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Abstract: This study evaluates the performance of an R744/R404A cascade refrigeration system
(CRS) with internal heat exchangers (IHE) in supermarkets. R744 is used as the refrigerant in
a low-temperature cycle, and R404A is used as the refrigerant in a high-temperature cycle. In
previous studies, there are many studies including theoretical performance analysis of the CRS.
However, experimental studies on the CRS are lacking, and experimental research on the R744/R404A
system with an IHE is scarce. Therefore, this study provides basic data for optimal refrigeration
system design by experimentally evaluating the results of modifying various parameters. The
operating parameters considered in this study include subcooling and superheating, condensing and
evaporating temperature, cascade evaporation temperature, and IHE efficiency in the R744 low- and
R404A high-temperature cycle. The main results are summarized as follows: (1) By applying the
results of this study, energy efficiency is achieved by optimizing the overall coefficient of performance
(COP) of the CRS, and the refrigerant charge of the R404A cycle is minimized and economic efficiency
is also obtained, enabling operation and maintenance as an environment-friendly system. (2) When
designing the CRS, finding the cascade evaporation temperature that has the optimum and maximum
COP according to the refrigerant combination should be considered with the highest priority.

Keywords: cascade refrigeration system (CRS); R744 refrigerant; R404A refrigerant; internal heat
exchanger (IHE); coefficient of performance (COP); efficiency; multilinear regression analysis

1. Introduction

In the field of supermarket refrigeration technology, the hydrofluorocarbon (HFC)
refrigerant R404A has been widely adopted as an alternative to R22 refrigerant [1]. Fur-
thermore, the R744/R404A CRS has a 25% higher coefficient of performance (COP) than
single-stage compression refrigerators using only R404A [2]. Thus, R744 (CO2) refrigerants
are predominantly applied to the low-temperature side of the CRS, with R290 (propane),
R717 (ammonia), and R404A refrigerants predominantly applied to the high-temperature
side [3]. Previous studies have highlighted the risk of refrigerant leakage from super-
market refrigerators; for example, annual refrigerant leakage of approximately 14% (not
including stand-alone equipment) was reported from 220 supermarkets in Norway [4].
Therefore, despite its high global warming potential (GWP), R404A is considered a safe
high-temperature refrigerant for supermarket CRSs [5] because R404A is classified into the
A1 group by the ASHRAE 34 safety group [6]. In addition, it can still be used in countries
such as developing countries despite its high GWP. However, developed countries recom-
mend using R448A and R449A as replacement refrigerants for R404A because they are not
available in the near future or present.

Many previous studies have evaluated CRSs based on R744 and R717 refrigerants. For
example, Nicola et al. analyzed the performance of a CRS in which R717 was applied to a
high-temperature cycle and a mixed R744 and HFC refrigerant system was applied to the
low-temperature cycle [7]. Moreover, Dopazo et al. performed simulations to understand
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the performance characteristics of CRSs applying R717 and R744 to the high-and low-
temperature cycles, respectively and proposed a prediction equation based on regression
analysis [8]. They also compared various compression efficiency equations to understand
the effect of the compressor adiabatic efficiency of the high- and low-temperature cycles
on the COP of this CRS. Furthermore, Lee et al. performed thermodynamic modeling of
the R744/R717 CRS using several assumptions and equilibrium equations, analyzing the
effect of condensation temperature, evaporation temperature, and the cascade temperature
difference [9]. Then, the optimal R744 condensation temperature was determined according
to the maximum COP and minimum system exergy destruction rate. Bingming et al. exper-
imentally analyzed the factors affecting the performance of a R717/R744 CRS; specifically,
the evaporation and condensation temperatures of the low-temperature cycle, the tempera-
ture difference of the cascade heat exchanger, and the degree of superheating [10]. The COP
was also compared with that of a two-stage R717 compression refrigeration system and a
single-stage system with and without an economizer. Getu and Bansal further examined the
effects of the subcooling and superheating degree, evaporation temperature, condensation
temperature, and cascade temperature difference on the performance of a R717/R744 CRS,
and they proposed an equation to predict the optimum cascade evaporation temperature,
mass flow rate of refrigerant, and maximum COP [11]. Yun and Cho [12] simulated the
R744/R717 CRS and a two-stage compression refrigeration system with IHE. Abubakar
and Fitri performed a thermodynamic analysis of CRS using R744/R717 refrigerant for fish
cold storage application [13]. Bresolin simulated the R134a/R744 CRS thermal analysis for
evaluation of the intermediate heat exchanger parameters [14]. Kumar and Ranga studied
performance analysis of the R717 and R744 mixture CRS [15]. Victorin et al. conducted the
parametric study of R717/R744 CRS for hot climates [16]. Furthermore, Islam and Singh
performed analysis of thermodynamic performance of the R22/R404A and R744/R404A
CRSs [17]. Kumar and Randa studied the comparison of thermodynamics analysis of CRS
for refrigerant pairs R23/R404A and R41/R404A [18]. Shakya et al. analyzed the perfor-
mance of R404A/R134a CRS [19]. Winkler et al. conducted simulations and experiments on
a CRS that applied R404A and R744 to the high-temperature and low-temperature cycles,
respectively [20].

In previous studies, there are many studies including theoretical performance analysis
of the CRS. However, experimental studies on the CRS are lacking, and experimental re-
search on the R744/R404A system with an IHE is scarce. In addition, although a prediction
equation for obtaining the maximum COP of the R744/R717 CRS has been proposed using
squares regression analysis, it is limited by a lack of detail and is not for R744/R404A CRS;
for example, the same subcooling and superheating is applied to the low-temperature
and high-temperature cycles [8–11]. Therefore, this study provides basic data for optimal
CRS design by experimentally evaluating the subcooling and superheating, condensation
and evaporation temperature, cascade evaporation temperature, and IHE efficiency ac-
cording to the COP characteristics of the R744/R404A CRS. I also propose a prediction
equation for obtaining the maximum COP under various input conditions on the high- and
low-temperature cycle.

2. Experimental Apparatus and Data Reduction
2.1. Experimental Apparatus

A schematic diagram of the experimental apparatus was designed to identify the
characteristics of the R744/R404A CRS (Figure 1). Measurement locations for determining
the refrigerant temperature, pressure, mass flow rate, and power consumption of the
compressor at each point in the system are shown in Figure 1. The CRS consists of two
single-stage compression refrigeration cycles connected by a cascade heat exchanger. R744
was used as the refrigerant in the low-temperature cycle, and R404A was used as the
refrigerant in the high-temperature cycle. The system is largely composed of R404A and
R744 circulation loops, which is a forced circulation loop circulated by a compressor, and
a heat source water circulation loop, which is a forced circulation loop circulated by a
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pump. The circulation loop of the R404A cycle includes a semi-hermetic compressor, oil
separator, condenser, internal heat exchanger, receiver, mass flow meter, expansion valve,
cascade heat exchanger, and accumulator; the circulation loop of the R744 cycle includes an
evaporator in place of the condenser. The loop circulating the heat source water comprises
a water flow meter, constant-temperature bath, and pump.
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Figure 1. Schematic diagram of experimental apparatus for the CRS using R744. 
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Figure 1. Schematic diagram of experimental apparatus for the CRS using R744.

