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Abstract: This paper investigates the problem of stability in a group of headings driven in high
horizontal stress fields in the copper ore mines of the Legnica-Glogow Copper Belt (LGCB). The
headings are protected with the roof bolting system. This problem is of high importance due to
special safety regulations which apply in mining workings serving as airways and haulageways. The
analysis was performed for a group of four headings driven in the geological and mining conditions
of the Polkowice-Sieroszowice mine. The stability of the headings was evaluated with the use of
Finite Element Method (FEM). The parameters of the rocks used in the numerical modeling have been
determined on the basis of the Hoek–Brown classification, with the use of the RocLab 1.0 software.
The parameters of the stress field have been identified on the basis of in situ measurements, which
were performed in the Polkowice-Sieroszowice mine in 2012. The measurements were carried out
with the use of the overcoring method, which is a stress relief method. A CSIRO HI probe was used as
the measuring device. The tests were carried out on three measuring points, on which six successful
tests were performed. The measurements confirmed the presence of high horizontal stresses in the
rock mass. Numerical modeling was performed using the Phase2 v.8.0 software, in a triaxial stress
state and in a plane strain state. The rock mass was described with an elastic-plastic model with
softening. Numerical analyses were based on the Mohr–Coulomb failure criterion. It was assumed
that the optimal measure of the stability of the group of headings is the range of the formed zone of
yielded rock mass in the excavation roof. Numerical simulations have shown that the direction of
driving the headings in the field of increased horizontal stresses may be of key importance for the
stability of the headings in LGOM mines. The greatest extent of the yielded rock mass zone in the
excavation roof occurred when the group of headings was driven in the direction perpendicular to the
direction of the maximum horizontal stress component σH. The obtained results served to provide
an example of the application of a roof bolting system to protect headings driven in unfavorable
conditions in a high horizontal stress field.

Keywords: numerical modeling; high horizontal stress; excavations stability assessment

1. Introduction

Numerous observations and measurements performed both worldwide [1–13] and
in Poland [14–16] suggest that in many cases the value of primary horizontal stresses
is significantly greater than the values accepted to date, which are based solely on the
Poisson’s ratio ν. Another observation also indicated that the maximum component of the
horizontal stresses in the rock mass was frequently up to several times higher than the
vertical component. Therefore, primary stresses in the rocks forming the Earth’s crust are
believed to result from the accumulation of gravitational and tectonic stress fields [17], and
the intensity of horizontal stresses is the function of
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− interaction of individual tectonic units,
− the terrain surface,
− tectonic features of the rock mass,
− depth of the rock mass, and
− stiffness of rock material, expressed, among others through Poisson’s ratio ν and the

modulus of linear deformation (longitudinal modulus of elasticity) E.

Research conducted by many scientists shows that high horizontal stress has a signifi-
cant impact on underground excavations stability [9,18–21].

In a number of mines worldwide, some of the cases in which the stability of a heading
was lost (Figure 1) or some phenomena having an impact observed in the heading were
caused by an inadequate knowledge of the extents and directions of horizontal stresses
in the mined rock mass [2,4–7]. The direction in which a heading is driven and in which
horizontal stresses propagate was also observed to influence the stability of the heading
(Figure 2). In the most advantageous scenario, the direction of the maximum increased
horizontal stress component is parallel to the longer axis of symmetry of the heading. In
such case, the heading does not lose its stability due to horizontal stresses (Figure 2a). In
the case when the heading is driven at an angle to the direction of the maximum horizontal
stress component, the roof may suffer damage, and the floor may become uplifted at the left
or right wall (Figure 2b,c). When the direction of the maximum component is perpendicular
to the direction in which the heading is driven, the least advantageous scenario occurs
and the heading loses its stability (Figure 2d). In the central part of the heading, the roof
collapses and the floor is uplifted [22].
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In Polish underground mines, no efforts are made towards identifying the directions
and values of primary horizontal stresses in the rock mass for the purpose of designing
optimal heading systems and heading support structures. Roof bolting is the most com-
monly used roof support system in Polish copper mines of the Legnica-Glogow Copper
Belt (LGCB) region. Prior to the choice of a support type for a mining excavation, roof
class is determined in accordance with the “Instructions on determining the geomechanical
parameters of roof rocks with respect to roof classes in copper mines”, as required in the
selection of a roof bolting system design [24]. The classification of roof rocks (from class
1—the worst, to class 5—the best) is based on such parameters as

− roof bedding (vertical split),
− concentration of mineralized foigs,
− fault concentration,
− average fault throw, and
− tensile strength of the roof rock beam.

