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Abstract: Multi-access edge computing has become a strategic concept of the Internet of Things.
The edge computing market has reached USD several billion and is growing intensively. In the
edge-computing paradigm, most of the data is processed close to, or at the edge of, the network.
This greatly reduces the computation and communication load of the network core. Moreover, edge
computing provides better support for user privacy. On the other hand, an increase in data processing
locations will proportionately increase the attack surface. An edge node can be put out of service
easily by being flooded with spoofed packets owing to limited capacities and resources. Furthermore,
wireless edge nodes are quite vulnerable to energy exhaustion attacks. In this situation, traditional
network security mechanisms cannot be used effectively. Therefore, a tradeoff between security and
efficiency is needed. This study considered the requirements under which the use of an intrusion
detection system (IDS) is justified. To the best of our knowledge, this is a first attempt to combine
IDS quality, system performance degradation due to IDS operations, and workload specificity into
a unified quantitative criterion. This paper is an extended version of a report published in the
proceedings of the ICCSA 2020 and differs from it in many ways. In particular, this paper considers
novel mathematical problems regarding the deployment strategies for an IDS and the corresponding
inverse problems and provides closed-form solutions for a few previously unsolved problems.

Keywords: edge computing; IoT devices; wireless communications; flooding attack; energy exhaustion
attack; intrusion detection system

1. Introduction

According to an estimate by Cisco Global Cloud Index, the data produced by the
Internet of Things (IoT) will soon exceed 800 zettabytes. For efficient treatment of such
huge volumes of data, the edge-computing paradigm has been suggested. In this paradigm,
most of the data is processed close to, or at the edge of, the network. Some functions of the
network core are delegated to the network edges, where the connected entities produce the
data directly. The corresponding computing platforms and system resources can fortify
these facilities. Edge computing offloads the computation and communication load of the
network core, and by processing data near the data sources, it provides a better quality
of service (QoS) for delay-sensitive applications and efficient structural support for user
privacy, and it prevents and mitigates some types of DDoS attacks [1].

The ratio of enterprise-generated data, which is processed outside of a conventional
centralized data center or cloud, is expected to reach 75%. ResearchAndMarkets.com
estimates that the total edge computing market will increase to USD 9.0 billion by 2024, at
a compound annual growth rate of 26.5%. According to an alternative forecast provided by
Gartner, this market will reach USD 13 billion by 2022. Worldwide, the financial industry
is one of the largest beneficiaries of edge computing. The increased adoption of digital
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and mobile banking initiatives, advanced technologies such as blockchain, and payments
through smart mobile devices is fueling the demand for modern edge computing solutions.
The Asia-Pacific region is destined to become one of the main markets because companies
and governmental organizations there show a greater inclination toward storing and
processing data locally.

However, an increase in the number of data processing locations will increase the at-
tack surface proportionately [2]. Edge devices are generally used with limited resources [3],
and the limited resources of the IoT poses a serious security threat as energy exhaustion
and flood attacks, as well as various types of related intrusions have been described [4–9].
In addition, limited computing power and storage size and low battery capacity prevent
IoT devices from executing conventional actions to support network security [10]. Storing
large amounts of data and executing a highly complex algorithm for intrusion detection
are unreasonable. Considering the security challenges, leading academic researchers and
experts from for-profit companies concluded that the current situation with IoT and edge
computing security is far from satisfactory and essential efforts are required to overcome
weaknesses and vulnerabilities. Thus, edge-computing security is rightfully recognized as
an important area for future research [11–13].

A lightweight and secure data analytics technique can increase its potential adoption,
which is a major benefit because ensuring that the resource consumption of security systems
does not harm the performance of IoT devices is important [14]. Efficiency becomes a
crucial issue in secure edge computing, particularly for applications with high real-time
requirements. A few recent papers on the theme of intrusion detection systems (IDSs) for
edge computing have been published. Some authors offered various IDS mechanisms, but
they ignored quantitative analysis [15]. Other researchers focused only on the quality of
detection method [16–18], but edge node slowdowns from intrusion detection activities
were usually ignored. An edge node usually has extremely limited computational resources
and the gateways/endpoints may have the same problem. Hence, it is necessary to take
into account the effect of the corresponding additional computational operations. If it
is possible to delegate some of the calculations to a central server then heavy ML-based
methods like Convolutional Neural Networks, Recurrent Neural Networks can be used.
An experimental review of the corresponding methods can be found in [19]. However,
we should pay attention to the following circumstance: an intrusion, such as a flood of
spoofed requests (packets, tasks) can be very effective against an edge node, regardless of
whether the node processes the packet itself or sends it to the cloud.

