structure and pulsation of the
inverter; the third is the combination harmonics of the first and second parts.

I = Ist(t) = In sin(nω1t + ϕ) +
m=∞

∑
m=1

Im sin(mωHt) +
m=∞

∑
m=1

n=∞

∑
n=1

Inm sin(mωH ± nω1)t, (3)

where In—amplitude harmonics of the stator current, multiples of the fundamental har-
monic (A); Im—amplitudes of current harmonics (A), multiples of the carrier frequency;
Inm—amplitudes of the combinational harmonics for the stator current (A); ω1 = 2πf 1—
rotation frequency for the fundamental current harmonic (rad/s); ωH = 2πfH—rotation
frequency for the carrier harmonic of the stator current (rad/s); m = 1, 2, 3... and n = 1, 5,
7...—multiples of carrier ωH and fundamental ω1 rotation frequencies; f 1, fH—fundamental
and carrier frequencies (Hz).

According to the results of the statistical data analysis on the malfunction of the
electric drive due to malfunctions of the asynchronous motor, the main types of defects
were identified. They were: bearings wear, eccentricity of the air gap, turn-to-turn short
circuit and breakage of rotor rods [28,29], described by harmonic current components (4).

id1(t) = Ir sin(ω1(1± 2ks)t), id2(t) = Id.st sin(ω1[
n
p (1− s)± k]t),

id3(t) = Ib sin ωrt, id4(t) = Iec sin(ω1[rs
1−s

p ± n]t±ω1[
1−s

p ]t),
(4)

where ir, id.st, ib, iec—amplitude values of the stator current modulated with defects in the
rotor, stator, bearings and eccentricity of the air gap; ωr = 2πfr—rotor rotation frequency
(rad/s); s—asynchronous motor slip; k = 1, 3, . . . —odd integer; p—number of pole pairs;
rs—number of rotor rods.

The stator current Ist, taking into account the AM defects at a sinusoidal voltage, will
be formed according to (5), and when powered from an autonomous inverter, according
to (6).

Ist(t) = In sin(nω1t + ϕ) +
di=∞

∑
di=1

Idi sin(ωdit), (5)

Ist(t) = In sin(nω1t + ϕ) +
m=∞

∑
m=1

Im sin(mωHt) +
m=∞

∑
m=1

n=∞
∑

n=1
Inm sin(mωH ± nω1)t

+
di=∞

∑
di=1

Idi sin(ωdit),
(6)

where Idi—amplitude values of stator current (A), corresponding to the defect; ωdi = 2πfdi—
rotation frequency for the harmonic component of the stator current caused by the defect
(rad/s); fdi—defect frequency.

In this case, the harmonic current distortion factor, taking into account (1), (3), (4) and
(6), can be represented in the form of two components (7).

KI =

√
(KI(A) + KI∗(A))

2 + (KI(B) + KI∗(B))
2 + (KI(C) + KI∗(C))

2

3
(7)

where KI(n)—harmonic distortion coefficient of current, determined by the quality of
electrical energy in the supply network in phases A, B, C; KI*—harmonic distortion of
current in phases A, B, C of the electric motor, determined by defects.
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Distortions of the stator current curve not only lead to a non-sinusoidal current and a
decrease in the power factor, but also are a moment-defining value of the electromagnetic
moment of an asynchronous motor (8).

Me =
3
2

zp ·
Lm

Lr
· Istψr sin(θ) (8)

where zp—number of pole pairs of an asynchronous motor, Lm—magnetizing inductance,
Lr—rotor winding inductance, ψr—rotor flux linkage, θ—angle between the stator current
vectors Ist and the rotor flux linkage ψr.

Electromagnetic moment M(n) is formed by the vectors of the stator current and the
rotor flux linkage formed by the fundamental voltage harmonic (9). Structure and operation
of an autonomous inverter determines the composition of the higher harmonics of the stator
current and rotor flux linkage as well as their combinations form alternating moments
M(qp) (9). At the same time, the components (4) are taken into account, which in turn form
subharmonics of the stator current and rotor flux linkage and form additional alternating
moments M(di) (9).

