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Abstract: The evaporator in a frost-free refrigerator typically has more tube rows, but frost deposition
reduces along the airflow direction. Correspondingly, the evaporator fin distribution is thinner in
the upstream rows but denser downstream, and a good match between frost and fin distribution
is achieved to recover evaporator capacity loss. However, quantitative design principles of non-
uniform fin distribution are lacking. A quasi-static frosting evaporator model is established and
experimentally verified considering a three-dimensional (3D) evaporator, 1D frost growth and 1D
non-uniform fin distribution. An optimization method for row-by-row fin distribution of a multi-row
frosting evaporator is proposed based on the air pressure drop’s increase rate. When the increase rate
in the air pressure drop of each row is almost equal, the smallest overall evaporator pressure drop
is obtained, leading to the highest air flowrate and the greatest evaporator capacity. By applying
the method, the air flowrate and the evaporator capacity increase by 5.5% and 4.6%, respectively,
compared to the original fin distribution scheme. Moreover, the robustness of the optimization
method is validated under wide temperature and humidity operating conditions. An equivalent
implementation under an initial no-frost condition is also proposed to facilitate the optimization
method without calculating the whole frosting process.

Keywords: finned tube evaporator; frost; fin distribution; optimization method

1. Introduction

The frost-free refrigerator is widely utilized nowadays because of its large capacity,
automatic defrosting and multi-temperature compartments, i.e., refrigerating, variable-
temperature and freezing ones. To meet the requirement of −18 ◦C temperature in the
freezing compartment, the evaporation temperature should be even lower. Therefore, frost
forms on the evaporator surface when the return air with higher temperature and humidity
flows across. A frost layer will increase the thermal resistance and reduce the air flowrate
of the evaporator, deteriorating the system’s performance [1].

Much experimental work has been conducted on the frosting characteristics of evapo-
rators and their influencing factors. These factors can be classified into three categories:
(1) environment conditions such as the outdoor fan characteristics and the temperature
& humidity of the frontal airflow. Kim et al. [2] used a slit fin bundle for the simulation
of the heat exchanger in the air-source heat pumps (ASHPs) and experimentally explored
the effects of cooling block temperature, air humidity and air velocity on its frosting char-
acteristics. Zhang et al. [3] carried out the comparative study on the airside performance
under different outdoor air fan control modes of ASHPs experimentally. (2) Geometrical
parameters such as the fin types, the fin pitch and the surface treatment of fins. Huang
et al. [4] experimentally studied effects of three fin types—flat, wavy and louver fins—on
the periodic frosting and defrosting performance of evaporators in ASHPs. Wang and
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Lee [5,6] investigated the effect of different surface characteristics on frosting and defrosting
behaviors of ASHPs. Liu et al. [7] experimentally studied the enhancement of airside heat
transfer performance by using perforated fins for heat exchangers under frosting condi-
tions. Dogan et al. [8] experimentally compared louver-fin-flat-tube heat exchangers with
different number of fin rows between tubes. (3) Frost growth, frost morphology and frost
mass distribution. Guo et al. [9] investigated the effect of frost morphology on the ASHP
performance experimentally and obtained the correlation between the micromorphology
of frost layer and the evaporator performance. Li et al. [10] proposed a defrosting method
for equal-fin-spacing evaporators by controlling frost distribution to match defrosting heat
distribution and improved the defrosting efficiency by 29.8%.

Numerical studies have also been performed on the frosting characteristics with
two types of surface: for the finned-tube evaporator and for the cold plate. For the first
type, Da Silva et al. [11] proposed a model of frosting performance for equal-fin-spacing
evaporators, to determine how the operating conditions affected the cooling capacity;
the effects of the frost morphology were also investigated. Morales-Fuentes et al. [12]
studied a fin-and-tube heat exchanger under several heat-transfer area distributions by
simulation. Results showed that a heat exchanger that allows even flow distribution along
the operation time is less sensitive to thermohydraulic deterioration. Knabben et al. [13]
put forward a 2D model to predict the evaporator blocking and carried out an assessment
of the impact of fin distribution and defrost strategy on the evaporator performance. In
their study, the total fin number of the evaporator is not constant. Breque et al. [14] and
Rasheed et al. [15] also proposed simulation model of heat pump system and validated
the model using experimental data. Allymehr et al. [16] used two separately developed
simulation codes to calculate the efficiency of two heat pump systems. For the second type,
Breque et al. [17] compared different assumptions and correction equations of frosting
models on a cold flat plate in the literature and made recommendations to select proper
assumptions. Wu et al. [18] developed a 2D phase change mass transfer model in FLUENT
to predict the frost layer growth and the densification on a cold surface. Kim et al. [19]
defined the concept of frost formation resistance and used a multi-phase Eulerian method
to model the frost formation on a cold plate.