As shown in Figure 1, the high-temperature and high-pressure R404A refrigerant
vapor from the compressor enters the condenser, where it exchanges heat with the cooling
water, cools, and flows into the receiver as a liquid. The refrigerant liquid leaving the
receiver passes through the mass flow meter and expansion valve. Therefore, the properties
of the R404A refrigerant are determined by measuring the flow rate and density with a
mass flow meter. The refrigerant liquid passing through the expansion valve flows into the
cascade heat exchanger (which plays the role of the evaporator), where it exchanges heat
with the R744 refrigerant, cools, and flows into the receiver as a liquid; then. it enters the
compressor for recirculation. The power consumption of the compressor is measured with
a power meter. The refrigerant liquid exiting the receiver passes through the mass flow
meter and flows into the evaporator, where it is heated by the heat source water to steam.
Then, it becomes high-temperature and high-pressure steam in the R744 compressor,
which enters the cascade heat exchanger (which plays the role of the condenser) and
circulates. To calculate the capacity of the heat exchanger (evaporator, condenser, cascade
heat exchanger), the temperature and pressure were measured at each inlet and outlet, and
the power consumption of the high-temperature and low-temperature side compressors
was measured using a power meter. The heat source water flowing into the condenser and
evaporator passes through a water flow meter and is maintained at a constant temperature
in a constant-temperature bath. The main components and detailed characteristics of the
experiments are listed in Table 1, and the details of the measuring equipment are listed
in Table 2.

Table 1. Main components of the experimental apparatus for the CRS.

Component Characteristics

R744 compressor Bock, model: HGX12P/40-4. Displacement with 1450 min−1: 4.4 m3h−1, No. of cylinders: 2,
weight: 53 kg, max. power consumption: 2.1 kW

Evaporator Hand-made, type: Horizontal double tube, material: copper tube, Internal diameter of inner tube:
11.46 mm, Internal diameter of outer tube: 33.27 mm, length of the evaporator: 8000 mm

Cascade heat exchanger Alfa Laval, model: ACH-70X-50H-F, Heat exchanged: 10.86 kW, Heat transfer area: 2.45 m2

R404A compressor Bock, model: HGX34P/380-4S. Displacement with 1450 min−1:33.1 m3h−1, No. of cylinders: 4,
weight: 96 kg, max. power consumption: 11.1 kW

Condenser Alfa Laval, model: ACH-70X-50H-F, Heat exchanged: 38.44 kW, Heat transfer area: 2.45 m2
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Table 2. Details of measuring equipment.

Measuring Equipment Detail

Mass flow rate of R404A cycle Oval Ultra mass MKII Flow meter, model: CT9401-CN10, Range: 0–24 kg min−1

Mass flow rate of R744 cycle Oval Ultra mass MKII Flow meter, model: CT9401-CN06, Range: 0–12 kg min−1

Power meter YOKOGAWA Digital power meter, model: WT230, Range: 15–600 V, 0.5–20 A, 0.5–100 kHz

Pressure transmitter WIKA, model: S-10, Range: 0–160 bar abs, 0–5 V

Temperature ONDI, model: TT-TE(T-type), Range: −270–400 ◦C

Water flow rate Corea Flow, model: TBN-II-AD(Turbine flowmeter), Range: 0.6~6 m3hr

2.2. Experimental Procedure

To ensure airtight tests using the experimental device, nitrogen was injected up to
the allowable pressure of the compressor, and a leak test was performed after one day.
Subsequently, a small amount of refrigerant was injected, and a purging process was
performed three times to remove impurities such as residual air while creating a vacuum
with a vacuum pump. Before operating the system, two constant-temperature baths were
used to adjust the inlet temperature of the heat source water of the R744 evaporator and
R404A condenser; then, they were used to fill the refrigerant in the liquid phase in each
cycle. The experiment was conducted as follows:

• Adjust the temperature of the heat source water by a constant-temperature bath to the
set temperature and operate the heat source water.

• Turn on the power of the R404A compressor and adjust the required R404A evapo-
ration temperature and mass flow rate by adjusting the high-temperature expansion
valve and inverter frequency for the R404A compressor.

• After operating the R404A refrigeration cycle, when the R744 condensation pressure
drops to a certain pressure, the R744 compressor is turned on, and the low-temperature
expansion valve and inverter frequency are adjusted for the R744 compressor to control
the evaporation temperature and mass flow rate of the CRS.

• The flow rate of the heat source water and R744 mass flow are adjusted to control the
subcooling and superheating of the high- and low-temperature cycles, respectively.

• When the system reaches a steady state (temperature variation within ±0.5 ◦C, pres-
sure variation within ±5 kPa, and mass flow rate within ±0.05 kg/min over a 15-min
measurement period), the measurement equipment is operated, and the temperature,
pressure, and mass flow data are sent to the computer using GPIB communication. The
temperature of the refrigerant, pressure mass flow rate, and power consumption of
the compressor are measured three times at 5-min intervals. The operating conditions
are shown in Table 3.

Table 3. Experimental conditions of the CRS.

Cycle Component Range Unit

High-temperature
refrigeration cycle

(R404A)

Condensation temperature 20, 30, 40 *, 50 ◦C
Internal heat exchanger efficiency 0 *, 1, 2, 3, 4 stage
Subcooling degree 0 *, 5, 10, 15, 20 ◦C
Superheating degree 10, 20 *, 30, 40 ◦C
Cascade evaporation temperature −30, −25 *, −20, −15, −10 ◦C
Temperature difference of cascade
heat exchanger 5 ◦C

Low-temperature
refrigeration cycle

(R744)

Cascade condensation temperature −25, −20 *, −15, −10, −5 ◦C
Evaporation temperature −50, −45, −40 *, −35, −30 ◦C
Internal heat exchanger efficiency 0 *, 1, 2, 3, 4 stage
Subcooling degree 2* ◦C
Superheating degree 10, 20, 30, 40* ◦C

* : Standard conditions.
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2.3. Data Reduction

The thermal properties of R744 and R404A used in this study were calculated using
REFPROP (version 8.01), which is a refrigerant property program developed by the Na-
tional Institute of Standards and Technology (NIST). According to these thermal properties,
the performance characteristics of the R744/R404A CRS were identified. The calculation
formulas in Table 4 were used to analyze the experimental data. The COP (COPR404A) of the
R404A refrigeration cycle, the COP (COPR744) of the R744 refrigeration cycle, and the total
COP(COPSYS) of the system were calculated using Equations (1)–(3), respectively [21–23]:

COPR404A =
QE,CAS

WCOM,R404A
(1)

COPR744 =
QE

WCOM,R744
(2)

COPSYS =
QE

WCOM,R404A + WCOM,R744
(3)

Table 4. Balance equation for each component of the CRS using R744 and R404A.