As shown in a recent survey [20], previous works have mainly focused on the trade-off
between IDS performance and resource consumption (energy). There are no quantitative
methods in the literature to form a proper holistic view of a defense system and receive
requirements for the efficiency of the underlying intrusion detection algorithms. This paper
intends to fill this gap partially by describing a novel IDS approach. To the best of our
knowledge, this is a first attempt to combine IDS quality, the system performance degrada-
tion due to IDS operations, and workload specificity into the unified quantitative criterion.

This paper is an extended version of a report [21] published in the proceedings of the
20th International Conference on Computational Science and Applications (ICCSA 2020,
Cagliari, Italy) and differs from it in significant ways. In particular, this paper considers
novel mathematical problems concerning the strategies for deploying intrusion detection
systems, corresponding inverse problems, and provides closed-form solutions for a few
previously unsolved problems.

The remainder of this paper is organized as follows. Section 2 introduces the related
concepts in which the types of losses that should rely on an IDS are considered, and the
corresponding formalism is provided. Section 3 presents an analysis of IDS deployment
applicability using additional assumptions. Section 4 outlines the criteria for IDS deploy-
ment on the IoT edge nodes. Section 5 presents the performance analysis, and Section 6
concludes the paper.
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2. System Model and Problem Statement

A signature-based intrusion detection approach usually begins with an understanding
of the attack patterns, and a detection algorithm is then implemented to find the signatures
for the situation in question, assuming that the signature represented the attack accurately.
Failing to recognize a new attack is a serious limitation. In contrast, an anomaly-based
intrusion detection approach is designed to enable security systems to learn from data
without any explicit deterministic rules. The training dataset contains the input samples
and the corresponding output. The detection algorithm is trained until the difference
between its predicted outputs and real outputs becomes negligible. It is assumed that the
trained algorithm can predict intrusions missing from the training dataset. Therefore, the
anomaly-based intrusion detection approach applies to a variety of attacks. On the other
hand, some detection errors need to be allowed. There is no guarantee that an IDS would
be able to protect against all threats even if it were theoretically possible. Even the best
intrusion detection algorithm is unlikely to be 100% accurate. Thus, the detection error
tolerance is an inherent feature of an IDS. This means that its protection mechanisms are
not suitable for all scenarios. Therefore, the deployment of an IDS must be justified for
suitability and throughput.

This paper addresses a criterion for IDS deployment on IoT edge nodes and focuses
on DDoS attacks such as flooding, which impedes legitimate users and quickly drains the
batteries of the mobile edge nodes [4]. An IDS can filter out some of the malicious traffic,
but the following losses to legal users are possible.

• A false positive error, known as a false alarm, occurs when an IDS identifies a legal
packet as malicious.

• An IDS consumes system resources, which reduces the system throughput, and causes
possible packet losses due to buffer overflow.

Therefore, the benefits of using an IDS can be offset by the mentioned losses. Hence, it
is necessary to choose a scenario (with or without an IDS) with minimal losses. Figure 1
presents these concepts.

Figure 1. Losses of legitimate users due to the use of an IDS.
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The following two maps can be defined by introducing the corresponding formalism:

L0 : X → R+ (1)

LIDS : X× Y → R+ (2)

where X is a set of edge network environmental parameters; the functional L0(x), x ∈ X is
the loss metrics in the case of the non-use of the IDS; Y is a set of IDS indicators; and the
functional LIDS(x, y), x ∈ X, y ∈ Y is the losses metric in the case of IDS deployment.

Thus, the general goal is to solve the following problem:

j∗ = arg max
j∈{0, IDS}

Lj (3)

In other words, this paper addressed the following issue: is it advisable to deploy an
IDS with given parameters in a given environment?

This study also considered various problem statements related to (3). For example,
if there is an opportunity to affect the environment, then it is reasonable to consider the
following problem:

min
x∈Y

L0(x), Y ⊂ X (4)

Here, Y is a subset of X, depending on resource limits and service-level agreements. An
alternative problem can be formulated as follows: This is example 1 of an equation:

min
x∈Y

fC(x) (5)

Y ⊂ X

L0(x) ≤ ζA

where the function fC(x) describes the cost of recourses used, and ζA is the level of
admissible losses.