Me = M(n) + M(qp) + M(di) =
n=∞
∑

n=1
Ist(n)ψr(n) sin(θ) +

q=∞
∑

q=1

p=∞
∑

p=1
Ist(q)ψr(p) sin(θqp)

+
i=∞
∑

i=1
Ist(di)ψr(di) sin(θdi),

(9)

where M(n), M(qp), M(di)—components of the electromagnetic moment (Nm), created as a
result of the interaction of the n harmonics for the stator current and the rotor flux linkage, di
harmonics for the stator current and the rotor flux linkage, q harmonic for the stator current
and p harmonic of the rotor flux linkage; Ist(n), Ist(q), Ist(di), ψr(n), ψr(p), ψr(di)—harmonic
components of stator current and rotor flux linkage (A, Wb); θ(qp)—angle between the q
harmonic of the stator current and the p harmonic of the rotor flux linkage, θ(di)—angle
between the di harmonics of the stator current and the rotor flux linkage (rad) (6).

Total influence of alternating moments on the resulting AM electromagnetic moment
is determined by the coefficient for pulsations of the electromagnetic moment Kp (10). To
take into account the effects of the multicomponent harmonic composition caused by both
the converter and the AM defects, with regard to (8) and (9), it is necessary to divide the
total coefficient of pulsations ∑Kp into components Kp and Kp

* (11).

Kp =

√
n=∞

∑
n=2

M2
(n)

/
Mav (10)

∑ Kp =

√√√√n=∞

∑
n=2

M2
(n) +

q=∞

∑
q=1

p=∞

∑
p=1

M2
(qp))

/
Mav +

√√√√i=∞

∑
i=2

M2
(di)

/
Mav = Kp(n) + K∗p (11)

where Mav—average value of the electromagnetic moment of the asynchronous motor
(N·m), Kp(n)—pulsation coefficient of the electromagnetic moment, determined by the
type and structure of the power frequency converter, Kp*—pulsation coefficient of the
electromagnetic moment, determined by the type and level of defect in the motor and the
mechanical part of the electric drive.

To study the influence of faults under operating conditions with switching the motor
power supply between the frequency converter and the energy grid, a model in MATLAB
Simulink was developed (Figure 2). It consisted of a multi-motor electric drive in a pumping
station for pumping oil products. The model was consistent with the above-described
drive structure.
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Figure 2. Oscillograms for the output coordinates of the electric motor.

The results of modeling a fault for one phase (phase A) in the form of an equivalent
turn-to-turn short-circuit during t = 1.4 s while maintaining a constant rotation frequency
and electromagnetic moment in the interval 1.2 < t < 2 s due to control algorithms show
that the shape was distorted and the amplitude of stator current increased. This led to
corresponding changes in the current harmonic distortion KI (7) of the oscillogram (Figure
3). Appearance of distortions in the current that were not multiples of the fundamental
harmonic and caused by defects determined the increase in the pulsation coefficient of the
electromagnetic moment ΣKp (11) of the oscillogram (Figure 3).

Energies 2021, 14, x FOR PEER REVIEW 6 of 15 
 

 

 
Figure 2. Oscillograms for the output coordinates of the electric motor. 

  
(a) (b) 

Figure 3. Changes in the harmonic distortion coefficient KI and the coefficient of pulsation of the electromagnetic moment 
ΣKp for AM: (а) in normal state; (b) with phase-to-phase short circuit for winding of stator (at t = 1.4 s). 

2.1. Method for Assessing the ED Technical Condition 
The development of a diagnostic system based on comprehensive analysis of param-

eters of various physical nature will allow solving the problems of increasing the accuracy 
of assessing the technical condition and life cycle of electromechanical equipment. 

An approach to assess the technical condition and predict the life cycle was proposed 
based on the analysis of the electrical and mechanical coordinates of the electric drive. A 
large number of parameters, recorded and calculated signal components as well as their 
processing, suggested the use of an artificial neural network (ANN). 

The diagnostic system (Figure 4) represented a hardware and software system that 
included software algorithms for data analysis based on ANN operation, and a data col-
lection system consisting of several sets of sensors that transmit signals to the data collec-
tion board (DCB). The main database of parameters was formed from the received signals. 
It also included an additional database of parameters (hereinafter indirect parameters) 
about the technical condition of the unit from the data preprocessing block, consisting of 
static data (T—average ambient temperature, ρ—humidity, ξ—insulation strength, etc.) 
and data from the process automation system (e.g., vr(t)—reducer speed signal, vi(t)EB sig-
nal). 

