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Abstract: In recent decades, various types of control techniques have been proposed for use in
power systems. Among them, the use of a proportional–integral–derivative (PID) controller is widely
recognized as an effective technique. The generalized type of this controller is the fractional-order
PID (FOPID) controller. This type of controller provides a wider range of stability area due to the
fractional orders of integrals and derivatives. These types of controllers have been significantly
considered as a new approach in power engineering that can enhance the operation and stability of
power systems. This paper represents a comprehensive overview of the FOPID controller and its
applications in modern power systems for enhancing low-frequency oscillation (LFO) damping. In
addition, the performance of this type of controller has been evaluated in a benchmark test system.
It can be a driver for the development of FOPID controller applications in modern power systems.
Investigation of different pieces of research shows that FOPID controllers, as robust controllers, can
play an efficient role in modern power systems.

Keywords: fractional-order proportional–integral–derivative (FOPID) controller; FACTS; inverter-
based power plant (IBPP); low-frequency oscillation (LFO); power oscillation damping controller
(PODC); synchronous generator (SG)

1. Introduction

With the development of power systems in the world, as well as the existence of new
types of applications, the concept of power system stability is becoming very important.
Accordingly, one of the most important issues is the robustness of power systems against
uncertainties [1,2]. A robust controller is a controller that has a wide stability area and
where the system uncertainties do not affect its performance significantly. So, in recent
years, many studies on robust controllers have been conducted by researchers around the
world [3]. On the other hand, one of the important problems of power grids is the risk of
low-frequency oscillation (LFO) [4]. LFO is an electro-mechanical phenomenon that occurs
in power systems due to the lack of damping torque [1–4]. The common technique for
damping LFOs is to use an auxiliary controller called a power system stabilizer (PSS) in an
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automatic voltage regulator (AVR) of a synchronous generator (SG) [1–4]. Conventional
PSSs are the lead–lag compensators (LLCs) that are easy to design [5]. The operating
mechanism of these types of controllers is based on the injection of an additional voltage
signal into the excitation system of an SG. The input of these controllers can be the deviation
of the frequency, power or variation of the generator rotor angle [1,2,6].

Recently, many studies have been conducted on LFO damping by power system
devices, such as flexible AC transmission system (FACTS) devices, [5] and [7–10], and
inverter-based power plants (IBPPs) [11–18]. Studies have been performed with vari-
ous types of control strategies and electrical controllers. In the studies, the proposed
controllers have been used as power oscillation damping controllers (PODCs). One of
these types of controllers is the fractional-order proportional–integral–derivative (FOPID)
controller [19–25]. Conventional PODCs, although easy to set up and install, with in-
dustrial applications, have many problems and challenges. For example, LLCs [15] and
proportional–integral–derivative (PID) controllers [18] have a small stability area. An-
other important issue is the robustness of the PODCs against power system uncertainties.
Therefore, it is necessary that a PODC, in addition to the abilities of easy tuning and being
applicable for industrialization, has a wide range of stability as well as sufficient robustness
against power system uncertainties.

Due to the robustness and wide stability area of the FOPID controller, its application
in power systems has been widely discussed in many studies. Most of the studies of FOPID
controller applications in power systems have been related to load frequency control
(LFC) [26–29] and automatic generation control (AGC) [30–34]. Additionally, in [35] the
FOPID controller was used to improve the power quality. In many studies, the FOPID
controller has been investigated as a PODC to mitigate LFOs by SGs [36–44], FACTS
devices [45,46], and IBPPs [47–49]. Given the advantages of the FOPID controller, it is
expected that these types of controllers will be used extensively for LFO damping in
modern power systems.

The aim of this paper is to introduce FOPID controllers and investigate the advantages
and challenges of their application for LFO damping in modern power systems. For
this purpose, an overview of the power system stability has been done with a focus
on LFO. The fractional-order calculus is then presented in order to provide the model
of the FOPID controller that can be used for LFO damping in modern power systems.
Furthermore, this paper represents the optimization techniques used to tune the FOPID
controller parameters in order to achieve better performance for LFO damping. In addition,
a comparison has been made between the performance of FOPID controllers and other
proposed controllers to damp LFOs in power systems. For this purpose, a benchmark test
system has been used and the necessary simulations have been performed in different
operating conditions. Additionally, this study highlights the opportunities and challenges
of using FOPID controllers with the aim of introducing future research topics.

The rest of the paper is organized as follows. Section 2 provides an overview of the
LFOs. An overview of fractional-order calculus, the role of FOPID controller to increase
the stability area, and the structure of FOPID controller are introduced in Section 3. Then,
Section 4 describes the tuning methods of FOPID controllers. The applications of FOPID
controllers for LFO damping are presented in Section 5. Moreover, the PODC performance
evaluation and comparative simulations are presented in Section 6. Then, opportuni-
ties and challenges are provided in Section 7. Section 8 provides the discussion, while
Section 9 concludes.