The effective functioning of an IDS entails an increase in resource consumption.
Therefore, the overall throughput of the system will be reduced if an IDS is actively used.
The problem of IDS deployment is reduced to determining the set:

Ωx = {y| (x, y) ⊂ X× Y, LIDS(x, y) < L0(x) } (6)

Taking tight budget constraints for IDS implementation into account, the problem can
be formulated as follows:

min
y∈Ωx

LIDS(x, y) (7)

x ∈ Y

f IDS(y) ≤ ζmax

where the function f IDS(y) provides a cost of IDS implementation, and ζmax is the maxi-
mum allowable cost.

The choice of loss metrics mentioned above can be influenced by the system architec-
ture, the service agreement, the goal of the researcher, the nature of the losses and how
they are interpreted by the participants, and the details of the application. If we obtain
a convex optimization problem, then the Lagrange multiplier method, which finds the
local optima, can be used to find the global minimum of our problem. In general, we deal
with non-convex optimization problems (see, for example, [22]); that is, we often need
to study the problem of minimizing a loss function over nonconvex sets. Moreover, the
domain of a loss function can contain discrete subsets (the number of servers, the memory
chip sizes, the number of features used for classification tasks). In these cases, stochastic
optimization methods (simulated annealing, swarm algorithms, evolution strategies) can
be preferable. Fortunately, in some practical cases, the loss metric is strictly monotonic and
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continuous. Thus, as will be seen below, a simple consequence of the Weierstrass extreme
value theorem allows for the finding the optimal solution and derivation of a criterion,
formulated in closed form, for IDS deployment.

Consider some particular implementations of problem (3) using the features typical
of wireless communications. In these assumptions, a set of IoT edge nodes serves a user-
generated workload. The set includes traffic, which needs to be treated and retransmitted.
Let us use the following designations:

• λ: the traffic intensity;
• µ: the intensity of the request treatment;
• α: the percentage of the workload of legal users, which can be estimated using an

observable sample or an auxiliary model; and
• B: the probability of packet/request rejection—-the blocking probability.

Here, a situation with two types of users is considered. Legitimate users generate
traffic with intensity λα. Therefore, malicious users generate traffic with the following
intensity: λ(1− α). Owing to limited resources of edge nodes, a part of the traffic does not
receive service and is rejected. Generally, the blocking probability (B) is a function of λ and
µ, (the losses rate) is

λB(λ, µ), (8)

and the served workload rate is
λ(1− B(λ, µ)), (9)

Note that not all packets are useful. The actual loss rate of legal users is

L0 = αλB(λ, µ). (10)

Consider the edge nodes equipped by an IDS. It is reasonable to assume that part
of the malicious requests will be rejected and the novel workload intensity λ̃ will be
reduced (λ̃ < λ). On the other hand, it does not guarantee that the system throughput
will improve. IoT devices need to perform additional operations for intrusion detection,
system maintenance, and malicious request filtering. Therefore, the performance of the
request treatment needs to be reduced, i.e., the novel intensity of the request treatment
becomes µ̃, and µ̃ < µ. A signature-based IDS can be used if the security system is designed
to counteract a limited set of known attacks. In this case, the IDS uses a set of rules
(signatures) that can detect the presence of an attack pattern. This provides a high level
of accuracy for well-known intrusions. A signature-based IDS is usually characterized by
low computational cost (µ̃ ≈ µ). The same effect can be reached using a small number
of secret bits for requests verification. On the other hand, this situation is not typical
for IoT environments. Hands-on experience has shown that attackers often change their
hacking tactics and develop new intrusion approaches and instruments. Signature-based
detection does not detect slightly modified attacks; much less, it does not detect unknown
attacks. Hence, advanced intrusion detection methods must be applied. Furthermore,
µ̃ � µ is not typical for the IoT considering the edge devices level [23]. Low resources
render heavy computation algorithms, such as deep learning, ineffective. Therefore, it
is reasonable to assume that the performance of a requested treatment did not increase
drastically. Moreover, some legitimate requests are mistakenly recognized as illegal and
are filtered by an IDS.

The following section examines the cases where IDS deployment makes sense. These
cases are formulated, and condition (6) is specified using mathematical modeling.

3. Analysis
3.1. IDS Application

For the purposes of the present study, it is sufficient to consider the IDS parameters
as follows:
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• pI is a false positive, the probability of an event when a legitimate request is rejected
by the IDS;

• pI I is a false negative, the probability of an event when an illegal request is accepted.