Seen from the above-mentioned articles, much research has been conducted on the
frosting performance of finned-tube exchangers in ASHPs. However, little has been de-
voted to that designed for frost-free refrigerators. Compared with ASHP evaporators, the
evaporator in frost-free refrigerators has certain particular features such as fewer windward
columns, a greater number of tube rows along the airflow direction, lower evaporation
temperature and wide utilization of separate fins. Moreover, due to the gradual decrease
in moisture content in the airflow, the frost thickness of upstream area is much higher
than that of downstream area [20]. Hence, uneven fin distribution is commonly used
among vertical rows for the evaporator in refrigerators to mitigate the frost maldistribution.
However, most models and experiments in the open literature focus on the equal fin-pitch
type of evaporators.

Therefore, this article is to explore the optimization method for non-uniform fin distri-
bution of the multi-row frosting evaporator in frost-free refrigerators. A quasi-static 3-1-1
model has been established in our previous work, and frosting evaporator performance
has been compared between uniform and non-uniform temperature & humidity of the
frontal airflow [21]. This article, as a follow-up study, adapts the same model and proposes
a row-by-row fin distribution optimization method to achieve better frosting evaporator
performance under uniform temperature & humidity conditions. Then, the robustness of
the optimization method is validated under wider temperature and humidity operating
conditions, and also under non-uniform temperature and humidity conditions. To reduce
the complexity of calculating the whole frosting process and improve the feasibility of
optimization method, an equivalent implementation only based on the initial no-frost
evaporator hydraulic characteristics is also proposed.
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2. Methods

The frosting model of the evaporator is described in detail in our previous work [21].
The frost growth process is assumed as a quasi-static phenomenon and adopts the Lewis
analogy for calculations of mass transfer process. The water vapor is assumed to be
saturated on the surface of the cold wall and the frost. The model is divided into three
sub-models, namely, the geometric model, the heat and mass transfer model and the airflow
model. The first divides the evaporator into many elements, the second calculates the heat
and mass transfer both in the airside and inside the frost layer in every element and the
third model connects each independent element by setting the rules of the air distribution
and mixing.

2.1. Geometric Model

The evaporator studied in this research consists of 14 tubes spaced in 2 columns, as
illustrated in Figure 1. The fins are separately mounted with free gaps between adjacent
tube rows. The fin number generally increases from bottom to top tube rows (except for the
top row) to mitigate the frost maldistribution caused by the leading-edge effect [20]. In this
model, the evaporator is divided into elements based on the fin distribution. The internal
element is composed of two adjacent fins and the flow channel between them, while the
lateral element is only a half of the internal one.
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Figure 1. Schematic diagram of the evaporator.

2.2. Heat and Mass Transfer Model

The frosting process during humid air flowing over the cold surface is illustrated in
Figure 2 with heat and mass transfer indicated. The heat transfer includes two parts: the
sensible part

.
Qsen and the latent part

.
Qlat. The former accounts for the airflow being cooled

by the cold evaporator or frost, while the latter comes from the desublimation of water
vapor (into frost) contained in the humid air. Moreover, the mass transfer also plays two
roles in frost growth. One part of the water vapor

.
mρ enters the inside of the frost layer and

increases its density and the other part
.

mδ desublimates on the surface of the frost layer to
increase its height.
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In the airside, convective heat and mass transfer between the airstream and the frost
layer is mainly considered. The differential equations are as following, respectively.

dTa

dA f s
=

hη

ρaVacp,a

(
Tf s − Ta

)
(1)

dω

dA f s
=

hη

ρa,dryVacp,aLe2/3

(
ω f s −ω

)
(2)

where index a refers to humid air, f s refers to frost surface, dry refers to dry air, ρ is the
density, Va is the airflow rate, cp is the specific heat, T is temperature, h is the airside heat
transfer coefficient, η is the total fin efficiency, A f s refers to the frost surface area, ω is
humidity ratio and Le is the Lewis number.