2. Concept of LFOs

LFOs are one of the most important factors in destroying power system stability. The
system’s ability to maintain the acceptable point of operation during and after disturbances
is called power system stability [1,2,50]. This concept is classified into main categories as
shown in Figure 1 [50–52]. One of the categories is rotor angle stability, which is defined
as the capability of SGs to maintain or restore the balance between mechanical torque
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and electromagnetic torque [2]. Based on the power system events, rotor angle stability is
classified into two different categories as follows:

• Small-signal stability;
• Transient stability.
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The small-signal stability analysis is classified into two various categories: an oscil-
latory condition due to lack of damping torque and a non-oscillatory condition due to
lack of synchronizing torque [4]. In oscillatory conditions, oscillation with a frequency
between 0.1 Hz to 2 Hz is called LFO [2,3], which is divided into two general categories as
follows [2,3]:

• Oscillation with a frequency between 0.1 Hz to 1 Hz, due to the oscillation in a group
of SGs or power plants in an area relative to SGs or power plants in another area,
called inter-area oscillation [2,3];

• Oscillation with a frequency between 1 Hz to 2 Hz, due to the oscillation in an SG
or a power plant relative to an SG or power plant in the same area, called local
oscillation [2,3].

In conventional power systems, LFOs are usually damped by the PSS of SGs. It should
be noted that although LFOs are the most important section of oscillatory states, control
modes and torsional modes are also in the category of oscillatory states.

3. Review of the FOPID Controller

The mathematical model of this type of controller is based on fractional-order calcu-
lus [53–56]. This type of calculus is the general form of integer-order calculus. Although
fractional-order calculus is very old, its use in the design of controllers is limited to recent
years [53–56].

3.1. Concept of Fractional-Order Calculus

Fractional-order calculus is a basic concept in mathematics that actually expands
the conventional integer-order calculus to the desired orders. The history of this concept
dates back to about 300 years ago. However, due to the complexities of this concept, its
implementation has been studied in recent decades. This is while there is still no physical
and tangible understanding of fractional-order calculus [19].
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The fundamental form of the fractional-order differentiator, which can be represented
by a general operator as a general form of differential and integral operators, is defined as
follows, extracted from [19] and [53–55]:

aDq
t =



dq

dtq , q > 0

1 , q = 0
t∫

a
(dτ)−q , q < 0

(1)

where, q, a, and t denote the fractional-order and lower as well as upper limits of the
operator D, respectively. Generally, there are three different definitions for the fractional-
order differentiator [53–55]:

• The Grunwald–Letnikov (GL) definition;
• The Riemann–Liouville (RL) definition;
• The Caputo dinition.

The GL definition is as follows:

aDq
t f (t) = lim

h→0

1
hq

[(t−a)/h]

∑
j=0

(−1) j
(

n
j

)
f (t− jh) (2)

(
n
j

)
=

Γ(n + 1)
Γ(j + 1)Γ(n− j + 1)

. (3)

where n is the integer value that satisfies the condition and n−1 < q < n. Furthermore,
operator [ ] in (2) indicates a floor function [53–55]. Moreover, Γ function notes Euler’s
gamma function as follows [53–55]:

Γ(x) =
∞∫

0

t (x−1) e−t dt (4)

In addition, the RL definition is as follows [53–55]:

aDq
t f (t) =

1
Γ(n− q)

dn

dt n

t∫
a

f (τ)

(t− τ) q−n+1 dτ (5)

Additionally, the Caputo definition is as follows [53–55]:

aDq
t f (t) =

1
Γ(n− q)

t∫
a

f n(τ)

(t− τ) q−n+1 dτ (6)

3.2. Stability of Fractional-Order System

Execution of the fractional-order controller in a power system changes the math-
ematical model of the system from integer-order to fractional-order. Fractional-order
linear time-invariant (FOLTI) dynamic systems are modeled by a differential equation as
follows [19,53]:

an Dqn y(t) + an−1
Dqn−1 y(t) + · · ·+ a0

Dq0 y(t) = bm
Drm y(t) + bm−1

Drm−1 y(t) + · · ·+ b0
Dr0 y(t) (7)

where Dx ≡ 0Dx
t defines the RL derivative, ak, bl for k = 0, . . . , n and l = 0, . . . , m are

constants, and qk, rl for k = 0, . . . , n and l = 0, . . . , m are arbitrary real numbers. Moreover,
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qn > qn−1 > · · · > q0 and rn > rn−1 > · · · > r0. The transfer function of a FOLTI system
with incommensurate orders is as follows [19,53]:

C(s) =
bmsrm + bm−1srm−1 + · · ·+ b0sr0

ansqn + an−1sqn−1 + · · ·+ a0sq0
=

Y(srk )

R(sqk )
(8)

Additionally, for a fractional-order system with commensurate-order q, it holds that
qk = qk , rk = qk, (0 < q < 1) ∀ k∈ Z. This system is as follows [19,53]:

C(s) = K0
∑M

k=0 bk(sq)k

∑N
k=0 ak (sq)k = K0

Y(sq)

R(sq)
(9)

The stability condition for this system is presented as below [19,53]:

Matignon’s Stability Theorem. A fractional-order system with commensurate-order q, explained
by a rational transfer function shown in (9) is stable if and only if, |arg(λi )| > q(π/2) for all i,
where λi is the ith root of R(sq).