Cycle Component Energy Mass

High-temperature
refrigeration cycle

(R404A)

Compressor (1→2) WCOM, R404A =
.

mR404A(i2 − i1)

.
mR404A =

.
m1 =

.
m2

=
.

m3 =
.

m4
=

.
m5 =

.
m6

=
.

m7 =
.

m8

Condenser (2→4) QC =
.

mR404A(i2 − i4)
Subcooling degree (3→4) ∆TSUC,R404A

Internal heat exchanger (4→5 and 8→1) QIHX,R404A =
.

mR404A(i4 − i5)
=

.
mR404A(i1 − i8)

Expansion valve (5→6) i5 = i6
Evaporator (6→8) QE,CAS =

.
mR404A(i8 − i6)

Superheating degree (7→8) ∆TSUH,R404A

Low-temperature
refrigeration cycle(R744)

Compressor(11→12) WCOM, R744 =
.

mR744(i12 − i11)

.
mR744 =

.
m11 =

.
m12

=
.

m13 =
.

m14
=

.
m15 =

.
m16

=
.

m17 =
.

m18

Condenser (12→14) QC,CAS =
.

mR744(i12 − i14)
Subcooling degree (13→14) ∆TSUC,R744

Internal heat exchanger (14→15 and 18→11)
QIHX,R744 =

.
mR744(i14 − i15)

=
.

mR744(i11 − i18)
Expansion valve (15→16) i15 = i16

Evaporator (16→18) QE =
.

mR744(i18 − i16)
Superheating degree (17→18) ∆TSUH,R744

The mass flow ratio (
.

mRATIO) of the CRS was calculated using Equation (4):

.
mRATIO =

.
mR404A

.
mR744

. (4)

2.4. Uncertainties

The experimental results are not accurate for engineering analysis and design. There-
fore, this study predicted the uncertainties in the experimental results using the equations
proposed by Kline and McClintock [24] and Moffat [25] (Table 5).
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Table 5. Parameters and estimated uncertainties.

Parameters Unit Uncertainty

Mass flow rate [kg/min] ± 0.0100
Power consumption of compressor [kW] ±0.0350
COP of R404A refrigeration system [/] ± 0.0128
COP of R744 refrigeration system [/] ±0.0128
COP of CRS [/] ±0.0135
Temperature [◦C] ±0.2000
∆TCAS [◦C] ±0.4000
Pressure [kPa] ±5.2700
∆P (Pressure drop) [kPa] ±0.0100
Mass flow rate of coolant [kg/h] ±7.5300

3. Results and Discussion

In this study, the performance characteristics of a CRS using R744 as the low-temperature
refrigerant and R404A as the high-temperature refrigerant were analyzed, and basic design
data were provided. Specifically, the COP was analyzed according to the change in sub-
cooling and superheating, condensation temperature, IHE efficiency of the R404A cycle,
superheating, IHE efficiency, evaporation temperature of the R744 cycle, and the cascade
evaporation temperature.

3.1. Effect of the Degree of Subcooling and Superheating
3.1.1. Effect of the Degree of Subcooling

An experiment was conducted to investigate the effect of increasing the subcooling by ap-
proximately 5 ◦C intervals from 1.2 to 19.2 ◦C (under constant conditions; QE = 5.83–5.91 kW,
TE =−40.0 to−39.8 ◦C, TE,CAS =−24.1 to−23.9 ◦C, TC = 39.4–39.7 ◦C, ∆TSUH,R404A = 20.2–20.5 ◦C,
∆TSUH,R744 = 40.3–40.8 ◦C, ∆TSUC,R744 = 2.3–2.5 ◦C, ∆TCAS = 2.5–2.9 ◦C, ηIHX,R404A = ηIHX,R744 = 0)
on the COP and mass flow rate of R404A and R744 cycles and the COP and mass flow ratio of the
entire CRS. As shown in Figure 2, there was minimal change in the COP and mass flow rate of the
R744 cycle, whereas the COP of the R404A cycle increased by 5.2–6.9%, increasing the COP of the
CRS by 3.9–5.6%.
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Figure 2. COP, ratio of mass flow rate, and energy of each component at the CRS with respect to the
subcooling degree of the R404A cycle.

In detail, the mass flow rate of the R404A cycle decreased by 4.5–6.0%, whereas that
of the R744 cycle was almost unchanged. Therefore, the mass flow ratio of the entire CRS
decreased by 4.5–6.0%. Furthermore, the total power consumption of the compressor of
the CRS decreased by 3.2–5.4%; the power consumption of the compressor in the R744
cycle was almost unchanged, but that of the R404A cycle decreased by 4.3–6.6%. The
evaporation capacity was approximately constant at 5.83–5.91 kW. Thus, as the subcooling
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in the R404A cycle increased, the subcooling and superheating in the R744 cycle, as well as
the evaporation and condensation temperatures, remained almost constant, leading to no
change in COP. Moreover, there was minimal change in the enthalpy values of the R404A
compressor inlet and outlet; therefore, the evaporator enthalpy difference (i8–i6) of the
cascade heat exchanger increased by 6.1–7.9 kJ/kg. In conclusion, the constant cascade
evaporation capacity and increased enthalpy difference between the inlet and outlet of the
evaporator led to a decrease in the R404A mass flow rate. In turn, this decreased the power
consumption of the compressor and increased the COP of the R404A cycle and entire CRS.

The reason for the decrease in R404A mass flow rate is that the cascade evaporation
capacity is constant, whereas the enthalpy difference between the inlet and outlet of the
evaporator increases and the mass flow rate decreases. These results are consistent with
the studies by Kumar et al. [26] and Son and Moon [27].

3.1.2. Effect of Degree of Superheating

The ranges of superheating and supercooling degrees applied in this study were
excessively applied, not under general conditions. Nevertheless, some people did extensive
research in anticipation of the need for an unusually wide range of data. For example, in
an R404A cycle, the higher the superheat, the better the COP and the lower the mass flow.
Therefore, if you increase the superheat excessively and use a low-capacity compressor,
you can save money and increase your COP when purchasing a compressor, giving you
more options.

An experiment was conducted to investigate the effect of increasing the superheat-
ing of the R404A cycle by approximately 10 ◦C intervals from 9.8 ◦to 40.0 ◦C (under con-
stant conditions: QE = 5.69–5.71kW, TE = −40.0 to −39.8 ◦C, TE,CAS = −24.6 to −24.3 ◦C,
TC = 39.8–40.0 ◦C, ∆TSUC,R404A = 0.6–1.3 ◦C, ∆TSUH,R744 = 40.0–40.6 ◦C, ∆TSUC,R744 = 2.1–2.3 ◦C,
∆TCAS = 2.9–3.3 ◦C, ηIHX,R404A = ηIHX,R744 = 0) on the COP and mass flow rate of the R404A
and R744 cycles and the COP and mass flow ratio of the entire CRS. As shown in Figure 3,
the COP of the R744 cycle did not change, whereas the COP of the R404A cycle increased by
9.9–14.2% and that of the entire CRS accordingly increased by 7.8–12.0%.
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superheating degree of the R404A cycle.

In detail, the total power consumption of the compressor of the CRS decreased by
7.6–10.4% (the power consumption of the compressor of the R744 cycle was almost un-
changed, and the power consumption of the compressor of the R404A cycle decreased by
9.3–12.3%), whereas the evaporation capacity remained almost constant at 5.69–5.71 kW.
Therefore, the reduced power consumption of the compressor of the R404A cycle led to an
increase in the COP of the R404A cycle and the entire CRS. According to the equations in
Table 3, although an increase in the superheating did not affect the evaporation capacity
and power consumption of the compressor of the R744 cycle, the enthalpy value of both
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the compressor inlet and outlet of the R404A cycle increased, with the inlet enthalpy (i1)
increasing by 8.0–9.2 kJ/kg but the outlet enthalpy (i2) increasing by only 4.9–6.6 kJ/kg.
Therefore, the enthalpy difference between the compressor inlet and outlet (i2–i1) decreased
by 2.6–4.3 kJ/kg. This is likely because of the physical properties of R404A and the decrease
in the mass flow rate of the R404A cycle by 6.3–7.7% (according to Equation (4)), which
reduced the power consumption of the compressor of the R404A cycle. These results are
consistent with the results of previous research [26–28].