Within the frost layer, by contrast, the heat transfer process is regarded as the heat
conduction with an internal heat source, which is the latent heat of vapor desublimation.
The differential equations of energy and mass conservation are as following, respectively.

λ f r
d

dx

(dTf r

dx

)
+

.
ρ f risv = 0 (3)

d
dx

(
dω

dx

)
=

1
δ

dω

dx
|x=δ (4)

with the following boundary conditions: Tf r = Tw x = 0
dTf r
dx =

.
Qtot−

.
mρisv

λ f r Atot
x = δ

(5)

{
ω f s = ωsat

(
Tf s

)
ωw = ωsat(Tw)

x = δ
x = 0

(6)

where the index w refers to the wall surface of evaporator tubes, isv is the latent heat of
vapor into frost,

.
ρ f r is the increase rate of frost density and λ f r is the thermal conductivity

of frost. More information about the model and the physical properties of air and frost is
provided in [21].
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2.3. Air Flow Model

The heat and mass transfer process in each element is calculated individually first by
the model above, and then connected together with the following rules of air distribution
and mixing.

(1) The air distribution rule: the air pressure drop across all elements in the same row is
equal to satisfy the conservation of momentum. This rule can be used to connect the
elements situated in the same row.

(2) The air mix rule: the element number varies in different rows and fins are separate
along the air flow direction. Therefore, the air flow from different upstream elements
mixes before entering the downstream ones. The air mixing process needs to meet
the law of energy conservation and composition conservation. This rule establishes
the coupling of rows along the air flow direction.

It is noteworthy that in many existing publications, the airflow rate through a frosted
evaporator is considered constant, which hardly conforms to the practical truth. Frost
deposition increases the flow resistance of the finned-tube evaporator, and will inevitably
reduce the airflow rate of the axial fan at constant power input. Therefore, the flowrate-
pressure curve is fitted based on the experimental tests of the axial fan in this article and
is expressed as a 5th order polynomial fit equation to reproduce the actual air flowrate
variation in the tested refrigerator.

Va = 0.02531− 0.00108∆Pa,tot + 9.44653× 10−5∆Pa,tot
2 − 1.0081× 10−5∆Pa,tot

3 + 7.4354× 10−7∆Pa,tot
4 − 2.2449× 10−8∆Pa,tot

5 (7)

The characteristic curves of the small axial fan are similar. With the increase of air
pressure drop, airflow rate decreases first gradually and then sharply. Due to the long
period of frosting in the refrigerator, most of fans will enter the stall area where the airflow
rate decreases sharply with slight increase of air pressure drop.

2.4. Initial Conditions and Boundary Conditions

In the real household refrigerator, the return air from different compartments is
supposed to have different temperature and humidity conditions. The air stream from
the refrigerating compartment is warm and humid, flowing through the left part of the
evaporator, while that from the variable-temperature compartment flows through the right
part of the evaporator as shown in Figure 1. By contrast, the return air from the freezing
compartment is cold and dry, covering the whole frontal area of the evaporator. In this
study, the temperature and humidity of the return air at the beginning of a stable on-cycle
of refrigerators are taken as reference values as shown in Table 1.

Table 1. Measured temperature and humidity of the return air from all compartments.

Temperature Zone Temperature/◦C Relative Humidity Humidity Ratio/g·kg−1

refrigerating 6.1 71.2% 4.15
variable

temperature −3.0 79.1% 2.27

freezing −17.5 68.5% 0.52

The main objective of this article is to investigate the influence of row-by-row fin
distribution on the performance of the evaporator, so the effect of non-uniform return air is
scarcely considered. Therefore, it is assumed that the return air is uniformly mixed at the
bottom of the evaporator and the proportion is 1:1:2 for refrigerating, variable temperature
and freezing return airflow, respectively, informed by the manufacturers. The parameters
of return air after mixing are displayed in Table 2. The evaporating temperature varies
in a frosting period and the value at the beginning of a stable on-cycle of refrigerators is
taken as the simulated setting condition. The initial transient phase of the evaporating
temperature is neglected due to the short time and small capacity.
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Table 2. The initial conditions of return air and evaporating temperature for simulation.