The state-space model of FOLTI systems is stated as below [19,53]:

0Dq
h x(t) = Ax(t) + Bu(t) (10)

y(t) = Cx(t) (11)

where x ∈ Rn, u ∈ Rm, and y ∈ RpRp are the state vector, vector of system inputs, and
vector of system outputs. For an nth-order system with m inputs and p outputs, A ∈ Rn×n,
B ∈ Rn×m, and C ∈ Rp×n are the system matrix, input matrix, and output matrix. Moreover,
q = [q1, q2, . . . , qn]

T is the fractional-order vector. The fractional-order system in (10) and
(11) is stable if and only if:

|arg (eig(A))| > (qπ)/2 (12)

where eig(A) denotes the eigenvalue of the system matrix. As shown in Figure 2, the
fractional-order system’s stability range depends on the value of fractional-order q. There-
fore, changing the value of q can increase or decrease the stability range [19,53]. As shown
in this figure, the maximum stability range of the fractional-order system is in the case
where the q is between 0 and 1.
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3.3. FOPID Controller

The FOPID controller is actually an extended form of the PID controller. Since the PID
controller has derivative and integral operators, the FOPID controller has a fractional order
between 0 and 1 for each operator. According to the contents of the previous section, it can
be concluded that the FOPID controller has a higher range of stability compared to the PID
controller due to extra degrees of freedom resulting from the order of fractional integral λ
and the order of fractional derivative δ, extracted from [19] and [53–56].

High flexibility in design and robustness against system uncertainties, especially in
non-linear systems, are the most important advantages of the FOPID controller [19,53,56].
The fractional differential equation of this type of controller is as follows [20–27]:

U(t) = KP E(t) + KI D−λ
t E(t) + KD D δ

t E(t) (13)

Additionally, to model this type of controller, it is necessary to obtain its transfer
function in the Laplace domain. The transfer function C(s) in the Laplace domain is
expressed as follows:

C(s) =
U(s)
E(s)

= KP + KIs−λ + KDsδ (14)

where E(s), U(s), KP, KI, and KD present the system input, system output, proportional
gain, integral gain, and derivative gain of the FOPID controller, respectively. Moreover,
λ and δ display the fractional orders of integrals and derivatives. The block diagram of
the FOPID controller has been shown in Figure 3A [20–27]. As depicted in Figure 3B, the
FOPID controller extends the PID controller from a point to a plane [20].
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4. Tuning Methods of FOPID Controllers

Although the controller is very flexible in design, it is not easy to design and it is
challenging. The FOPID controller design determines three gains and two fractional orders.
The fractional-order parameters in the differential equation of the FOPID controller and
the large number of parameters makes it impossible to use popular methods for controller
design [56]. According to [20,55], design methods can be classified into three various
categories, as follows:

• Rule-based techniques;
• Numerical techniques;
• Analytical techniques.

Two techniques have been applied for FOPID controller design in various studies for
power system applications. The rule-based technique is based on approximation [42,56,57],
and the numerical technique is based on optimization [58,59]. The first technique is based



Energies 2021, 14, 5983 7 of 26

on the approximation of the fractional-order function to an integer-order function [43,57].
Additionally, the numerical technique is to use optimization algorithms to determine
the optimal values of the parameters [39–45,58,59]. This technique has been used in the
literature for the application of the FOPID controller as a PODC, so this will be stated in
detail in the next section.

It should be noted that the analytical techniques are based on the specified optimal
behavior of the system, so the aim is to minimize the steady-state error. The analytical
techniques are based on the Nyquist method. However, other methods may also be
used to design fractional-order controllers in the future. Although FOPID controller
design with different methods has many complexities and challenges, however, controller
design using optimization methods is simpler than rule-based and analytical methods and
has a wide variety of optimization algorithms. Moreover, the analytical method is very
complex and has so far been used less in power system applications. However, analytical
methods are very accurate in controller design and are widely used in theoretical studies
of control systems.