Before submitting the main and indirect parameters to the ANN input, they were 
filtered, and a database was formed on the permanent memory device. Data processing 

Figure 3. Changes in the harmonic distortion coefficient KI and the coefficient of pulsation of the electromagnetic moment
ΣKp for AM: (a) in normal state; (b) with phase-to-phase short circuit for winding of stator (at t = 1.4 s).

Method for Assessing the ED Technical Condition

The development of a diagnostic system based on comprehensive analysis of parame-
ters of various physical nature will allow solving the problems of increasing the accuracy
of assessing the technical condition and life cycle of electromechanical equipment.

An approach to assess the technical condition and predict the life cycle was proposed
based on the analysis of the electrical and mechanical coordinates of the electric drive. A
large number of parameters, recorded and calculated signal components as well as their
processing, suggested the use of an artificial neural network (ANN).

The diagnostic system (Figure 4) represented a hardware and software system that
included software algorithms for data analysis based on ANN operation, and a data collec-
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tion system consisting of several sets of sensors that transmit signals to the data collection
board (DCB). The main database of parameters was formed from the received signals. It
also included an additional database of parameters (hereinafter indirect parameters) about
the technical condition of the unit from the data preprocessing block, consisting of static
data (T—average ambient temperature, ρ—humidity, ξ—insulation strength, etc.) and data
from the process automation system (e.g., vr(t)—reducer speed signal, vi(t) EB signal).
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vibration AM parameters using ANN.

Before submitting the main and indirect parameters to the ANN input, they were
filtered, and a database was formed on the permanent memory device. Data processing
using ANN led to the formation of a retrospective data base, according to which it was
possible to assess the performance of an electric drive.

Evaluation of the technical condition and resource of unit was carried out using ANN
as an assessment for the possibility of failure-free ED functioning. Determination of the
probability for failure-free ED operation can be represented as the construction of Equation
(1). It is based on the retrospective database with the requirements for the relative error, or
for limit of the confidence period of prediction λ at p ≥ 95%—less than 5% [30].

P = F(t, ∆t, n, k, l, Ni, Pi(t), P(t− ∆t), . . . Pim(mi),
Pi(t− n∆t), . . . Pih(hi), Pih(t− n∆t))

(12)

where Pi—probability forecast; t—current time; ∆t—time period between measurements;
λ—forecast interval; n—amount of intervals in the past; k—amount of intervals in the future;
l—amount of assessed characteristics; Pim(mi), Pih(hi)—values of probabilities for electrical
and vibration parameters (mi—defect identified in the analysis of electrical parameters,
hi—defect identified during the analysis of vibration parameters in accordance with Table
1; Ni—indirect parameters affecting the forecast for assessing the likelihood of failure-free
operation.

It was required to form training and test samples according to the diagnosed parame-
ters from the retrospective database for ANN to function. That means the data obtained
from the sensors was necessary for ANN operation. Indirect parameters could be added to
the data that affect forecasting of failure-free operation, taking into account the performed
regression analysis and the assessment for the significance of the correlation coefficients.

Operation of ANN was as follows: initial conditions for the neural network were
started and set (values of the weight coefficients, number of training samples, ANN pa-
rameters, given small value that determines the forecast accuracy), values of the measured
entities were read and then followed the process of transformation into relative values Yi
within the range (0 ≤ Yi ≤ 1). Initial data for determining the probabilities of a defect using
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ANN were the operating, statistical and repair parameters of an asynchronous motor and
parameters that indirectly affect its technical condition, according to Table 1.

Table 1. Monitored parameters of asynchronous motors.