Airflow Temperature/◦C Relative Humidity Humidity Ratio/g·kg−1 Evaporating Temperature/◦C

−8 89% 1.68 −24

The initial frost thickness and frost density is set as 2 × 10−5 m and 25 kg·m−3,
respectively. The initial frost surface temperature is equal to the evaporating temperature.
The initial air flowrate is set as 0.0225 m3·s−1 according to the fan characteristic curve. The
time step is set as 1 s.

2.5. Solution Scheme

A flow chart describing the implementation of the frosting evaporator model in this
paper is shown in Figure 3.
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2.6. Model Validation

The model is validated by comparing simulation results with experimental data in
open literature in our previous work [21] as shown in Figure 4. The test conditions are
displayed in Table 3. The maximum deviation is less than 15%. Smaller air velocity in
Test 1 leads to greater deviation, but the air velocity is close to 1.2 m/s in the following
simulation process. The maximum deviation of Test 2 is less than 4% and the model is
valid.
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Table 3. The test conditions of return air and evaporating temperature.

Air
Velocity/m·s−1

Airflow
Temperature/◦C

Relative
Humidity

Evaporating
Temperature/◦C

Test 1 1.18 −18 80% −27.5
Test 2 0.8 −16.1 80% −28.8

Then, the model is utilized to study the effect of row-by-row fin distribution on frosting
evaporator performance and a fin distribution design method of frost-free refrigerator
evaporators is proposed based on the numerical results.

3. Results and Discussion
3.1. Case Study
3.1.1. Setup of Different Fin Distribution Schemes

To match the reduced frost formation in the vertical direction due to the leading-edge
effect [20], the fin density is generally thinner in the upstream rows but denser downstream
on the evaporator (except Row 7, considering the refrigerant migration during the starting
stage of the compressor). However, too many fins in downstream tube rows can also cause
severe frost blockage there, as shown in Figure 5.
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Figure 5. Frosting condition of the evaporator studied in this paper.

Based on the original fin distribution, other three different fin distribution schemes are
proposed for the evaporator, as shown in Table 4. The total fin numbers for these schemes
are the same so that the heat transfer area can be the same when there is no frost. For the
original scheme, the fin numbers of the Row 5 and Row 6 are the greatest and there is a
high possibility that frost will block the airflow channel there. Therefore, some of the fins
on downstream tube rows are moved to upstream tube rows in other three schemes to
tackle this problem. Particularly, Scheme 2 is optimized based on the method of keeping
the almost equal increase rate of the row-by-row air pressure drop.

Table 4. Three proposed schemes for fin distribution.

Setup Row 1 Row 2 Row 3 Row 4 Row 5 Row 6 Row 7

The Original Scheme 11 15 29 29 58 58 33
Scheme 1 18 21 29 30 47 49 39
Scheme 2

(The Optimized Scheme) 25 27 29 32 36 40 44

Scheme 3 32 33 29 34 25 31 49

3.1.2. Comparison of Heat Transfer Performance among Different Fin Schemes

The heat transfer performance of the frosting evaporator is numerically studied under
the four schemes for the time duration of 400 min, and the results are comparatively
analyzed.

Figure 6 comparatively illustrates the variations of the evaporator capacity with
frosting time among the four schemes. The evaporator capacity for all schemes decreases
first gradually and then rapidly. The turning points of the decrease rate occurs in the
sequence of the original scheme, Scheme 1, Scheme 3, and Scheme 2 at 286 min, 321 min,
323 min and 337 min, respectively. Moreover, the optimized Scheme 2 has the highest
evaporator capacity, followed by the Scheme 3, Scheme 1 and the original scheme. The
difference between the highest and the smallest evaporator capacity gradually increases
with frosting time. The maximum difference occurs at the end of frosting process when
the evaporator capacity of the optimized Scheme 2 is 248 W, 24% higher than 200 W of the
original scheme.
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Figure 6. Evaporator capacity for three schemes during 400 min frosting duration.

The fact that the evaporator capacity for the optimized scheme is higher than for other
three schemes is mainly owing to its greater air flowrate. Similar to the evaporator capacity
curves in Figure 6, the air flowrate through the evaporator decreases gradually at first, and
rapidly then as shown in Figure 7. The air flowrate of the optimized Scheme 2 is greatest,
which accords with that of the evaporator capacity. At the end of frosting process, the air
flowrate of the optimized Scheme 2 is 0.0146 m3·s−1, which is 35% higher than that of the
original scheme.
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Figure 7. Airflow rate for three schemes during frosting 400 min duration.
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For all cases, both evaporator capacity and air flowrate exhibit a gradual decrease
period at first and a sharp decrease one then. The turning point occurs when the axial
fan enters the stall area where the airflow rate decreases sharply with slight increase of
air pressure drop. In general, the optimized Scheme 2 has the greatest air flowrate and
the latest stall point of the axial fan, leading to its highest evaporator capacity and the
latest turning point. Therefore, the optimized Scheme 2 shows the highest time-averaged
evaporator capacity, 4.6% higher than the original fin scheme.