Optimization Methods Technique

In this technique, the parameters of the FOPID controller are determined by solving
an optimization problem subjected to technical constraints [20,59–61]. As indicated in
Figure 3 and based on Equation (14), the closed-loop transfer function is as follows [19]:

Y(s)
Yr(s)

=
C(s)G(s)

1 + C(s)G(s)
(15)

where Y(s) and Yr(s) are the input and output of the closed-loop system. Therefore, the
steady-state error of the closed-loop system is [19]:

E(s) = Y(s)−Yr(s) =
C(s)G(s)

1 + C(s)G(s)
Yr(s)−Yr(s) (16)

where there are five unknown parameters in the FOPID controller. Therefore, the objective
function J is defined as follows [20,60]:

J (KP, KI , KD, λ, δ) (17)

As shown in Equation (17), there are many parameters for optimal adjustment of
the FOPID controller; therefore, the controller tuning is a challenging task [39–49]. The
optimization process has been depicted in Figure 4.
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The optimization process is to determine the optimal values of controller parameters
based on a specific objective; therefore, it is necessary to define a proper objective function.
Many popular objective functions have been defined and used based on E(s) minimization,
such as follows [39–44]:

J1 =
∫ ∞

0
(e(t))2 dt (18)

J2 =
∫ ∞

0
t (e(t))2 dt (19)

J3 =
∫ ∞

0
|e(t)| dt (20)

J4 =
∫ ∞

0
t |e(t)| dt (21)

where e(t) is the steady-state error. Furthermore, J1, J2, J3, and J4 demonstrate the in-
tegral squared error (ISE), integral of the time-weighted squared error (ITSE), integral
absolute error (IAE), and integral time-weighted absolute error (ITAE) indices, respec-
tively [40–42,60,62]. In [47–49], the ITAE index has been used as a non-linear objective
function for time-domain simulation. Likewise, the ITSE index has been used as an objec-
tive function in [45]. Table 1 shows the optimization algorithms used to tune the FOPID
controller in power systems.

Table 1. Literature of FOPID controller design using optimization algorithms for power system applications.

Reference Optimization Algorithm Power System Application

[32] Teaching–learning-based optimization (TLBO) AGC
[36] Particle swarm optimization (PSO) PODC

[37,38] Chaotic non-dominated sorting genetic algorithm-II (chaotic NSGA-II) PODC
[39] Genetic algorithm (GA), ant colony optimization (ACO) PODC
[40] Bat algorithm (BA) PODC
[41] Cuckoo search (CS) PODC
[42] Sine–cosine algorithm (SCA) PODC
[43] Hybrid firefly algorithm-PSO (FAPSO) PODC
[44] Chaotic yellow saddle goatfish algorithm PODC
[45] Improved PSO (IPSO) PODC
[46] Dolphin echolocation optimization (DEO) PODC
[47] PSO PODC
[48] PSO, GA PODC
[49] TLBO, PSO, GA PODC
[63] SCA AGC
[64] Chaotic multi-objective optimization LFC
[65] Atom search optimization (ASO) LFC
[66] Chaotic ASO (ChASO) Controller of DC motor

[67] Bacterial foraging optimization algorithm (BFOA), hybrid firefly
algorithm-pattern search (hFA-PS), grey wolf optimization (GWO), GA AGC

[68] Group search optimization (GSO) LFC
[69] GA AGC

5. FOPID Controller for LFO Damping in Power Systems

As mentioned, many studies have focused on the LLC, PID, linear quadratic Gaussian
(LQG), FOPID, and other controllers for damping the LFOs in power systems. In this
section, the FOPID controllers implemented in power system equipment to damp LFOs
are reviewed and discussed.

5.1. FOID-PODC of SG

A PSS is an auxiliary controller connected to the exciter of an SG to damp LFOs. Re-
search on new advanced control methods to improve PSS performance is a very interesting
topic in electrical engineering. For this purpose, many types of control methods, including
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adaptive control [70–72], gain-scheduling fuzzy control [73], robust control [74], and sliding
mode control [75] have been carried out in the last two decades to improve the performance
of PSSs. A robust and flexible control approach whose potential is now being examined in
various engineering applications is based on FOPID controllers [19–21]. Usually, the PSS of
an SG is the conventional LLC [2]. The first idea to use the FOPID controller as a PODC
was to use it instead of PSS in the exciter of an SG, as depicted in Figure 5 [36].
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In [36–44], the FOPID controller has been proposed as a PODC of the AVR system. The
results of the studies indicated the better performance of the FOPID controller than the PID
controller and conventional LLC for LFO damping and dynamic stability improvement
due to its flatness in the phase margin contribution with a wider bandwidth. Further-
more, simulation results indicated that the FOPID controller provides better robustness
performance than the PID and conventional LLC under power system uncertainties and
disturbance conditions [36–45].

In [36], the usage of the FOPID controller in an AVR has been studied. In the paper,
the PSO algorithm has been used for FOPID controller tuning. In the study, a new objective
function, considered to facilitate the control mode over both the time-domain and the
frequency-domain specifications, was examined. The simulation results showed that
the FOPID controller can highly improve the system robustness with respect to model
uncertainties. In other studies in 2012 [37] and 2013 [38], the FOPID controller was designed
as a PODC for an AVR system. In the studies, an improved evolutionary NSGA, expanded
with a chaotic map, has been used for controller tuning. Additionally, the multi-objective
function has been defined for optimization.

In [38], the controller tuning has been done in the frequency domain, so stability and
robustness have been automatically guaranteed, unlike the other time-domain optimization-
based tuning techniques. Additionally, another study in 2016 [39] proposed a FOPID
controller for implementation in the excitation system of an SG. The study used the GA
and ACO optimizations for controller tuning.