The roof bolting system is selected after identifying the roof class and in accordance
with the “Regulations on the selection, construction and control of excavation support
in the KGHM Polska Miedz S.A. mines” [25]. The roofs in the headings are protected
with bolts at least 1.6 m long. The distance between the bolts (the rock bolt pattern) is
adjusted depending on the class of the roof and on the width of the heading below the roof.
Supports are also installed on the heading walls. The wall bolts have a length of at least
1.6 m and are spaced in the side walls at 1.5 × 1.5 m. The lower row of the bolts is situated
at a distance of approximately 1.8 m from the floor. The side walls are provided with a
support system if

− excavation height is greater than 4.5 m (regardless of the inclination angle of the side
walls) or

− excavation height is not greater than 4.5 m and moving the side walls outwards by
approximately 10◦ is not possible.

As copper ore extraction depth in the LGCB region has exceeded the depth of 1200 m
below ground level. and is performed in increasingly difficult geological and mining
conditions, the copper ore mines in the region may suffer from a growing number of
problems related to the stability of excavations located in the field of high horizontal stresses.
Therefore, further extensive research needed to be performed into the directions and values
of main stresses in the mines operated by KGHM Polska Miedz S.A. The next step should
involve a research program which would allow identifying the influence of the directions
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and values of high horizontal stresses on the stability of mining excavations supported
with roof bolting systems and located at a depth below 1200 m below ground level.

Numerical methods significantly expand research possibilities related to the analysis
and evaluation of the stability of excavations and their support systems in underground
mines. Numerical modeling gives the possibility to predict the stress concentration zones
and the potential locations in which the rock mass may become unstable in the vicinity of a
mining excavation. The numerical, FEM-based computer analyses performed to date on
the stability of mining excavations have demonstrated the influence of horizontal stress
direction on the stability of excavations in the LGCB mines [22,26].

This research, which focuses on the influence of the direction in which headings are
driven in the “Polkowice-Sieroszowice” mine in the presence of high horizontal stress
fields, is a continuation and development of research performed as part of a program
titled “Implementation of numerical methods in the analysis of selected natural hazards in
underground mines”. This research was performed between 2017 and 2018 at the Mining
Division, Wroclaw University of Science and Technology. Some results of this research
were presented in scientific conferences and published [26,27]. Further research is needed
however, as the results of numerical simulations may be used to plan and design inter alia
access, preparatory and production excavations of various shapes and dimensions, as well
as to aid the choice of adequate primary and secondary support systems. It is of special
importance for the copper ore extraction operations performed in the area of the LGCB at
depths exceeding 1200 m below ground level.

2. In-Situ Tests of Stresses in the Polkowice–Sieroszowice Mine

In 2012, the LGCB copper ore mines (the Rudna mine and the Polkowice-Sieroszowice
mine) were the sites of a test program—the most extensive program in the history of
Polish mining industry—aimed at in situ examinations of stresses in the rock mass. The
measurements were conducted as part of a research project entitled “Determination of the
impact of the primary stress directions and magnitudes on the optimal geometry of mining
fields” [16]. The measurements were performed by a team consisting of the employees
of KGHM Cuprum Ltd. R&D Center, the Rudna mine and Golder Associates Ltd. The
aim of the measurements was to identify the distribution of primary stresses in the regions
planned for operation within the Glogow Gleboki-Przemyslowy mining area. The analysis
of the progress of the access and preparatory works indicated that the measurement points
should be located in the northern and north-western parts of the Polkowice-Sieroszowice
mine. Eventually, three locations for the measurement points were identified:

− measurement point 1: located in the “Sieroszowice I” mine area, between crosscuts 13
and 12 in main haulage roadway T-360, at a depth of 966.0 m below ground level;

− measurement point 2: located in division G-62, in main haulage roadway T-357, in the
vicinity of crosscut P-84; and

− measurement point 3: located in the “Sieroszowice I” mine area, in the recess of main
incline E-1, in the vicinity of crosscut 63, at a depth of 906.0 m below ground level.