The difference in the air flowrate among four schemes is induced by that in the overall
pressure drop of the evaporator. The increase of pressure drop will decrease fan air flowrate
according to the flow characteristics of the fan. When the pressure drop reaches 16 Pa,
the fan stall occurs. As shown in Figure 8, the pressure drop of the optimized Scheme 2
is smallest among the three cases. At 400 min, the air pressure drop of the optimized
Scheme 2 is 17.3 Pa, which is 9.6% lower than 19.1 Pa of the original scheme.
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Figure 8. Overall pressure drop for three schemes during frosting 400 min duration.

3.1.3. Comparison of Hydraulic Characteristics among Different Fin Schemes

The original scheme and Scheme 2 are specially investigated for further study due to
their largest difference in overall pressure drop. The hydraulic performance of the frosting
evaporator under these two fin distribution schemes is comparatively studied.

The row-by-row pressure drop of the evaporator between the two schemes is com-
pared in Figure 9. Figure 9 shows that the initial value of the pressure drop in the 5th and
6th rows in the original scheme is relatively large and increases rapidly due to the larger
number of fins. At the end of the frosting process, the pressure drop of these two rows is
10.3 Pa and 4.85 Pa respectively, accounting for 80% of the overall pressure drop through
the evaporator. However, the pressure drop for the 1st row is 0.34 Pa, which is only 3% of
that for the 5th row. This extremely uneven distribution of row-by-row pressure drop for
the original scheme leads to its highest overall pressure drop. By contrast, the single-row
pressure drop in the optimized scheme increases gradually and uniformly. At 400 min, the
difference between the highest and the smallest pressure drop is only 0.3 Pa. Therefore, it
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can be inferred that the total pressure drop will be the smallest when pressure drop of each
row increases uniformly.
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Figure 9. Single-row pressure drop during frosting 400 min duration.

As frosting progresses, the frost layer gradually blocks the flow channel between
adjacent fins, and leads to the increase in local pressure drop. Hence, the single-row
pressure drop depends mainly on the blockage ratio defined by Equation (8).

B =
Ablock
A f ace

=
2lele

(
2δ f r + d

)
+ 2
(

2δ f r + δ f

)(
H f − 2δ f r − d

)
lele ×Weva

(8)

where lele is the length of elements, Weva is the width of t evaporator, H f is the height of fin,
δ f is the thickness of fin, δ f r is the thickness of frost, d is the external tube diameter.

As shown in Figure 10, the blockage ratio of each tube row differs remarkably in the
original scheme. The 5th and 6th rows have the highest blockage ratio, which explains their
maximum single-row pressure drop. The blockage ratio of the 5th row is the largest, 29.5%
higher than that of the 7th row which is the smallest. In the optimized scheme, however,
the blockage ratio is uniformly distributed among the seven tube rows with very small
difference. The blockage ratio of the 1st row is the largest and that of the 7th row is the
smallest, which is 62.8% and 55.8% at 400 min, respectively, with a difference of only 7%.
This leads to a more uniform distribution of single-row pressure drop in Figure 9.
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Figure 10. Blockage ratio between adjacent fins during frosting 400 min duration.
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The blockage ratio between adjacent fins is influenced mainly by two factors: fin
spacing and frost thickness. The frost layer thickness of each row for the original scheme
and the optimized scheme is compared in Figure 11. Results show that the frost layer
thickness of both two schemes decreases along the direction of air flow due to the leading-
edge effect [18]. Hence, in order to prevent frost layer from completely blocking the airflow
passage of upstream rows, the fin density is generally thinner in the upstream rows but
denser in the downstream rows on the evaporator. In the original scheme, however, fins
in the 5th and 6th tube rows seem to be over-dense and cause local blockage there. In the
optimized scheme, by contrast, the fin spacing and frost thickness reached the condition
that makes the blockage ratio of all tube rows similar.
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Figure 11. Frost thickness during 400 min duration.