In addition, the decrease in the mass flow rate of the R404A cycle led to a reduction
in the mass flow ratio of the entire CRS of 6.0–7.9%. The reason for the decrease in the
mass flow rate of the R404A cycle was the approximately constant mass flow rate of the
R744 cycle and inlet enthalpy (i6) of the cascade evaporator, whereas the outlet enthalpy
(i8) of the cascade evaporator increased. Therefore, it is determined that the enthalpy
difference (i8-i6) between the inlet and outlet of the cascade evaporator increased, and the
mass flow rate of the R404A cycle decreased because of the energy balance in the cascade
heat exchanger. These results are consistent with the results of studies by Kumar et al. [26]
and Son and Moon [27].

A second experiment was conducted to investigate the effect of increasing the super-
heating of the R744 cycle by approximately 10 ◦C intervals from 10.3 to 40.5 ◦C (under con-
stant conditions: QE = 5.83–5.84 kW, TE = −40.1 to −39.8 ◦C, TE,CAS = −21.0 to −20.6 ◦C,
TC = 42.0–42.4 ◦C, ∆TSUH,R404A = 15.4–15.7 ◦C, ∆TSUC,R404A = 1.4–1.7 ◦C, ∆TSUC,R744 = 1.8–2.4 ◦C,
∆TCAS = 2.8–3.0 ◦C, ηIHX,R404A = ηIHX,R744 = 0) on the COP and mass flow rate of R404A and
R744 cycles and the COP and mass flow ratio of the entire CRS. As shown in Figure 4, the COP
of the R404A cycle hardly changed, whereas the COP of the R744 cycle decreased by 4.9–8.5%.
Accordingly, the COP of the entire CRS decreased by 1.1–2.7%. This is consistent with the results
of Kumar et al. [26].
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Figure 4. COP, ratio of mass flow rate and energy of each component at the CRS with respect to
superheating degree of the R744 cycle.

In detail, the total power consumption of the compressor of the CRS increased by
1.0–2.7% (the power consumption values of the compressor of R404A and R744 cycles
increased by 0.2–1.6% and 5.0–9.1%, respectively), whereas the evaporation capacity re-
mained almost constant at 5.83–5.84 kW. The reason for the lack of change in the COP
of the R404A cycle is that the subcooling and superheating, as well as the evaporation
and condensation temperature, were almost constant in the R404A cycle. The increase in
the power consumption of the compressor of the R744 cycle with increased superheating
of the R744 cycle is explained by the equations in Table 4 and the physical properties
of R744. That is, the inlet and outlet enthalpy value (i11, i12) of the R744 compressor in-
creased by 9.1–10.4 kJ/kg and 14.7–16.3 kJ/kg, respectively, leading to an increase in the
enthalpy difference (i12–i11) between the compressor inlet and outlet by 4.3–7.1 kJ/kg. This
increased the power consumption of the compressor of the R744 cycle, despite the slight
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reduction in R744 mass flow rate by 2.7–3.7%. This result agrees with those of previous
research [11,29]. Conversely, the mass flow rate of the R404A cycle increased by 0.9–1.7%;
thus, the mass flow ratio of the entire CRS increased by 3.8–4.9%. In conclusion, as the
degree of superheating of the R744 cycle increased, the cascade condensation capacity
increased due to the increased power consumption of the compressor of the R744 cycle,
yet the evaporation temperature and superheating degree of the cascade evaporator in the
cascade heat exchanger remained constant; therefore, the mass flow rate of the R404A cycle
increased to maintain energy balance. This is consistent with the results of Kumar et al. [26].

3.2. Effect of Condensation and Evaporation Temperature
3.2.1. Effect of Condensation Temperature

An experiment was conducted to investigate the effect of increasing the condensation
temperature of the cascade refrigeration system by approximately 10 ◦C intervals from 19.7
to 49.6 ◦C (under constant conditions: QE = 5.84–5.9kW, TE =−40.1 to−39.7◦C, TE,CAS = −25
to −24.4 ◦C, ∆TSUH,R404A =20.5–21.4 ◦C, ∆TSUC,R404A = 1.0–1.6 ◦C, ∆TSUH,R744 = 40.2–40.7 ◦C,
∆TSUC,R744 = 1.9–2.5 ◦C, ∆TCAS = 2.9–3.2 ◦C, ηIHX,R404A = ηIHX,R744 = 0) on the COP and mass
flow rate of R404A and R744 cycles and the COP and mass flow ratio of the entire CRS. As
shown in Figure 5, there was little change in the COP and mass flow rate of the R744 cycle,
whereas the COP of the R404A cycle decreased by 26.4–30.0%. Accordingly, the COP of the
entire CRS decreased by 20.1–26.0%.
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Figure 5. COP, ratio of mass flow rate and energy of each component at the CRS with respect to the 

condensation temperature of the CRS. 
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condensation temperature of the CRS.

The reason for this result is that the power consumption of the compressor of the
R404A cycle increased as the condensation temperature increased, which decreased the
COP of the R404A cycle. Conversely, the COP of the R744 cycle did not change because
the enthalpy values of the inlet and outlet of the evaporator and condenser were almost
constant. In addition, as the condensation temperature increased in the CRS, the mass
flow rate of the R404A cycle increased by 10.4–18.0%, whereas that of the R744 cycle
was almost unchanged. Therefore, the mass flow ratio of the entire CRS increased by
10.9–17.7%. Additionally, the total power consumption of the compressor of the CRS
increased by 24.1–35.7% (that of the R4744 cycle was almost unchanged, but that of the
R404A cycle increased by 34.4–43.1%) and the evaporation capacity was almost constant at
5.84–5.90 kW. Thus, the increased power consumption of the compressor of the R404A cycle
reduced the COP of the R404A cycle and the overall CRS. This is consistent with previous
results [28,30–34]. As for the mass flow rate, the increased condensation temperature did
not change the mass flow rate of the R744 cycle nor the enthalpy values of the evaporator
and condenser inlet and outlet. However, although the inlet enthalpy (i1) of the R404A
cycle compressor did not change, the outlet enthalpy (i2) increased by 11.7–17.5 kJ/kg.
Thus, the cascade evaporation capacity (evaporation capacity of the R404A cycle) and
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the enthalpy (i8) of the evaporator (evaporator of the R404A cycle) outlet were almost
constant, but the enthalpy (i4, i6) of the condenser outlet and the evaporator inlet increased,
which reduced the enthalpy difference (i2–i4) between the inlet and outlet of the cascade
evaporator, increasing the mass flow rate of the R404A cycle and the mass flow ratio of
the CRS. This is confirmed to be consistent with the results of the studies by Getu and
Bansal [11] and Son and Moon [27].