Parameters
Electrical Vibration Indirect

R
eg

is
te

re
d

1. Instantaneous current values
in each phase (I, Ist)

1. Instantaneous vibration displacement values
(axial sx, horizontal sy, vertical sz)

1. Average ambient
temperature (T)

2. Instantaneous voltage values
in each phase (U, Ust)

2. Instantaneous values of vibration velocity
(axial vx, horizontal vy, vertical vz) 2. Humidity (ρ)

3. Instantaneous power values
in each phase (P, S)

3. Instantaneous values of vibration
acceleration (axial ax, horizontal ay, vertical az) 3. Insulation durability (ξ)

4. Reducer speed (vr(t))
5. Executive body speed (vi(t))

C
al

cu
la

te
d/

st
at

is
ti

ca
l/

re
pa

ir 1. Current RMS in each phaser 4. Vibration displacement RMS

2. Voltage RMS in each phase 5. Vibration velocity RMSr

3. Power RMS in each phase 6. Vibration acceleration RMSr

4. Current spectra of each phase 7. Spectrum of vibration displacementr

5. Power spectra of each phase 8. Spectrum of vibration velocityr

6. Power factor 9. Spectrum of vibration accelerationr

7. Power loss value 10. Fundamental harmonic power

8. Voltage unbalance coefficients

An algorithm for ANN operation was compiled based on Equation (10). It took into
account the system operation, which evaluates the possibility of failure-free functioning
for analyzed electric and vibration AM characteristics using ANN.

The input of a neuron network included a block for generating training data and
a block for creating an ANN. It defined the ANN type, number of intermediate layers,
number of neurons and function of activation. A defined training algorithm and parameters
were set in training block. Probability for a failure-free EM operation was assessed by
electrical, vibration and indirect parameters. They were compared with set EM values in
the blocks, which were responsible for testing and assessing the quality of forecasting.

Structural model for a formal neuron, from which a neural network is built, intended
for the prediction [31], is shown in Figure 5.
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Figure 5. Model of a formal neuron.

A formal neuron is an elementary transforming element with multiple inputs, to
which signals x1, x2 . . . xn are received, an adder block, a signal conversion block using a
transfer function (or activation function) f (NET) and one output y. Each input has its own
“weight” wi, θ is the bias parameter. The presented neuron functions in two stages. At the
first stage, magnitude of the excitation received by the neuron is calculated in the adder
block [32].

NETjl = ∑
i

wijl xijl + θ (13)
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where i is number of the input, j—neuron number in layer, l—layer number, xijl—i input
signal of j neuron in layer l; wijl—weight coefficient of i input for the neuron of j number in
layer l; NETjl—signal of NET neuron of number j in layer l, θ—threshold level of a given
neuron [33].

Displacement parameter θ is often represented as a single input xn + 1 = 1 with weight
wn + 1 = θ. At the second stage, total excitation is passed through the activation function.
The result is the output signal y = f (NET). The transform function, as a rule, must satisfy
two conditions:

(1) f (NET)—monotone (usually non-decreasing) function;
(2) |f (NET)| ≤ 1,

where f —non-linear function called activation function.
Operation of a multilayer perceptron (MLP) [34,35] is described by the following

equations:
NETjl = ∑

i
wijl xijl , (14)

OUTjl = F
(

NETjl − θjl

)
, (15)

xij(l+1) = OUTjl , (16)

3. Results and Discussion

Prediction accuracy was achieved by comparing the results with the actual data at the
previous iteration. This allowed retraining the system with new data with a deviation of
more than 5%, thereby reducing the data processing cycle time. The learning algorithm
automatically performed the minimum number of iterations to obtain the required accuracy.
Reference data of vibration and electrical parameters according to Table 2 were used as
the initial data for the system. At the end of training the neural network, its characteristics
were assessed, taking into account standard requirements [36,37].

Table 2. Values of defect probability in terms of electrical and vibration parameters at different stages of its operation.

Defects
mi
i:

hi
i:

Probability

N
or

m
al

St
at

e

Pr
e-

C
ri

si
s

st
at

e

C
ri

si
s

St
at

e

A
cc

or
di

ng
to

Fa
ct

or
y

D
at

a

A
ct

ua
lS

ta
te

Damage of phase-to-phase insulation 1 0.12 0.2 0.28 0.1 0.16
Turn-to-turn short circuit 2 0.1 0.18 0.26 0.09 0.3

Short circuit in the stator winding 3 0.12 0.2 0.28 0.1 0.12
Bearing damage 1 0.1 0.18 0.26 0.09 0.17
Rotor damage 2 0.12 0.2 0.28 0.1 0.16