In 2017 [40], the FOPID controller tuning was done using a meta-heuristic optimization,
BA. This optimization algorithm is based on the echolocation behavior for power system
stability improvement. Furthermore, the problem of FOPID controller tuning has been
solved based on the optimization method using performance indices, including IAE, ISE,
ITAE, and ITSE. The simulation results illustrated that the FOPID controller provides better
performance than conventional PID controller and LLC. In another study in 2018 [41], a
robust FOPID controller was proposed for the excitation system of an SG as a PODC. In
the study, the FOPID controller has been tuned using the CS algorithm. Then, the system
performance was evaluated. The simulation results showed the better performance of the



Energies 2021, 14, 5983 10 of 26

CS-based FOPID controller than the PSO-based FOPID controller and the PID controller.
Additionally, in [42] the FOPID controller was suggested as a PODC and adjusted by
an advanced SCA optimization method. Moreover, the time-domain objective function
has been considered for optimization. The results of the research indicated the proper
performance of the FOPID controller in terms of frequency responses, reference tracking,
and LFO damping. In 2019 [43], the implementation of a hybrid FAPSO algorithm for
optimizing the parameters of a FOPID controller was suggested. In the research, the FOPID
controller was designed by considering speed deviation and acceleration as input signals.
The results demonstrated that the FOPID controller provides better performance in terms
of LFO damping compared to the conventional PSSs. Additionally, the results showed the
better performance of the hybrid FAPSO algorithm than other optimization algorithms
such as PSO, hybrid GA, and bacterial foraging optimization in terms of optimal tuning of
the FOPID controller. Furthermore, in other study in 2020 [44], the FOPID controller was
proposed for an AVR system as a PSS application. In the study, the SCA and chaotic yellow
saddle goatfish algorithm were used for controller designs.

5.2. FOPID-PODC of FACTS Devices

Due to the development of FACTS devices application in power systems, applying the
FACTS-based PODCs is an efficient method to damp the LFOs [3]. One of the important
types of these devices is the thyristor-controlled series capacitor (TCSC). This device has
been proposed in many studies as a series compensator [76–78]. The internal structure of a
TCSC is illustrated in Figure 6.
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In the TCSC the capacitive impedance, XC , is constant and the amount of reactance,
XL(α), is adjusted by the firing angle of the thyristors. Accordingly, the impedance of the
TCSC is as follows [10,79]:

XTCSC(α) =
XC XL(α)

XL(α)− XC
(22)

As shown in (22), the TCSC impedance is a function of the thyristors’ firing angle.
In [45], the FOPID controller has been used as a PODC in the TCSC for LFO damping and
improve the rotor angle stability. Additionally, the FOPID-PODC has been coordinated
with an AGC loop. The TCSC dynamic model with the FOPID controller has been shown
in Figure 7.

Parameters of the FOPID controller and AGC loop have been optimally tuned using an
IPSO algorithm. Furthermore, the ITSE index has been used as an objective function. The
simulation results showed the better dynamic performance of the FOPID controller than
conventional PODCs in terms of reducing the risk of LFOs. Moreover, the investigation
of the results showed that with the addition of the fractional-order controller, the power
system is strongly robust to the system uncertainties and severe disturbances.
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Additionally, in another study in 2018 [46], the FOPID controller was proposed to
mitigate the LFOs and stabilize the dynamic behavior of the power system using a static
synchronous compensator (STATCOM). In the paper, the DEO algorithm was used and
its superiority compared to other optimization algorithms for FOPID controller tuning
was shown.

5.3. FOPID-PODC of IBPPs

Climate change and the tendency to use clean energy have increased the influence of
IBPPs in the world. Due to the fact that these types of power plants don’t have rotating
components, their high penetration level reduces the power system’s inertia [80,81]. Ac-
cordingly, many studies have raised the subject of LFO damping by these types of power
plants [11–17]. This is done by considering the various control strategies or designing
different controllers, such as conventional LLCs [12,14], PID controllers [17], and LQG
controllers [11].

In 2020 [47] the use of the FOPID controller in the dynamic model of an IBPP as a
PODC was suggested. In the research, an LPF was considered as a case study. In addition,
the controller was tuned using PSO. Furthermore, in the research, the objective function
has been considered based on the ITAE index. The results indicated the better performance
of the FOPID controller for LFO damping than the PID controller, LQG controller, and
conventional LLCs. It should be noted that, as depicted in Figure 8, the generic dynamic
model of IBPP includes three sub-models as below [82]:

• The renewable energy generator/converter (REGC);
• The renewable energy electrical control (REEC);
• The renewable energy plant control (REPC).
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The proposed FOPID controller in the study has been connected to the REPC.
In 2021 [48], a method was suggested for coordinated tuning of the FOPID controller

of an LPF and PSSs of SGs in order to damp the LFOs. Recently, in a study [49], a phasor
measurement unit (PMU)-based FOPID controller was proposed to mitigate LFOs via
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a large-scale hybrid wind-PV farm (LWPF). In the study, the performance of the LWPF
for LFO damping by the FOPID controller was evaluated. The robustness of the FOPID
controller against some uncertainties of the power system was also investigated. As shown
in Figure 9, the papers suggested two different positions for the PODC in the REPC. The
results of the studies show the proper performance and robustness of the FOPID controller
compared to the popular controllers in a wide range of disturbances and uncertainties.
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The results of the studies show that the FOPID controller is suitably capable of being
used as a PODC. Table 2 summarizes the literature.