3.2.2. Effect of Evaporation Temperature

The same analysis as in Section 3.2.1 was performed by increasing the evaporation
temperature of the CRS by approximately 5 ◦C intervals from −49.6 ◦C to −30.3 ◦C (under
constant conditions: QE = 5.84–6.69kW, TE,CAS = −20.8 to −20.1 ◦C, TC = 39.7–40.6 ◦C,
∆TSUH,R404A = 20.0–20.7 ◦C, ∆TSUC,R404A = 0.8–1.6 ◦C, ∆TSUH,R744 = 9.9–11 ◦C, ∆TSUC,R744 =
2.9–3.7 ◦C, ∆TCAS = 3.3 –4.3 ◦C, ηIHX,R404A = ηIHX,R744 = 0). As shown in Figure 6, the COP
of the R744 cycle increased by 9.8–19.3%, whereas that of the R404A cycle hardly changed.
Accordingly, the COP of the CRS increased by 2.7–8.6%. This is consistent with the results
of Getu and Bansal [11].
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This was because the increased evaporation temperature reduced the power consump-
tion of the compressor of the R744 cycle. In addition, the mass flow rate of the R404A
cycle hardly changed, whereas that of the R744 cycle increased by 0.7–3.9%. Therefore,
the mass flow ratio of the CRS decreased by 1–3.9%. The total power consumption of
the compressor of the CRS decreased by 1.5–3.8% (that of the R744 cycle decreased by
7.8–13.1%, whereas that of the R404A cycle was approximately constant), and the evapora-
tion capacity increased by 1.2–4.7%. The reason for these results is that as the evaporation
temperature increases, the mass flow rate of the R404A cycle and the inlet and outlet
enthalpy values of the compressor, condenser, expansion valve, and evaporator remained
almost the same, leading to minimal change in the COP. Moreover, the enthalpy values
(i14, i16) of the R744 condenser outlet and evaporator inlet exhibited minimal change; how-
ever, the enthalpy values (i11 or i18) of the evaporator outlet and R744 compressor inlet
increased by 1.2–2.6 kJ/kg, the enthalpy value (i12) of the R744 compressor outlet decreased
by 4.3–14.0 kJ/kg, and the enthalpy difference (i12–i11) at the compressor inlet/outlet de-
creased by 5.5–16.6 kJ/kg; thus, the enthalpy difference (i18–i16) of the evaporator inlet
and outlet increased by 1.4–2.2 kJ/kg. Accordingly, the COP of the R744 cycle and entire
CRS increased. This is consistent with previous results [8,11,29,30,35,36]. In addition,
as the evaporation temperature (evaporating temperature of the R744 cycle) increased,
the mass flow rate of the R404A cycle remained constant, but the mass flow rate of the
R744 cycle increased. Thus, the expansion valve of the R744 cycle was opened to match
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the evaporation temperature, and the mass flow rate increased. This is confirmed to be
consistent with the results of the studies by Getu and Bansal [11].

3.3. Effect of Evaporation Temperature of Cascade Heat Exchanger

An experiment was conducted to investigate the effect of increasing the evaporation
temperature of the cascade heat exchanger by approximately 5 ◦C intervals from −25.0 ◦C
to −10.3 ◦C (under constant conditions: QE = 4.65–5.96kW, TE = −40.1 to −39.7 ◦C,
TC = 41–41.6 ◦C, ∆TSUH,R404A = 20.2–20.8 ◦C, ∆TSUC,R404A = 1.4–1.9 ◦C, ∆TSUH,R744 =
10.4–10.8 ◦C, ∆TSUC,R744 = 1–1.5 ◦C, ∆TCAS = 2.9–3.4 ◦C, ηIHX,R404A = ηIHX,R744 = 0) on
the COP and mass flow rate of R404A and R744 cycles and the COP and mass flow ratio of
the entire CRS. As shown in Figure 7, the COP of the R744 cycle decreased by 13.0–17.8%,
whereas the COP of R404A increased by 6.3–19.3%. Accordingly, the COP of the entire CRS
increased and then decreased by 3.8–10.2%.
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In detail, as the evaporation temperature of the cascade heat exchanger increased,
the condensation temperature of the R744 cycle increased, the enthalpy difference (i18–i16)
between the evaporator inlet and outlet in the R744 cycle decreased, and the enthalpy
difference (i12–i11) between the R744 compressor inlet and outlet increased, which reduced
the COP of the R744 cycle. Conversely, in the R404A cycle, the enthalpy difference (i8–i6)
of the evaporator inlet and outlet in the R404A cycle increased, whereas that (i2–i1) of
the R404A compressor inlet and outlet decreased, which increased the COP of the R404A
cycle. Thus, the COP of the entire CRS increased and then decreased in the form of a
parabola, indicating an optimum evaporation temperature of the cascade heat exchanger
(about −16 ◦C) that depends on the characteristics of the high- and low-temperature side
refrigerants. The same results were obtained in previous studies [7,8,11,12,21,23,25,26,29].
Specifically, Nicola et al. stated that “the optimum COP of a CRS is greatly affected by the
optimum intermediate temperature for each refrigerant” [7], and Yun and Cho reported
that “the condensation temperature of the cascade condenser is set very low or very high,
and it is ju dged that the maximum COP is formed at the equilibrium point. This is because
the load on the compressor increases” [12].

Furthermore, as the cascade evaporation temperature increased, the mass flow rate of
both the R404A cycle and R744 cycle decreased by 6.2–10.6% and 2.4–6.9%, respectively.
The mass flow ratio of the CRS decreased by 3.2–3.7%, which was larger than the mass
flow rate reduction of the R744 cycle. The same results were obtained by Getu and
Bansal [11], Son and Moon [27], and Parekh and Tailor [33]. Additionally, the total power
consumption of the compressor of the CRS decreased by 5.2–11.0% and then increased by
3.8% at a temperature of approximately −16 ◦C (the power consumption of the compressor
of the R404A cycle was significantly reduced by 2.3–19.9%, whereas that of the R744
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cycle increased by 10.6–15.2%), and the evaporation capacity was almost unchanged at
5.83–5.89 kW. In detail, from a cascade evaporation temperature of approximately −16 ◦C,
the power consumption of the compressor of the R744 cycle ceased decreasing and began
to increase linearly. Thus, the total power consumption of the compressor of the CRS,
which is the sum of the two cycle compressors, decreased only until a cascade evaporation
temperature of approximately −16 ◦C (optimum evaporation temperature).

3.4. Effect of Internal Heat Exchanger Efficiency
3.4.1. Effect of Internal Heat Exchanger Efficiency at R404A Cycle

An experiment was conducted to investigate the effect of increasing the number of
stages (i.e., increasing the efficiency) of the R404A cycle internal heat exchanger (IHE) from 0
to 4 (under constant conditions: QE = 4.89–4.91kW, TE =−40 to−39.8 ◦C, TE,CAS = −10.8 to
−10.2 ◦C, TC = 39.6–40 ◦C, ∆TSUH,R404A = 20.2–20.8 ◦C, ∆TSUC,R404A = 0.8–1.1 ◦C, ∆TSUH,R744
= 10–10.5 ◦C, ∆TSUC,R744 = 1.1–1.4 ◦C, ∆TCAS = 2.4–2.9◦C, ηIHX,R744 = 0) on the COP and
mass flow rate of R404A and R744 cycles and the COP and mass flow ratio of the entire
CRS. As shown in Figure 8, the IHE efficiency was 0%, 25.9%, 34.6%, 43.2%, and 48.6%
at stage 0, 1, 2, 3, and 4, respectively. As the number of stages was gradually increased,
the COP and mass flow rate of the R744 cycle exhibited minimal changes, whereas the
COP of the R404A cycle increased by 1.2–10.4% and the COP of the entire CRS accordingly
increased by 0.2–6.4%.
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Figure 8. COP, ratio of mass flow rate and energy of each component at the CRS with respect to IHE
efficiency of the R404A cycle.