Dynamic eccentricity 4 3 0.12 0.2 0.28 0.1 0.3
Static eccentricity 5 4 0.12 0.2 0.28 0.1 0.3

Non-sinusoidal supply voltage 6 0.12 0.2 0.28 0.1 0.14
Rotor mass unbalance 5 0.2 0.28 0.36 0.14 0.18

Mechanical loosening of the coupling 6 0.12 0.2 0.28 0.1 0.22
Shaft misalignment 7 0.1 0.18 0.26 0.09 0.14
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Value of the electromechanical equipment lifecycle, taking into account ANN opera-
tion (11), (12), (13), (14), is represented by Equation (15) [38–40].

δ = K1 · Pih(h) + K2 · Pim(m) + K3 · Pih(h)+

+K4 · Pim(m) = K1 · F(
17
∑

i=1
(∆wi j · xi j − ∆θj) + K2 · F(

17
∑

i=1
(∆wi j · xi j − ∆θj)

+K3 · F(
21
∑

i=1
(∆wi j · xi j − ∆θj) + K4 · F(

21
∑

i=1
(∆wi j · xi j − ∆θj)

(17)

where K1 is coefficient taking into account the state of the boundaries for the assessment of
vibration parameters and detected defects at time t, depending on the normal, pre-crisis
and crisis states.

K2—coefficient taking into account the state of the boundaries for the assessment of
electrical parameters and onset (detection) of defects at time t, depending on the normal,
pre-crisis and crisis states.

K3—coefficient that takes into account the state of the boundaries for the assessment
of vibration parameters and measured parameters and factors affecting the forecast of the
lifecycle at time t, depending on the normal, pre-crisis and crisis states.

K4—coefficient taking into account the state of the boundaries for the assessment of
electrical parameters and measured parameters and factors affecting the forecast of the
lifecycle at time t, depending on the normal, pre-crisis and crisis states.

Pih(h), Pim(m)—probabilities for vibration and electrical parameters, taking into ac-
count ANN operation.

∆wi j = ε(ds
j − ys

j ) · xi j, ∆θj = −ε(ds
j − ys

j ) (18)

where ∆wij; ∆θj—correction for weight coefficients and threshold levels, taking into account
the calculated output and comparing the resulting output vector ys with the standard ds

ε—ANN training rate.
The calculated value of the lifecycle, obtained based on ANN operation, taking into ac-

count the electrical, vibration and indirect parameters, and detected defects were estimated
in accordance with the boundaries presented in Table 3.

Table 3. Assessment levels of AM lifecycle.

Lifecycle Indicator δ Technical Condition Characteristics Operation Permission

0 < δ ≤ 0.1 “reference” state, no effect on performance Permitted

0.1< δ ≤ 0.2 “normal” state, impact on performance is
insignificant Permitted

0.2 < δ ≤ 0.4
“pre-crisis” state, requires integrated

diagnostics with set periods, reducing the
load on the unit

Permitted with
integrated diagnostics

0.4 < δ ≤ 1 “crisis” state, high probability of failure,
equipment is sent for repair Not permitted

The results of the operation of the system for diagnosing the technical condition
and assessing the lifecycle of an electromechanical unit with an asynchronous motor are
diagnostic images of the probabilities for the technical condition in Figures 6–8.

Figure 6 shows the diagnostic image of the ED normal state for all monitored parame-
ters. After creating several minor artificial defects in the unit, four parameters that deviated
from the normal state were identified, while the general condition of the machine was
assessed as pre-crisis (Figure 7). During long-term operation of the unit, rapidly increasing
changes in three parameters were revealed that went into the zone of critical values, and
the condition of the unit was assessed as a crisis state with recommendations for stopping
and repairs (Figure 8).
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4. Conclusions

Safe functioning of enterprises in the petroleum industry directly depends on the
qualitative and quantitative indicators associated with economic efficiency. It is expressed
in the cost of carrying out work on diagnostics and monitoring and the operation of elec-
tromechanical equipment, which includes a set of measures aimed at improving diagnostic
systems.

The described approach for assessing the technical condition and predicting the
possibility of failure-free operation by electrical, vibration and indirect parameters will
provide an instant picture of the state for the electric drive with high accuracy.