Table 2. Summary of the FOPID controller for LFO mitigation in power systems.

Reference Device Tuning Method
Comparison
with Other
Controllers

Time-
Domain
Analysis

Frequency-
Domain
Analysis

[36] SG Optimization by PSO No Yes No

[37,38] SG Optimization by chaotic
NSGA-II No Yes No

[39] SG Optimization by ACO Yes Yes No
[40] SG Optimization by BA Yes Yes No
[41] SG Optimization by CS Yes Yes No
[42] SG Optimization by SCA Yes Yes No
[43] SG Optimization by FAPSO No Yes Yes

[44] SG Optimization by chaoticyellow
saddle goatfish algorithm No Yes No

[45] FACTS (TCSC) Optimization by IPSO Yes Yes Yes
[46] FACTS (STATCOM) Optimization by DEO No Yes No
[47] IBPP (LPF) Optimization by PSO Yes Yes No
[48] IBPP (LPF) Optimization by PSO Yes Yes No
[49] IBPP (LWPF) Optimization by TLBO Yes Yes No
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6. Performance Evaluation and Comparative Simulation

The performance of the FOPID-PODC in comparison to other proposed PODCs has
been examined in this section. Therefore, a modified two-area system has been used in this
paper [2,83]. For this purpose, three different scenarios are considered as shown in Table 3.
These scenarios include different applications of the FOPID controller to mitigate the LFOs
in the benchmark test system.

Table 3. Three scenarios for the FOPID controller in a power system as a PODC, based on the literature.

Scenario Application

1 Supplementary controller for excitation system of an SG as a PSS
2 Auxiliary controller of TCSC as a PODC
3 Supplementary controller of LPF controller as a PODC

The modified system according to the scenarios is shown in Figure 10. Moreover,
the specifications of the system are listed in Table 4. It should be noted that other data
is in accordance with [2]. The benchmark test system is a smart grid under a wide-area
measurement system (WAMS). In this system, the required signals are measured by PMUs
and sent to the phasor data concentrator (PDC) for data processing. Furthermore, command
signals are sent to the desired devices. Note that signal transmission has a time delay
that should be applied in research and simulations. Although the time delay is a random
value, in this study the signal transmission time delay between PMUs, PDCs, and PODCs
is considered as a constant time delay, Tm, which is 100 ms as shown in Table 4 [47–49].

Table 4. Characteristics of the benchmark system.

Item Description/Value

Dynamic model of SGs Sixth-order model
Exciters model IEEE-ST1A

PSSs model STAB1
Loads Constant power load

Constant time delay of signal transmission 100 ms [84,85]

Simulation is required for assessing the performance of the suggested PODCs in the
reviewed applications. Therefore, four states are considered as follows:

• State 1: A three-phase fault at bus 8 at t = 1 s for 170 ms.
• State 2: Disconnection of line L12 at t = 1 s for 67 ms.
• State 3: Disconnection of generator G1 at t = 1 s for 67 ms.
• State 4: Disconnection of load 2 at t = 1 s for 67 ms.

It should be noted that the values of the FOPID-PODC parameters, KP, KI , KD, λ, δ, in
the three scenarios are obtained using the PSO algorithm. Furthermore, the ITAE index
has been used as an objective function. In addition, the error function was defined as
follows [62,86]:

|e(t)| =
nG

∑
G=1
|∆ωG(t)| (23)

where nG and ∆ωG denote the number of SGs and speed deviation of generator G, re-
spectively. In order to obtain the value of the ITAE, it is necessary to consider a severe
disturbance in the test system. In this study, a three-phase short circuit at bus 8 for 100 ms
is considered as a severe disturbance. For this purpose, (21) must be minimized subject to
parameter constraints. The constraints of the FOPID-PODC parameters are indicated in
Table 5 [86].
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Table 5. Constraints of the FOPID-PODC parameters.

Item KP KI KD λ δ

Upper range 100 100 100 1 1
Lower range 0 0 0 0 0

6.1. Scenario 1

In this scenario, the excitation system of generator G2 is equipped with a FOPID-PODC
as depicted in Figure 10. Additionally, other generators were equipped with conventional
PSSs. It should be noted that, other system specifications are in accordance with [2]. The
optimal values of the PODC parameters are available in Table 6.
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Table 6. Optimal values of the FOPID-PODC parameters for scenario 1.