In detail, the mass flow rate of the R404A cycle decreased by 0.8–5.2%, the mass
flow rate of the R744 cycle was almost unchanged, and the mass flow ratio of the CRS
decreased by 0.8–5.1%. Furthermore, the total compressor power consumption of the CRS
decreased by 0.3–6.1% (the power consumption of the R744 compressor was approximately
unchanged, whereas the power consumption of the R404A compressor decreased by
1.0–9.4%), and the evaporation capacity was almost constant at 4.89–4.91 kW. Therefore,
the evaporation temperature, superheating, subcooling, condensation temperature, and
enthalpy (i8) of the evaporator outlet remained constant in the R404A cycle, whereas the
enthalpy (i6) of the evaporator inlet in the R404A cycle decreased. Therefore, the enthalpy
difference (i8–i6) between the evaporator inlet and outlet increased. The enthalpy (i1, i2)
at both the compressor inlet and outlet in the R404A cycle increased, but the increase in
enthalpy at the compressor inlet is greater than at the outlet, so the enthalpy difference
(i2–i1) of the compressor inlet and outlet decreased. This was due to the physical properties
of the R404A refrigerant. Thus, the increase in COP with an increasing number of IHE
stages of the R404A cycle occurred because of the effect of the superheating and subcooling
in the R404A cycle. That is, when the superheating or subcooling increased, the COP of
the R404A cycle also increased. Therefore, using an IHE with high efficiency in the R404A
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cycle is advantageous in terms of the COP. This is confirmed to be consistent with the
results of Son and Moon [27], Oruğç and Devecioğlu [37], and Jin et al. [38].

3.4.2. Effect of Internal Heat Exchanger Efficiency at R744 Cycle

The same experiment as that in Section 3.4.1 was performed for the R744 IHE. As
shown in Figure 9, the IHE efficiencies were 0%, 54.6%, 71.6%, 84.6%, and 89.5% at stage
0, 1, 2, 3, and 4, respectively. As the number of stages was gradually increased, the COP
and mass flow rate of the R404A cycle exhibited minimal changes, whereas the COP of
the R744 cycle decreased by 0.1–1.1% and the COP of the CRS accordingly decreased by
0.01–0.7%. This is consistent with the results of Llopis et al. [39].
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Figure 9. COP, ratio of mass flow rate and energy of each component at the CRS with respect to 

IHE efficiency of the R744 cycle. 
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Figure 9. COP, ratio of mass flow rate and energy of each component at the CRS with respect to IHE
efficiency of the R744 cycle.

In detail, the mass flow rate of the R744 cycle decreased by 0.2–2.5%, the mass flow rate
of the R404A cycle was almost unchanged, and the mass flow ratio of the CRS increased by
0.2–3.1%. Furthermore, the total compressor power consumption of the CRS increased by
0.1–0.7% (the power consumption of the R404A compressor was almost unchanged, but that
of the R744 compressor increased by 0.1–1.1%), and the evaporation capacity was almost
constant at 5.1–5.2 kW. Thus, in the R744 cycle, the evaporation temperature, subcooling
and superheating, condensation temperature, and enthalpy (i18) at the evaporator outlet
was constant, whereas the enthalpy (i16) at the evaporator inlet decreased as the number
of IHE stages increased. This increased the enthalpy difference (i18–i16) between the inlet
and outlet of the evaporator, with both enthalpies (i11, i12) at the inlet and outlet of the
compressor also increasing. The different properties of the R404A and R744 refrigerant led
to different COP values for these cycles. In the IHE, the subcooling and superheating occur
at the same time, but the effect of the superheating is greater than the subcooling; therefore,
according to the results discussed in Section 3.1.2, the COP of the R744 cycle was reduced.

Therefore, not applying the IHE in the R744 cycle is advantageous in terms of the COP
and economy because the COP decreases when a high-efficiency IHE is used in the R744
cycle. Similarly, Zhang et al. stated that it is better not to apply the IHE in the subcritical
R744 refrigeration cycle [40]. This is because the increase in the power consumption of the
compressor is larger than the increase in evaporation capacity.

3.5. Comparison of Experimental and Performance Analysis Data

Figure 3 shows the experimental results of the COP, mass flow rate, and energy
according to the superheating of the R404A cycle, obtained under certain conditions
(QE = 5.69–5.71 kW, TE = −40.0 to −39.8 ◦C, TE,CAS = −24.6 to−24.3 ◦C, TC = 39.8–40.0 ◦C,
∆TSUC,R404A = 0.6–1.3 ◦C, ∆TSUH,R744 = 40.0–40.6◦C, ∆TSUC,R744 = 2.1–2.3 ◦C, ∆TCAS = 2.9–3.3◦C,
ηIHX,R404A = ηIHX,R744 = 0). Conversely, Figure 10 shows the results obtained through
performance analysis; the analysis conditions (QE = 5.69kW, TE =−40◦C, TE,CAS =−24.5◦C,
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TC = 40.0 ◦C, ∆TSUC,R404A = 1 ◦C, ∆TSUH,R744 = 10 ◦C, ∆TSUC,R744 = 2.2 ◦C, ∆TCAS = 3.1 ◦C,
ηIHX,R404A = ηIHX,R744 = 0, ηCOM,R744 = 0.499, ηCOM,R404A = 0.485) in Figure 10 were adjusted
to match the experimental data conditions as closely as possible. The power consumption
of R404A and R744 compressors under similar conditions exhibited a smaller decrease in
the performance analysis than in the experimental data; however, the overall trend was
the same. In addition, the COP and mass flow rate results according to the subcooling
of the R404A cycle, the superheating of the R744 cycle, the evaporation temperature, the
condensation temperature, the cascade evaporation temperature, and the IHE efficiency all
showed the same results. Hence, the reason for the difference between the experimental
data and performance analysis results was the difference in the power consumption of
the compressor, that is, the compression efficiency. Therefore, further studies on the
compression efficiency are required. By correcting and supplementing this, even if there is
no detailed knowledge of refrigeration, I propose a formula that can easily calculate the
COP in the CRS, the optimum cascade evaporation temperature according to each condition,
and the mass flow ratio related to the refrigerant charging amount in the following content.

Energies 2021, 14, x FOR PEER REVIEW 15 of 21 
 

 

flow rate results according to the subcooling of the R404A cycle, the superheating of the 

R744 cycle, the evaporation temperature, the condensation temperature, the cascade evapo-

ration temperature, and the IHE efficiency all showed the same results. Hence, the reason for 

the difference between the experimental data and performance analysis results was the dif-

ference in the power consumption of the compressor, that is, the compression efficiency. 