Therefore, the IDS rightly rejects the

λ(1− α)(1− pI I), (11)

spoofed request per time unit. The loss of legal traffic is

λαpI (12)

Hence, the edge nodes need to treat an offered load of intensity:

λ̃ = λ(α(1− pI) + (1− α)pI I). (13)

The ratio of legitimate requests has been changed. Now, this ratio is

α̃ =
λα(1− pI)

λ̃
=

α(1− pI)

α(1− pI) + (1− α)pI I
(14)

In the case of IDS application, the actual loss rate of legal users is

LIDS = λαpI + α̃λ̃B
(

λ̃, µ̃
)

(15)

The IDS (with the given quality parameters, pI , pI I) is justified if and only if

LIDS(pI , pI I) < L0 (16)

Figure 2 illustrate this point. Therefore

αλB(λ, µ)− α̃λ̃B
(

λ̃, µ̃
)
> αλpI (17)

Figure 2. Detailing the problem of choosing an IDS deployment.
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The blocking probability is a non-negative monotonically decreasing function of the
variable µ̃. Hence, the novel intensity of request treatment needs to satisfy the inequality

µ̃ > I
(

λ̃,
αλ(B(λ, µ)− pI)

α̃λ̃

)
(18)

where I(∗) is the inverse function of B(∗).
In view of the above considerations, inequalities (17) and (18) can be rewritten as follows:

B
(

λ̃, µ̃
)
<

B(λ, µ)− pI
1− pI

(19)

µ̃ > I
(

λ(α(1− pI − pI I) + pI I),
B(λ, µ)− pI

1− pI

)
(20)

These formulae contain only the original system and introduced IDS parameters. The
blocking probability function and its inverse can be calculated using an appropriate queuing
model. For example, the Erlang-B loss function is perhaps one of the most important math-
ematical tools that describes the impact of competition for a non-queued limited resource.

3.2. Erlang-B Function

Let us consider a specific model of losses. Taking the requirements of delay-sensitive
services into account, it is reasonable to use the M/M/n/n queuing system to model the
functioning of the cluster head (gateway), which can serve n requests (e.g., edge devices
and sessions) simultaneously. Thus, the assumptions are

• Incoming Poisson flow (with intensity λ̃ or λ),
• Exponential service time (with intensity µ̃ or µ), and
• No buffer (waiting room).

In this case, the blocking probability is described using the Erlang-B formula (see, for
example [24]),

B(ρ, n) =

(
1 + Γ(n + 1)

n

∑
i=0

1
ρn−iΓ(i + 1)

)−1

(21)

where
ρ =

λ

µ
(22)

and Γ(n + 1) is the gamma function.
The inequality (19) can be solved numerically. Please note that the assumption of an

exponential cumulative distribution function (CDF) for the service time is unnecessary.
The formula (21) is true for M/G/n/n queuing system as well.

Let us consider the case of the equation

n� ρ (23)

which generally takes place under attack. The following theorem [25] was used:

Theorem. If

ρ ≥ n +
1
ε
∀ ε > 0, (24)

then

‖ B(n, ρ)−
(

1− n
ρ

)
‖≤ ε. (25)
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Corollary. If ε is small enough, then an approximation for an Erlang-B function can be obtained as

B(n, ρ) ≈ 1− n
ρ

, (26)

and the inverse functions approximations can also be calculated easily

ρ ≈ n
1− B

, (27)

n ≈ ρ(1− B). (28)

For heavy workloads, the approximation accuracy reaches machine zero. Therefore,
without diminishing the generality, in the consideration below, the entities “approximately
equal” and “equal” are identified.

Thus, the M/M/n/n system under a heavy load provides the outgoing rate (served
requests) as follows:

λ(1− B(n, ρ)) = λ
n
ρ
= nµ, (29)

and the losses rate is as follows:

λB(n, ρ) = λ− nµ (30)

3.3. Related Problems

The facts presented in the previous section make it possible to obtain closed-form
solutions for a family of problem statements (5). The proposed results can be applied
to security issues and various situations, such as placement and resource allocation in
mobile edge computing systems, bandwidth minimizing in LoRaWAN, and optimizing
the clustering mechanism in VANET. Consider the problem of service differentiation in the
term of losses rate, which can arise in situations such as security differentiation for different
classes of customers, traffic management, and prioritized time slot assignments performed
by V2X protocols. In the case of jamming attacks [26], this technique can be used to assign
non-attacked channels to support the survivability of the most critical applications. In
general, the problem statement can be formulated as follows. The consumed resources,
subject to the required quality of service (limited losses rate) provided, should be minimized
as in Equation (31):

C(N) → min (31)

N =
C

∑
j=1

nj

B
(
nj, ρj

)
≤ bj , j ∈ {1, , , 2, , , . . . , , , C},

where C is the function of cost for the consumed resources or energy consumption; N is the
total number of computational resources (channels, servers, service centers, IDS agents); C
is the number of user classes; nj is the number of resources assigned to the class j; and bj is
the QoS required by class j (i.e., the losses rate).