Item Value

KP 32.752
KI 64.958
KD 82.003
λ 0.4910
δ 0.5360

Note that the FOPID controller with the optimal set of parameters can mitigate both
inter-area and local oscillations. This is exactly the same as the PSS mechanism. In fact, all
types of PODCs can damp both types of oscillations. Of course, the most effective is the
use of a multi-band PODC.

The simulation results performed in four states are presented in Figures 11 and 12. It
should be noted that the simulation is based on a comparison between the performance of
the FOPID controller and other proposed PODCs in the literature [87–98].
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Based on the simulation results, the FOPID-PODC performs well compared to the
literature. Based on (21), the ITAE index has been used to compare the performance of the
FOPID-PODC with the literature. As indicated in Figure 13, the value of the ITAE index for
the FOPID-PODC is lower than the other controllers in the four scenarios. This indicates
the proper performance of the FOPID-PODC in terms of LFO damping.
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6.2. Scenario 2

In this section, the compensation scenario of transmission line L11, which is actually
the main line between the two areas in the test system, is presented as depicted in Figure 10.
The specifications of the benchmark test system are in accordance with [2], except that the
TCSC has been added to line L11. Moreover, only generators G2 and G4 have the PSSs
as shown in Figure 11. The TCSC is equipped with the FOPID controller as a PODC. The
values of the TCSC parameters for simulation are listed in Table 7 [85].
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Table 7. TCSC parameters.

Parameter Value

Time constant of TCSC (Tf) (s) 0.05
Series capacitor of TCSC (Xc) (Ohm) 20
XL-Min (minimum reactance) (Ohm) 25
XL-Max (maximum reactance) (Ohm) 50

XMin (Ohm) 11.1
XMax (Ohm) 14.3

Based on Equations (21) and (22), the optimal values of the FOPID-PODC parameters
are defined by the PSO algorithm. The results are shown in Table 8.

Table 8. Optimal values of the FOPID-PODC parameters for Scenario 2.

Item Value

KP 86.423
KI 61.622
KD 73.355
λ 0.687
δ 0.337

For performance evaluation of the proposed PODC, it is necessary to compare the con-
troller with the literature [5,9,99–104]. Therefore, the necessary simulations are performed
for four types of controllers: the FOPID controller, LLCs, the PID controller, and the LQG
controller. The simulation results are illustrated in Figures 14 and 15. Furthermore, the
ITAE index for each controller is obtained in four states as shown in Figure 16.
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6.3. Scenario 3

In this scenario, a 600 MVA LPF as an IBPP is connected to bus 6. In addition, the
rating of generator G2 has been changed from 900 MVA to 300 MVA. Furthermore, only
generators G2 and G4 have the PSS. As shown in Figure 10, the LPF is equipped with
a FOPID controller as a PODC. Based on Equations (21) and (22), the optimal values of
the FOPID-PODC parameters are specified using the PSO algorithm, as listed in Table 9.
In addition, the voltage control at plant level has been considered as the LPF control
strategy [105–107]. Therefore, position 1 in Figure 9 is intended for the FOPID-PODC. So,
bus 6 is considered as a PV bus [47]. For performance evaluation of the FOPID-PODC,
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this section compares the PODC performance with the literature, including LLCs [14,17],
PID controllers [18], LQG controllers [11], and multiple-model adaptive control (MMAC)
strategy [13]. The simulation results are shown in Figures 17 and 18. Moreover, the
ITAE index is shown in Figure 19. The simulation results confirm the accuracy of the
literature results.

Table 9. Optimal values of the FOPID-PODC parameters for scenario 3.

Item Value

KP 26.874
KI 32.821
KD 85.233
λ 0.266
δ 0.219
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It should be noted that the lower value of the ITAE index is due to the increase in the
damping ratio, the decrease in the settling time as well as the decrease in the overshoot
of the system response using the FOPID controller. Each of these three factors alone or
together can change the ITAE index and affect the system response.

The simulation results show that the application of FOPID controllers has a great effect
on reducing the risk of LFOs and increasing the power system stability. However, the use
of this type of controller to mitigate the LFOs has not yet been applied or is very limited.
The main reason is the obstacles and challenges that exist to expanding its applications.
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7. Opportunities and Challenges

Power systems are moving to modern power systems to overcome environmental
problems and fossil fuel shortages. Next-generation systems have a high penetration level
of renewable energy power plants, most of which are IBPPs. Therefore, the high penetration
level of IBPP greatly reduces the power system inertia, which affects the stability. On the
other hand, due to the nature of renewable energy power plants, their production has high
uncertainty and fluctuates. Such fluctuations lead to an increase in LFOs, which is one of
the main problems in power systems. A common method for LFO damping is to use an
auxiliary controller as a PODC. Today, the focus of research is on the main topics:

1. Using robust controllers with a higher range of stability area in accordance with the
requirements of next-generation systems;
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2. Damping the LFOs using new devices in power systems, such as IBPPs and FACTS
devices.