Therefore, further studies on the compression efficiency are required. By correcting and 

supplementing this, even if there is no detailed knowledge of refrigeration, I propose a for-

mula that can easily calculate the COP in the CRS, the optimum cascade evaporation tem-

perature according to each condition, and the mass flow ratio related to the refrigerant 

charging amount in the following content. 

Superheating degree of R404A cycle, Δ T
SUH, R404A

 [
o
C]

5 10 15 20 25 30 35 40 45

E
n
e
rg

y
 o

f 
e
a
ch

 c
o
m

p
o
n
e
n
t,

 Q
 &

 W
 [

k
W

]

0

1

2

3

4

5

6

7

8

C
o
e
ff

ic
ie

n
t 

o
f 

p
e
rf

o
rm

a
n
ce

, 
C

O
P

 [
/]

0

1

2

3

4

5

6

M
a
ss

 f
lo

w
ra

te
, 

m
 [

k
g
/s

]

0.01

0.02

0.03

0.04

0.05

0.06

0.07

R
a
ti

o
 o

f 
m

a
ss

 f
lo

w
ra

te
, 

m
R

A
T

IO
 [

/]
2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

QE 

Q
E,CAS 

WCOM,R404A 

WCOM,R744 

WCOM,SYS 

COPR404A 

COP
R744 

COPSYS 

m
R404A 

mR744 

mRATIO 

 

Figure 10. Performance analysis results with respect to superheating degree in R404A cycle of the 

cascade refrigeration system. 

3.6. Multilinear Regression Analysis 

This study analyzed the effect of six factors (superheating (∆TSUH,R744, ∆TSUH,R404A), sub-

cooling (∆TSUC,R744, ∆TSUC,R404A), IHE efficiency (ηIHX,R744, ηIHX,R404A), evaporation temperature 

(TE), condensation temperature (TC), and cascade evaporation temperature (∆TCAS)) on the 

performance of the R744/R404A CRS. The results revealed the existence of a maximum COP 

(COPMAX) of the CRS, an optimum cascade evaporation temperature ((TE,CAS)OPT), and an op-

timum mass flow ratio ((
mR404A

mR744
)OPT). Although previous studies [8,9,11] have performed 

multiple regression analysis for CRSs, none of them included an IHE or performed a de-

tailed analysis. Therefore, mathematical equations for the maximum COP and optimum 

cascade evaporating temperature and mass flow ratio of the R744/R404A CRS with an 

IHE were developed through a detailed multiple regression analysis as a function of the 

six factors influencing system performance, and the results are summarized as follows. 

COPMAX = f(TE, ∆TSUH,R744, ∆TSUC,R744, ηIHX,R744, ∆TCAS, ∆TSUH,R404A, ∆TSUC,R404A, ηIHX,R404A, TC (5) 

(TE,CAS)OPT = f(TE, ∆TSUH,R744, ∆TSUC,R744, ηIHX,R744, ∆TCAS, ∆TSUH,R404A, ∆TSUC,R404A, ηIHX,R404A, TC) (6) 

(
mR404A

mR744
)OPT = f(TE, ∆TSUH,R744, ∆TSUC,R744, ηIHX,R744, ∆TCAS, ∆TSUH,R404A, ∆TSUC,R404A, ηIHX,R404A, TC)   (7) 

The equation for the results of multiple regression analysis of maximum COP and 

optimal cascade evaporating temperature and mass flow ratio are as follows. 

Figure 10. Performance analysis results with respect to superheating degree in R404A cycle of the
cascade refrigeration system.

3.6. Multilinear Regression Analysis

This study analyzed the effect of six factors (superheating (∆TSUH,R744, ∆TSUH,R404A),
subcooling (∆TSUC,R744, ∆TSUC,R404A), IHE efficiency (ηIHX,R744, ηIHX,R404A), evaporation
temperature (TE), condensation temperature (TC), and cascade evaporation temperature
(∆TCAS)) on the performance of the R744/R404A CRS. The results revealed the existence
of a maximum COP (COPMAX) of the CRS, an optimum cascade evaporation temperature
((TE,CAS)OPT), and an optimum mass flow ratio (

(
mR404A
mR744

)
OPT

). Although previous stud-
ies [8,9,11] have performed multiple regression analysis for CRSs, none of them included
an IHE or performed a detailed analysis. Therefore, mathematical equations for the max-
imum COP and optimum cascade evaporating temperature and mass flow ratio of the
R744/R404A CRS with an IHE were developed through a detailed multiple regression
analysis as a function of the six factors influencing system performance, and the results are
summarized as follows.

COPMAX = f(TE, ∆TSUH,R744, ∆TSUC,R744, ηIHX,R744, ∆TCAS, ∆TSUH,R404A, ∆TSUC,R404A, ηIHX,R404A, TC (5)

(TE,CAS)OPT = f
(
TE, ∆TSUH,R744, ∆TSUC,R744, ηIHX,R744, ∆TCAS, ∆TSUH,R404A, ∆TSUC,R404A, ηIHX,R404A, TC

)
(6)
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(
mR404A

mR744

)
OPT

= f
(
TE, ∆TSUH,R744, ∆TSUC,R744, ηIHX,R744, ∆TCAS, ∆TSUH,R404A, ∆TSUC,R404A, ηIHX,R404A, TC

)
(7)

The equation for the results of multiple regression analysis of maximum COP and
optimal cascade evaporating temperature and mass flow ratio are as follows.

COPMAX = a0 + a1 TE + a2TE
2 + a3TE

3 + a4∆TSUH,R744 + a5∆TSUH,R744
2 + a6∆TSUH,R744

3 + a7∆TSUC,R744

+a8∆TSUC,R744
2 + a9∆TSUC,R744

3 + a10ηIHX,R744,+a11ηIHX,R744
2 + a12ηIHX,R744

3 + a13∆TCAS

+a14∆TCAS
2 + a15∆TCAS

3 + a16∆TSUH,R404A + a17∆TSUH,R404A
2 + a18∆TSUH,R404A

3

+a19∆TSUC,R404A + a20∆TSUC,R404A
2 + a21∆TSUC,R404A

3 + a22ηIHX,R404A,+a23ηIHX,R404A
2

+a24ηIHX,R404A
3 + a25TC + a26TC

2 + a27TC
3

(8)

(TE,CAS)OPT = a0 + a1TE + a2TE
2 + a3TE

3 + a4∆TSUH,R744 + a5∆TSUH,R744
2 + a6∆TSUH,R744

3 + a7∆TSUC,R744+

a8∆TSUC,R744
2 + a9∆TSUC,R744

3 + a10ηIHX,R744,+a11ηIHX,R744
2 + a12ηIHX,R744

3 + a13∆TCAS + a14∆TCAS
2+

a15∆TCAS
3 + a16∆TSUH,R404A + a17∆TSUH,R404A

2 + a18∆TSUH,R404A
3 + a19∆TSUC,R404A + a20∆TSUC,R404A

2+

a21∆TSUC,R404A
3 + a22ηIHX,R404A,+a23ηIHX,R404A

2 + a24ηIHX,R404A
3 + a25TC + a26TC

2 + a27TC
3

(9)