The in situ measurements in the Polkowice-Sieroszowice mine were performed with
the use of the overcoring method, which is a stress relief method. The method consists
in cutting a rock sample from the rock mass in which a high horizontal stress field is
observed and in simultaneously measuring the strain or displacement due to stress relief
in the sample [28]. The stages of the overcoring method are shown in Figure 3. The most
important of them are

− boring a hole in the rock which has a large-diameter (60–220 mm) and a length
sufficient to treat the influence of the mining excavation as negligible (Figure 3a),

− driving a pilot hole typically 38 mm in diameter (Figure 3b),
− placing a measurement device (probe) in the pilot hole, and
− effecting stress relief in the cut-out cylinder, whose deformations are recorded with a

measurement device (Figure 3c).
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Figure 3. Stages of the overcoring method. (a) boring a hole in the rock which has a large-diameter (60–220 mm) and a
length sufficient to treat the influence of the mining excavation as negligible; (b) driving a pilot hole typically 38 mm in
diameter and placing a measurement device (probe) in the pilot hole; (c) effecting stress relief in the cut-out cylinder, whose
deformations are recorded with a measurement device.

The stress tensor components in the rock mass are calculated from the values of strain
measured during the process of relieving the sample in the vicinity of the measurement
device. After the measurement, the rock sample is recovered for laboratory testing in order
to determine Poisson’s coefficient ν and longitudinal modulus of elasticity E. Examinations
also include visual inspection of the measuring cell and the surrounding rock, as well as
the quality of the adhesive bond and the degree of rock disturbance [28].

The measurement device used in the Polkowice-Sieroszowice mine was a CSIRO HI
test probe (Figure 4). It has 12 independent strain gauges glued in an arrangement of three
“rosettes”, three gauges in each “rosette”, and three gauges glued circumferentially. Owing
to the above, a single measurement provides a sufficient amount of data and allows the
components of the stress tensor in the three-axis system to be fully determined. The probe
is secured in the borehole with a special adhesive of known deformation parameters. The
disadvantages of the overcoring measurements with the use of the CSIRO HI probe include
the sensitivity to loose rock fragments in the borehole which hinder correct insertion of the
probe, as well as thermal effects generated during the drilling process and the presence of
water in the borehole [16,28]. The obtained results allowed determining horizontal stress
distribution in the rock mass for the Polkowice-Sieroszowice mine (Table 1).
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Table 1. Parameters of horizontal stress fields at the Polkowice-Sieroszowice mine [16,26].

Measurement Test No.
Stress Field Parameters

σH [MPa] αH [◦] σh [MPa] αh [◦] σv [MPa]

SP1T2 29.9 160.0 22.3 70.0 27.7
SP1T3 29.9 157.0 24.4 67.0 27.9
SP1T4 20.6 158.0 16.9 68.0 22.7
SP2T2 32.2 6.0 26.1 96.0 27.7
SP3T2 27.7 156.0 14.5 66.0 27.6
SP3T3 19.2 139.0 12.8 49.0 18.2

The symbols used in the above table are as follows: σH—maximum component of horizontal stress, αH—azimuth
of the maximum horizontal stress component, σh—minimum component of horizontal stress, αh—azimuth of the
minimum horizontal stress component, σv—vertical stress.

3. Stability Prediction for a Group of Headings at the Polkowice-Sieroszowice Mine

The influence of high horizontal stresses on the stability of headings in the Polkowice-
Sieroszowice mine was modeled with the use of the Phase2 v. 8.0 software (Rocscience,
Toronto, ON, Canada). This computer application is based on Finite Element Method
(FEM). In FEM, a solution to a typical problem is searched for in the following stages:

− dividing an area into subareas,
− determining FEM equations for the elements,
− gluing (aggregating) the elements,
− allowing for boundary conditions,
− solving the equations, and
− calculating additional values in other (than nodes) points of the area [22].