In recent years, the FOPID controller has been proposed as a PODC for LFO mitigation.
The results of studies show that the FOPID-PODC performs better than conventional
PODCs. The most important opportunities and benefits of using FOPID controllers in the
power systems for LFO damping are listed in Table 10.

Table 10. Opportunities and benefits of the FOPID controller for LFO mitigation in power systems.

Opportunity Description

Wide range of stability area Due to the nature of the FOPID controller, this type of controller provides a large range of
stability area.

Robustness
Due to the natural properties of the FOPID controller, which is due to the fractional orders
of derivative and integral operators, this type of controller has a high robustness against

system uncertainties.

Flexibility in design It seems that the most important opportunity created by fractional-order calculus is its
high flexibility to propose new types of robust PODCs in power systems by researchers.

However, there seem to be challenges and research gaps that need to be addressed in
future studies. The main challenges and research gaps are addressed in Table 11.

Table 11. Research gaps and challenges of the FOPID controller for LFO mitigation in power systems.

Opportunity Description

Auto-tuning

Although FOPID controllers have better performance in terms of LFO damping than
conventional controllers, their tuning is difficult and time consuming compared to

conventional controllers. Given the need for auto-tuning in modern power systems and
smart grids, this is one of the most fundamental challenges of these types of controllers. It

seems that the industrial use of FOPID controllers can be developed by creating and
developing auto-tuning techniques.

Multi-band FOPID-PODC

One of the major research gaps in this subject is the design of multi-band FOPID-PODCs.
Multi-band PODCs have the ability to mitigate oscillations at different frequencies.

Although, in recent years, some studies have designed PSS-based multi-band controllers
[108–110] and fractional-order LLC-based multi-band controller [111], no study has been

done on multi-band FOPID controllers.

Commercialization and
industrialization

One of the important research gaps of these types of controllers for PODC application in
power systems is the examination of the capabilities for commercialization and

industrialization. Conventional LLCs and PID controllers are easily and cheaply available
for PODC applications. Today, conventional PSSs are based on LLCs that are very

affordable and easy to design.

Fractional-order-based
software packages

Given that the power system modeling in many software packages of electrical
engineering is based on integer-order calculus, it is not possible to model the FOPID

controllers. On the other hand, in many software packages where it is possible to model
FOPID controllers, there is a limitation that the fractional orders cannot be variable.

Therefore, it is impossible to tune the FOPID controller using these software packages.

Practical justification

The most important challenge with fractional-order calculus is that there is currently no
practical justification for a fractional-order integral or derivative, e.g., the integral of a
function means the area under its curve, but there is still no practical justification for

fractional-order integrals.

8. Discussion

The FOPID controllers have several technical advantages over integer-order con-
trollers. However, for the industrial application of these types of controllers, it is necessary
to overcome the limitations mentioned in Section 7. The use of FOPID controllers should
be properly justified by superior performance or at least the same efficiency as the con-
ventional PODCs. A Technology Readiness Level (TRL) may have to be established for an
industry-implementation-ready FOPID controller [112,113]. Sometimes, the variation in
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FOPID controller parameters may result in instability, and hence the sensitivity of this type
of controller to variations in the controller parameters should be studied.

As mentioned in Section 4, one of the main challenges of the FOPID controller is its
tuning. The use of metaheuristic optimization techniques reduces the complexity of the
design of fractional controllers. With the advances in artificial intelligence and fuzzy logic,
better optimization methods can be used to tune the FOPID controllers. Such methods,
with the inherent robustness of the FOPID controllers, can be used to obtain the desired
system response.

The results obtained in Section 6 showed that the FOPID-PODC has a better perfor-
mance than conventional PODCs in terms of LFO damping. Given that FOPID controllers
are the extension form of the conventional PID controllers, which are the dominant con-
trollers used by the industry, it can be expected that it will be easier to incorporate FOPID
controllers soon into power systems.

9. Conclusions

In this paper, the applications of FOPID controllers in power systems for LFO damping
were investigated. The most important feature of FOPID controllers that distinguishes
them from other controllers is their wide stability range, which is due to the nature of
these types of controllers. In this study, the difference between this type of controller and
other controllers discussed in the literature in terms of mathematics was convincingly
shown. Furthermore, the advantages of FOPID controllers were clearly identified in the
simulations. The results of this review show that:

• Superior performance of the FOPID-PODC than conventional PODCs in terms of
LFO mitigation;

• Superior performance of the FOPID-PODC than conventional PODCs in terms of
robustness to some power system uncertainties.

This study also investigated the problems and challenges as well as opportunities in
developing the applications of FOPID controllers. Although this type of controller has
many advantages, considering the challenges mentioned, it has not been developed much
in terms of application. Obviously, in the near future, with the development of mathematics
and its applications in control engineering and industrialization of this type of controller,
we can see the increasing development of FOPID controller applications in power systems
to damp the LFOs.
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