From the above discussion, it can be concluded that the optimization method of equal
increase rate in row-by-row air pressure drop works by reaching a good match between
the frost and fin distribution. Here the increase rate means the evolution in time of the
pressure drop during a frosting process. Consequently, the overall air pressure drop of the
evaporator can be smaller, leading to higher air flowrate and evaporator capacity.

3.2. Proposal of the Optimization Method

In Section 3.1.2, by comparing the heat transfer performance among different fin
schemes, it can be concluded that when the air pressure drop of each row increases in equal
rate over time, the overall air pressure drop of the evaporator can be smaller, leading to
higher air flowrate and evaporator capacity.

In Section 3.1.3, by comparing the hydraulic characteristics among different fin
schemes, it can be concluded that the optimization method of equal increase rate in row-
by-row air pressure drop works by reaching a good match between the airflow humidity
and fin distribution.

The logical frame is displayed in Figure 12. The fin scheme with an equal increase rate
in the air pressure drop of each row is the optimized scheme with best evaporator capacity.

3.3. Robustness Analysis of the Optimization Method under Wide Operating Conditions

In a real household refrigerator, the temperature and humidity of the airflow vary with
the operating conditions. Thus, it is necessary to test the robustness of the optimization
method under wide operating conditions.

The refrigerator studied in this research consists of refrigerating, variable-temperature
and freezing compartments with a single evaporator. The return air from the freezing
compartment always flows across the evaporator during the operation of the compressor
and covers the whole frontal area of the evaporator. On the other hand, the return air from
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the refrigerating and variable-temperature compartments must first pass through the corre-
sponding dampers which are controlled by the temperature sensor in the compartments.
When the temperature of the compartments reaches the set value, the damper closes. Thus,
based on the system control strategies above and port locations of the return air shown in
Figure 1, the possible return air composition conditions are listed in Table 5.
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Table 5. Different temperature and humidity conditions of frontal air flow

Condition
Number Nonuniform/Uniform Inlet Airflow Conditions Temperature/◦C Relative

Humidity
Humidity

Ratio/g·kg−1

#1 Uniform Mix at ratio R:V:F = 1:1:2 −8 89% 1.68
#2 Uniform Freezing −17.5 68.5% 0.52

#3 Nonuniform
Refrigerating & Freezing (left)

Variable & Freezing (right)
−5.7 91.6% 2.12
−10.3 81.6% 1.24

#4 Nonuniform
Freezing (left)

Variable & Freezing (right)
−17.5 68.5% 0.52
−10.3 81.6% 1.24

#5 Nonuniform
Refrigerating & Freezing (left) −5.7 91.6% 2.12

Freezing (right) −17.5 68.5% 0.52

The optimized fin distribution based on the method of keeping the almost equal
increase rate of the row-by-row air pressure drop is calculated under different temperature
& humidity conditions and the results are displayed in Figure 13. The difference among
optimized fin distributions under different conditions is small. The maximum deviation
of fin numbers in each row is less than 2. This shows the optimized fin distribution is
adaptable to wide operating conditions and the optimization method proposed in this
research has good robustness. By comparing condition #1 and #4, it is also proved that
whether the return air is evenly mixed or not has little influence on the optimized fin
distribution.

3.4. Equivalent Implementation of the Optimization Method under Initial No-Frost Condition

The optimization method proposed in this paper needs to obtain the row-by-row
pressure drop data after the refrigerator has been operating for a while and then make
fin distribution adjustment accordingly. However, it is difficult to do these operation
experiments and adjustments in the actual evaporator design process. Thus, this paper
also proposes an equivalent implementation method to provide predictive reference for
evaporator design.

From the above discussion in Section 3.1, it can be concluded that the optimization
method works by reaching a good match between the frost and fin distribution. Frost
blockage ratio can be an index to evaluate the matching degree. Figure 14 comparatively
illustrates the frost blockage ratio of three fin distribution at 0 min and 400 min.
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Figure 14. Comparison of frost blockage ratio among three schemes at 0 min and 400 min.

For the equal fin distribution, the frost blockage ratio is only influenced by the airflow
humidity distribution (i.e., the leading-edge effect) and is the same in all tube rows at
0 min. With the frost growth, the frost blockage ratio gradually increases and at 400 min,
it reduces along the airflow direction. On the other hand, the blockage ratio of each row
is almost the same for the optimized fin distribution at 400 min. This is because the fin
density in the optimized scheme is well coupled with the airflow humidity distribution.