The parameters of the rocks used in the numerical modeling are shown in Table 2.
The parameters were determined from the geomechanical tests of rock samples. Rock
samples for laboratory tests were obtained from the Jm-06 To-1 borehole, which is located
in the Sieroszowice I mining area, division G-62, at the crossing of main incline E-1 and
crosscut 33. The analysis of the data obtained from the Jm-06 To-1 borehole indicated that
the rock mass represents a geological structure typical for the Fore Sudetic Monocline in
which the access and preparatory excavations of the Polkowice-Sieroszowice mine are
driven. The immediate roof is built of carbonate formations (Calcareous dolomite II) having
high strength and strain parameters. The rocks forming the mined deposit height and the
formations in the floor have various values of strength and strain parameters.
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Table 2. Mean strength and strain rock parameters determined in laboratory tests for the Jm-06 To-1
borehole [26].

Location Rock Type h
[m]

ρ
[kg/dm3]

Rc
[MPa]

Rr
[MPa]

Ei
[GPa]

v
[–]

Roof
Anhydrite 16.00 2.94 92.16 6.69 53.22 0.26

Calcareous dolomite II 9.00 2.82 236.10 14.59 113.17 0.25

Excavation

Calcareous dolomite I 0.50 2.47 98.43 6.04 38.77 0.26
Streaky dolomite 0.90 2.77 140.57 9.33 40.73 0.24

Clay dolomite 0.55 2.63 79.50 5.70 28.75 0.23
Quartz sandstone IV 0.25 2.40 39.97 2.78 16.53 0.19
Quartz sandstone III 0.30 2.25 16.57 0.80 7.23 0.13

Floor
Quartz sandstone II 3.90 2.07 20.67 1.22 8.63 0.14
Quartz sandstone I 1.10 2.02 16.95 0.75 6.65 0.12

The Hoek–Brown failure criterion, which is broadly used in geomechanical analyses
of rock mass deformations and effort, was assumed for the rock mass. The generalized
Hoek–Brown failure criterion for a fractured rock mass may be described with the following
equation [29]:

σ1 = σ3 + σci·
(

mb·
σ3

σci
+ s
)a

, (1)

where
σ1 and σ3—values of the maximum and minimum principal effective stress at failure,
mb—the Hoek–Brown constant for the rock mass,
s and a—constants depending on the rock mass properties,
σci—the uniaxial compressive strength of the rock sample.
When rock mass tensile strength σtm is exceeded, the equation for a = 0.5 can be

formulated as follows:

σtm =
σci
2
·
(

mb −
√

m2
b + 4s

)
. (2)

After the failure criterion was assumed, the following rock mass parameters have been
determined for each of the rock layers obtained from the Jm-06 To-1 borehole (Table 3):

− uniaxial tensile strength of the rock mass σt,
− cohesion c,
− internal friction angle ϕ, and
− rock mass modulus of elasticity Erm.

Table 3. Rock mass parameters determined with the RocLab 1.0 application the Jm-06 To-1 measure-
ment borehole [26].

Location Rock Type σt
[MPa]

c
[MPa]

φ
[◦]

Erm
[MPa]

Roof
Anhydrite 0.738 6.896 38.66 39,000.37

Calcareous dolomite II 5.226 21.535 39.00 99,628.96

Excavation

Calcareous dolomite I 1.495 7.853 37.69 31,649.89
Streaky dolomite 3.112 12.821 39.00 35,856.57

Clay dolomite 0.828 5.653 36.31 21,068.41
Quartz sandstone IV 0.103 2.784 39.06 8595.60
Quartz sandstone III 0.043 1.154 39.06 3759.60

Floor
Quartz sandstone II 0.053 1.439 39.06 4487.60
Quartz sandstone I 0.044 1.180 39.06 3458.00

The calculations were performed with the use of the RocLab 1.0 software, which
employs the Hoek–Brown classification [29–32].

Numerical modeling was performed using the Phase2 v. 8.0, in a triaxial stress state
and in plane strain state. Numerical simulations were performed for an isotropic and for
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a uniform medium. The rock medium was described with an elastic-plastic model with
softening. The strength–strain parameters of the rocks in the model are shown in Table 4.
The numerical modeling was performed on the basis of the Mohr–Coulomb failure criterion,
which states that rock may reach threshold effort if the following condition is met:

σ1 = σ3·
1 + sinϕ

1 − sinϕ
+

2ccosϕ

1 − sinϕ
, (3)

or
σ3 = −σt (4)

where
σ1 and σ3—effective maximum and minimum stress at failure,
φ—internal friction angle,
c—cohesion, and
σt—uniaxial tensile strength of the rock mass.