(
mR404A
mR744

)
OPT

= a0 + a1TE + a2TE
2 + a3TE

3 + a4∆TSUH,R744 + a5∆TSUH,R744
2 + a6∆TSUH,R744

3 + a7∆TSUC,R744

+a8∆TSUC,R744
2 + a9∆TSUC,R744

3 + a10ηIHX,R744,+a11ηIHX,R744
2 + a12ηIHX,R744

3 + a13∆TCAS

+a14∆TCAS
2 + a15∆TCAS

3 + a16∆TSUH,R404A + a17∆TSUH,R404A
2 + a18∆TSUH,R404A

3

+a19∆TSUC,R404A + a20∆TSUC,R404A
2 + a21∆TSUC,R404A

3 + a22ηIHX,R404A,+a23ηIHX,R404A
2

+a24ηIHX,R404A
3 + a25TC + a26TC

2 + a27TC
3

(10)

Approximately 1560 data were analyzed based on the analysis, and the regression
analysis coefficients (a0~a27) in Equations (8)–(10), statistical indicators (standard error,
standard deviation of error term (rms), and coefficient of determination (R2)) are summa-
rized in Table 6. The standard deviation and coefficient of determination were calculated
using the following equation [11]:

rms =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (11)

R2 =
∑i=n

i=1 (ŷi − y)2

∑i=n
i=1 (yi − y)2 100% . (12)

In Figures 11–13, three values (maximum COP, optimal cascade evaporation tempera-
ture, and optimal mass flow ratio) obtained according to the parameter conditions in the
experiment and Equations (8)–(10) proposed through the revised performance analysis
were substituted with the same variables as the experimental conditions, and the calculated
values were mutually exclusive. By comparison, it was confirmed how much the error was.

Therefore, it can be concluded that the prediction of three values is possible by using
the proposed equations without conducting an experiment by confirming that the error is
within ±15%.
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Table 6. Statistical information for Equations (8)–(10).

Linear Regression Coefficients
for COPMAX

Linear Regression Coefficients
for (TE,CAS)OPT

Linear Regression Coefficients
for (mR404A/mR744)OPT

Value Standard Error Value Standard Error Value Standard Error

a0 1.869×10 18.501 −2.587×103 3.967×102 −1.57 1.91×10

a1 1.706 1.558 −2.356×102 3.340×10 −9.93×10−1 1.61

a2 4.227×10−2 0.039 −6.181 8.430×10−1 −1.98×10−2 4.06×10−2

a3 3.484×10−4 0.000 −5.334×10−2 7.037×10−3 −1.26×10−4 3.39×10−4

a4 3.111×10−2 0.049 −1.923 1.047 4.66×10−2 5.04×10−2

a5 −1.103×10−3 0.002 1.150×10−1 4.512×10−2 −1.90×10−3 2.17×10−3

a6 9.719×10−6 0.000 −1.785×10−3 5.881×10−4 3.06×10−5 2.83×10−5

a7 −1.015 1.211 1.343×102 2.597×10 5.00×10−1 1.25

a8 6.801×10−1 0.694 −8.824×10 1.488×10 −3.37×10−1 7.17×10−1

a9 −1.328×10−1 0.123 1.689×10 2.637 6.88×10−2 1.27×10−1

a10 1.229×10−1 1.060 −1.071×10 2.272×10 2.38×10−1 1.09

a11 −2.695×10−1 2.945 1.244×10 6.315×10 1.10×10−1 3.04

a12 1.447×10−1 2.007 1.351 4.304×10 −2.29×10−1 2.07

a13 6.347 4.952 −3.674×102 1.062×102 −1.29×10 5.12

a14 −2.128 1.615 1.416×102 3.464×10 4.00 1.67

a15 2.376×10−1 0.178 −1.827×10 3.811 −3.98×10−1 1.84×10−1

a16 8.977×10−2 0.039 −4.703 8.455×10−1 1.93×10−2 4.07×10−2

a17 −3.977×10−3 0.002 2.211×10−1 3.844×10−2 −2.14×10−3 1.85×10−3

a18 5.570×10−5 0.000 −3.012×10−3 5.217×10−4 2.93×10−5 2.51×10−5

a19 1.803×10−2 0.026 1.980×10−1 5.519×10−1 −5.40×10−2 2.66×10−2

a20 −1.563×10−3 0.003 −2.023×10−2 6.779×10−2 1.93×10−3 3.27×10−3

a21 5.853×10−5 0.000 5.123×10−4 2.222×10−3 −5.62×10−5 1.07×10−4

a22 −7.559×10−2 1.502 1.722×10 3.220×10 −1.19 1.55

a23 5.192×10−1 8.106 −1.256×102 1.738×102 4.89 8.38

a24 3.280×10−2 10.898 1.853×102 2.337×102 −7.74 1.13×10

a25 −6.086×10−2 0.093 −6.747 1.985 5.13×10−2 9.57×10−2

a26 8.071×10−4 0.003 1.862×10−1 5.831×10−2 −7.17×10−4 2.81×10−3

a27 −6.180×10−6 0.000 −1.608×10−3 5.436×10−4 1.12×10−5 2.62×10−5

Number of points (n) = 1560
rms = 0.03462
R2 = 97.4%

Number of points (n) = 1560
rms = 0.74232
R2 = 97.69%

Number of points (n) = 1560
rms = 0.03577
R2 = 98.47%
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Figure 11. Comparison of experimental data with the calculated maximum coefficient of perfor-
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4. Conclusions

In this study, R404A and R744 refrigerants were applied to the high-temperature and
low-temperature cycles of a CRS with an IHE, respectively, and the factors affecting the
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COP of the system were theoretically identified and analyzed. This study aimed to provide
basic data for the optimal design of R744/R404A CRS. Therefore, I investigated the various
factors necessary for designing a CRS that can operate at low temperatures of −50 to
−30 ◦C, which is appropriate for supermarkets. According to the various conditions of the
R744/R404A CRS, I proposed formulas that can be used to easily calculate the COP of the
system, the optimal cascade evaporation temperature to achieve the maximum COP, and
the optimal amount of refrigerant to be charged in each cycle of the system. The results of
this study can be used to optimize the overall COP of the CRS, thereby achieving energy
and economic efficiency by minimizing the refrigerant charge of the R404A cycle, enabling
environmentally friendly operation and maintenance. In the future, it will be necessary to
replace R404A refrigerant with another refrigerant. According to the results of this study,
we recommend R448A and R449A refrigerants, which can replace R404A in a 1:1 ratio.
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Nomenclature

SYMBOLS SUBSCRIPTS
COP Coefficients of performance - C Condensation, Condenser

.
Ex Exergy rate kW cal Calculated
i Enthalpy kJ/kg CAS Cascade heat exchanger
.

m Mass flow rate kg/s COM Compression
P Pressure kPa D Destruction
Q Heat capacity kW E Evaporation, Evaporator
s Entropy kJ/(kg·K) Ex Exergy
T Temperature ◦C exp Experimental
W Power consumption kW F Fuel

IHX Internal heat exchanger
GREEK SYMBOLS k kth component
∆ Difference P Product
η Efficiency Ratio Ratio

R404A R404A refrigeration cycle
SUPERSCRIPTS R744 R744 refrigeration cycle
M Mechanical SUC Subcooling
T Thermal SUH Superheating

SYS Cascade refrigeration system
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