The effects of airflow humidity distribution and the fin distribution are analyzed
separately below. At 400 min, the relative slope factor of the blockage ratio for the equal fin
distribution kω is calculated by the Equation (9) below and it can be taken as the influence
factor of the humidity distribution (i.e., the leading-edge effect). The relative slope factor
of the blockage ratio for the optimized fin distribution k f in is also calculated and this
factor is the required parameter in engineering applications. Results show that it meets
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the following criterion (10): the relative slope factor of the blockage ratio for the equal fin
distribution at 400 min plus that for the optimized fin distribution at 0 min is equal to 0.

k =
(B7 − B1)/6

Baver
(9)

k f in + k = 0 (10)

where index aver refers to average, ω refers to the airflow humidity distribution, f in refers
to fin distribution, k is the relative slope factor and B is the blockage ratio of the row.

In this research, the influence factor of the leading-edge effect kω is−0.06 as a reference.
The optimized fin distribution can be then calculated by the factor k f in based on the
Equation (10). This equivalent implementation method allows the optimization calculation
to proceed with initial parameters only. It greatly simplifies the calculation process and
improves feasibility for evaporator design.

3.5. Limits of the Optimization Method

The number of fins in each row is an integer. Thus, when the method is used to
calculate the optimized scheme, the fin number must be rounded. The adjustment of fin
distribution is not stepless. Apart from that, the total fin numbers of the schemes studied
in this paper are the same so that the heat transfer area can be the same when there is no
frost. That means that this method is only based on the fixed total heat transfer area of the
evaporator. However, the evaporator heat transfer area itself is set inappropriately in some
cases. Such cases will be considered in our future work.

4. Conclusions

A quasi-static 3-1-1 frosting evaporator model is built and experimentally verified
considering a 3D evaporator, 1D frost growth and 1D uneven fin distribution. Based
on the original fin distribution of the evaporator called the original scheme, other three
distribution schemes are proposed with the same total fin number. In the optimized scheme,
the increase rate of row-by-row air pressure drop is kept almost equal. The evaporator
frosting performances under the three fin distribution schemes are numerically compared.
The main conclusions are as follows:

1. The optimized scheme with the smallest total pressure drop has the slowest decrease
of air flowrate and the latest fan stall point. Thus, the optimized scheme shows the
highest time-averaged air flowrate and evaporator capacity, 5.5% and 4.6% higher
than the original fin distribution scheme, respectively.

2. An optimization method for non-uniform fin distribution of a multi-row frosting
evaporator is proposed. When the increase rate of row-by-row air pressure drop is
almost equal, the air pressure drop of some rows can be avoided to be much higher
and increase more rapidly than others. The minimum total air pressure drop can be
obtained.

3. The optimized fin distribution is compared under wide temperature/humidity con-
ditions of inlet air. Results show that the optimized fin distribution is adaptable to
wide operating conditions and the optimization method proposed in this research
has good robustness.

4. An equivalent implementation of the optimization method is proposed based on the
initial no-frost condition. The influence factor of the leading-edge effect is defined
and the optimized fin distribution is correspondingly calculated to reach a good
match condition with it. This equivalent implementation improves feasibility of
the optimization method and helps to provide predictive guidance for evaporator
optimization design.
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Nomenclature

Greek
ρ density [kg·m−3]
η total fin efficiency [-]
ω humidity ratio [G·kg−1]
λ thermal conductivity [W·m−1·K−1]
δ thickness [m]
Roman
A area [m2]
Va airflow rate [m3·s−1]
T temperature [K]
h heat transfer coefficient [W·m−2·K−1]
cp specific heat [J·kg−1·K−1]
Le Lewis number [-]
.

Q heat transfer rate [W]
isv latent heat of sublimation [J·kg−1]
.

m mass flowrate, [kg·s−1]
.

mρ amount of vapor increasing frost density [kg·s−1]
.

mδ amount of vapor increasing frost thickness, [kg·s−1]
B frost blockage rate [-]
H height [m]
W width [m]
subscripts
a humid air
fs frost surface
f fin (distribution)
ω air flow humidity distribution
fr frost
w wall surface
dry dry air
sat saturated
tot total
sen sensible
lat latent
ele element
eva evaporator
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