Table 4. Rock mass parameters adopted for the elastic-plastic numerical model with softening.

Location Rock Type h
[m]

Es
[MPa]

ν
[–]

σt
[MPa]

φpeak
[◦]

cpeak
[MPa]

φdyl
[◦]

φresid
[◦]

cresid
[MPa]

Roof
Anhydrite 16.00 39,000.37 0.26 0.738 38.66 6.896 2.00 36.73 1.379

Calcareous dolomite II 9.00 99,628.96 0.25 5.226 39.00 21.535 2.00 37.05 4.307

Excavation
(h = 3.5 m)

Deposit mined in
dolomite-sandstone 2.50 25,184.11 0.22 1.617 38.16 7.847 2.00 36.25 1.569

Floor
Quartz sandstone II 3.90 4487.60 0.14 0.053 39.06 1.439 2.00 37.11 0.288

Quartz sandstone I 1.10 3458.00 0.12 0.044 39.06 1.180 2.00 37.11 0.236

The numerical analyses were performed for a group of four headings. The excavations
have a trapezoidal shape. The inclination angle of the side walls was assumed at 10◦. The
roof was identified to be class four [24] and was protected with bolts 1.6 m in length with
the bolting pattern 1.5 × 1.5 m [25]. Table 5 contains the dimensions of headings in the
assumed cross-sections.

Table 5. Dimensions of the analyzed headings.

Excavation Height
h [m]

Excavation Width
Below the Roof

dwst [m]

Excavation Width
at the Floor

dwsp [m]

Mean Excavation
Width

dwśr [m]

Excavation
Surface Area

Sr [m2]

Side Wall
Inclination Angle

α [◦]

3.5 7.0 5.8 6.4 22.4 10.0

The numerical model was based on the values of primary stresses recorded in the
Polkowice-Sieroszowice mine, at measurement point 2 (Table 1, measurement number
SP2T2). Two variants of loads acting on the group of headings were assumed for the
numerical calculations. The flat, rectangular plate comprising four openings (located
inside and shaped to correspond to the shapes of the analyzed excavations) was loaded on
its edges:

• load variant 1 (maximum horizontal stress component σH is in the direction parallel
to the longer axis of the headings):

− side edges: px = 26.10 MPa,
− upper edge and bottom edge: pz = 27.70 MPa,
− direction perpendicular to plate surface: py = 32.20 MPa,

• load variant 2 (maximum horizontal stress component σH is in the direction perpen-
dicular to the longer axis of the headings):
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− side edges: px = 32.20 MPa,
− upper edge and bottom edge: pz = 27.70 MPa,
− direction perpendicular to plate surface: py = 26.10 MPa.

The edges of the analyzed plate were equipped with supports which do not slide
either in the vertical or in the horizontal direction. The numerical analysis employed finite
elements having three nodes and triangular shape. The plate edges were assumed to be at
a 100.0 m distance from the extreme points on each side of the analyzed headings (the roof,
the floor and the side walls). In the middle of the plate, in the location the headings, smaller
size finite elements were used (finite element grid density region) in order to increase the
accuracy of numerical calculations. Based on the numerical calculations of heading stability
for each model (calculation variant), the following parameters were determined:

− distribution of principal stresses σ1,
− distribution of principal stresses σ3,
− horizontal stress distribution σxx,
− vertical stress distribution σyy,
− total displacements,
− yielded element area (yielded rock mass zone).

The analysis of the results indicated that the optimal measure of the stability of the
group of headings is the range of the yielded rock mass zone in the roof of the heading.

4. Results of Numerical Simulations and Selection of the Bolting System

The numerical models of the stability of headings located in the field of high horizontal
stresses in the Polkowice-Sieroszowice mine confirmed the results obtained in previous
research [22,26]. The numerical simulations demonstrated among other things that

− the direction in which headings are driven in a field of high horizontal stresses may
be of key importance to the stability of headings in the LGCB mines, and

− problems with stability may occur when the yielded rock zone in the roof is larger
than the bolted zone.