The final result will be a reduction in the number of unexpected shutdowns of the
drive and downtime of associated equipment, as well as reduction of the cost of scheduled
and unscheduled repairs and maintenance.

According to the data obtained at the output of the system, it was possible to indirectly
determine the state of the associated mechanical equipment and explore ways to maintain
the operability of the electric drive by correcting the control algorithms.
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Nomenclature
The following abbreviations are used in this manuscript:

FFT finite Fourier transform
ED electric drives
AM asynchronous motor
EB executive body
ANN artificial neural network
DCB data collection board
CS closed switchgear
Tr transformer
QF circuit breaker
ATR automatic transfer of reserve
AVS automatic vacuum switch
FKD filter
KM magnetic contactor
AM asynchronous motor
P pump
List of Symbols
I1p, U1p amplitude of the fundamental harmonic of current and voltage in a

phase (A, V)
I, U effective value of current and voltage (A, V)
P, S net and apparent power (W, VAR)
In amplitude harmonics of the stator current, multiples of the fundamental

harmonic (A)
Im amplitudes of current harmonics (A), multiples of the carrier frequency
Inm amplitudes of the combinational harmonics for the stator current (A)
Idi amplitude values of stator current (A), corresponding to the defect
Ist(n), Ist(q), Ist(di) harmonic components of stator current (A)
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ir, id.st, ib, iec amplitude values of the stator current modulated with defects in the
rotor, stator, bearings and eccentricity of the air gap

ω1 rotation frequency for the fundamental current harmonic (rad/s)
ωH rotation frequency for the carrier harmonic of the stator current (rad/s)
ωr rotor rotation frequency (rad/s)
ωdi rotation frequency for the harmonic component of the stator current

caused by the defect (rad/s)
ϕ shift angle between fundamental harmonic of phase current and

voltage (rad)
s asynchronous motor slip
rs number of rotor rods
f 1, fH fundamental and carrier frequencies (Hz)
fdi defect frequency (Hz)
M(n), M(qp), M(di) components of the electromagnetic moment (Nm), created as a result of

the interaction of the n harmonics for the stator current and the rotor flux
linkage, di harmonics for the stator current and the rotor flux linkage, q
harmonic for the stator current and p harmonic of the rotor flux linkage

Mav average value of the electromagnetic moment of the asynchronous
motor (N·m)

ψr(n), ψr(p), ψr(di) harmonic components of rotor flux linkage (Wb)
θ(qp) angle between the q harmonic of the stator current and the p harmonic

of the rotor flux linkage(rad)
θ(di) angle between the di harmonics of the stator current and the rotor flux

linkage (rad)
T average ambient temperature
ρ humidity
ξ insulation strength
vr(t) reducer speed signal
vi(t) EB signal
KI(n) harmonic distortion coefficient of current, determined by the quality of

electrical energy in the supply network in phases A, B, C linkage (rad)
KI* harmonic distortion of current in phases A, B, C of the electric motor,

determined by defects
Kp(n) pulsation coefficient of the electromagnetic moment, determined by the

type and structure of the power frequency converter
Kp* pulsation coefficient of the electromagnetic moment, determined by the

type and level of defect in the motor and the mechanical part of the
electric drive

K1 coefficient taking into account the state of the boundaries for the
assessment of vibration parameters, and detected defects at the time t
and depending on the normal, pre-crisis and crisis states

K2 coefficient taking into account the state of the boundaries for the
assessment of electrical parameters, and onset (detection) of defects at
time t and depending on the normal, pre-crisis and crisis states

K3 coefficient that takes into account the state of the boundaries for the
assessment of vibration parameters, and measured parameters and
factors affecting the forecast of the lifecycle, at time t and depending on
the normal, pre-crisis and crisis states

K4 coefficient taking into account the state of the boundaries for the
assessment of electrical parameters, and measured parameters and
factors affecting the forecast of the lifecycle, at time t and depending
on the normal, pre-crisis and crisis states

Pih(h), Pim(m) probabilities for vibration and electrical parameters, taking into account
ANN operation

ε ANN training rate
δ lifecycle indicator
∆wij; ∆θj correction for weight coefficients and threshold levels, taking into

account the calculated output and comparing the resulting output vector
ys with the standard ds
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