Figures 5–8 show the maximum range of yielded rock mass (between 50% and 100%)
in the roofs of the headings. In the case of a group of headings driven parallel to the
direction of the maximum horizontal stress component σH (load variant 1), the maximum
range was 1.36 m (Figure 7). At the same time, the maximum range of yielded rock mass
in the roofs of the headings driven in perpendicular to the direction of the maximum
horizontal stress component σH (load variant 2) was greater by 0.58 m and reached 1.94 m
(Figure 8). The numerical calculations also demonstrated that:

− The surface of the relaxed area around a heading increases together with the increase
of the horizontal stress in the rock mass (high stress field in the rock mass). Meanwhile,
stress concentration in the analyzed headings occurs only in the corners of the roofs
and of the side walls.

− The greatest total displacements occur in the floors of the analyzed headings (formed
of sandstones having low strength and strain parameters). The range of the zone
affected by displacements increases together with the increase of horizontal stresses
in the rock mass.

− The surface of the yielded area in the rock mass around headings driven in the heading
group increases together with the increase of horizontal stresses in the rock mass (high
stress field in the rock mass). This phenomenon is strictly related to the stress and
strain parameters of the rock layers surrounding the excavations and negatively
influences their stability.

− The verification of the results of the numerical simulations obtained for the plastic-
elastic model with rock softening confirmed that they correspond most accurately to
the observed cases of stability losses in the mining excavations of Polish copper mines.
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Table 6 lists the range of yielded rock mass (yield between 50% and 100%) in the
roofs of the analyzed headings. For the assumed geological and mining conditions of the
Polkowice-Sieroszowice mine, the simulated change of direction in which the heading
group is driven resulted in an increased yielded zone in the roofs within the range of
0.45 ÷ 0.58 m, which translates into an increase by 34.09% to 42.65%, respectively. The
maximum range of yielded rock mass in the roofs of the headings driven in perpendicular
to the direction of the maximum horizontal stress component σH (load variant 2) was
greater than the bolted zone of 1.6 m. The excavations may suffer from the loss of roof
stability (collapse of the immediate roof in the excavation).

Table 6. List of the yielded rock mass range in the roofs of the analyzed headings (yield between 50%
and 100%).

Excavation
Yield Range in the Roof [m] Increase of Yield Range in the Roof

Load Variant 1 Load Variant 2 [m] [%]

1 1.32 1.77 0.45 34.09
2 1.34 1.91 0.57 42.54
3 1.36 1.94 0.58 42.65
4 1.30 1.76 0.46 35.38

The numerical modeling allowed an optimal selection of the roof bolting system
design for a group of headings located in the field of high horizontal stresses. The support
system was based on resin-grouted bolts, which are intended to protect the excavation over
the entire period if its operation. Depending on the direction in which the heading group
is driven, the following bolt lengths and positions were selected:

− in the case of a group of headings driven parallel to the direction of the maximum
horizontal stress component σH, the bolts were 1.6 m in length and the bolting pattern
(distance between the bolts) was 1.5 × 1.5 m,

− and in the case of a group of headings driven perpendicular to the direction of the
maximum horizontal stress component σH, the bolts were 2.2 m in length and the
bolting pattern (distance between the bolts) was 1.5 × 1.5 m,

The simulations were based on an assumption that the bolted zone in the roof must
be larger by at least 0.5 m than the maximum range of the 100% yielded zone.

5. Conclusions

Some observed cases of stability loss in mining excavations are caused by a lack of
knowledge about the size and direction in which horizontal stresses act in the mined rock
mass. The in situ measurements and the numerical simulations confirmed that the driving
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direction of a heading and the directions of horizontal stresses affect heading stability in
the geological and mining conditions of the Polkowice-Sieroszowice mine.

The stability of headings depends the direction in which they are driven in a field
of high horizontal stresses, in relation to the direction of the maximum horizontal stress
component σH in the rock mass. Therefore, this parameter should be given appropriate
consideration in the process of selecting an optimal roof support system for a heading. The
additional parameters which influence heading stability include: the shape of the heading,
its cross section surface area (heading width under the roof), heading depth (the value of
stresses in the rock mass), and the stress and strain parameters of the rocks surrounding
the heading.

An accurate recognition of the stress field in the mining area allows the development
of optimal preventive methods. Numerical methods prove very useful in such tasks, as
they allow broad and extensive analyses of heading stability. The in situ observations of
actual stability loss cases in the LGCB copper ore mines and the numerical simulations of
heading stability fully confirm the need to use numerical modelling in preparing designs
of mining excavations and of their support systems.
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