In most cases, minimizing the objective function means minimizing the number of
channels, i.e., C(N) ≡ N. In the case of limited resources (the most critical case), the
approximation above helps solve the problem. The optimal solution is as follows:

nj = ρj(1− bj) , j ∈ {1, , , 2, , , . . . , , , C}, (32)

and the optimal total number of channels:

N∗ =
C

∑
j=1

ρj(1− bj). (33)
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The theorem in the previous section gives the analytical solution for the following
problem of cluster member optimization:

MC → max (34)

B(N, MC, λ0, µ) ≤ b

where MC is the number of cluster members; the number of channels N assumed to be
fixed; and λ0 is the intensity of traffic generated by a single cluster member. Remark:

λ = MCλ0 (35)

The Erlang-B function is a monotonically decreasing function of λ. Hence, the optimal
number of cluster members is as follows:

M∗C = argmax {MC ∈ N | B(N, MC, λ0, µ) = b} (36)

From here

M∗C =

[
Nµ

λ0(1− b)

]
(37)

In cognitive radio sensor networks, the set of channels and the set of cluster members
are defined in an alternative manner based on link quality metrics and network topol-
ogy [27]. For these systems, analogically, a solution to the problem of maximizing the
permissible traffic intensity for secondary users is

λ∗0 =
Nµ

MC(1− b)
. (38)

4. Criterion

A closed-form solution can be obtained for the inequality (18) in the case of a heavy
workload.

Proposition. The IDS is justified if the following inequality is true:

µ̃ >
µ (α(1− pI) + (1− α) pI I)

1− pI
. (39)

This inequality can be used to estimate and select the intrusion detection algo-
rithms. For convenience, the inequality (39) can be rewritten as a ratio of the request
treatment intensities:

µ̃

µ
> α +

pI I(1− α)

1− pI
(40)

It is often (but not always) expected that a way to improve the false-positive parameter
entails the consequences of the proportional degradation of the false-negative parameter
and vice versa. This is specific to IDS design. On the other hand, if the IDS quality is good
enough, both pI and pI I are small enough. Consider the following ratio:

pI I
1− pI

(41)

If the IDS is of poor quality, the values of pI and pI I will be in the vicinity of 1.
Therefore, the ratio becomes large. If the IDS quality is good enough, then the ratio is
around zero. Despite some uncertain intermedia cases, the ratio indicates the IDS quality.
Thus, let us define the ratio in (41) as the “IDS Performance Index (IDS-PI)”. Generally,
packets are processed individually by the IDS; hence, this value does not depend on the
legal users’ packet proportion.



Energies 2021, 14, 5954 10 of 13

Consider a situation when the efficiency of applied intrusion detection algorithms is
very high:

lim
pI → 0

pI I → 0

pI I
1− pI

= 0 (42)

In this case, the criterion for the appropriateness of an IDS takes a simple form:

µ̃

µ
> α (43)

Please note that it is natural to accept that µ̃ < µ, hence µ̃/µ ∈ (α; 1).
The decision to deploy an IDS (or provide requirements for one) can be based on

profitability analysis. Therefore, a criterion can take a set of various forms, such as “the
IDS should improve the loss rate k times”:

LIDS
L0

> k (44)

where k is a desired constant. In this case, the inequality (18) takes the form

µ̃ >

(
λ

n
+ k

(
µ− λ

n

)) (
α +

pI I
1− pI

(1− α)

)
(45)

An alternative criterion could be: “An effect of IDS implementation is that it has to provide
the desired loss threshold h”:

LIDS < h (46)

Here, the requirements for system throughput are

µ̃ >
1
n

(
λ− h

α

) (
α +

pI I
1− pI

(1− α)

)
(47)

The approximation above allows a closed-form solution for various similar cases of
system profitability analysis. In addition, various solutions can be obtained for inverse
problems. For example, if the system performance degradation (µ̃) due to IDS deployment
is given, and it is necessary to define the conditions for one of the other parameters of
IDS/environment, then

pI < 1− (1− α) pI Iµ

µ̃− αµ
(48)

pI I <

(
µ̃

µ
− α

)
1− pI
1− α

(49)

α <
µ̃ (1− pI)− µpI I
µ (1− pI − pI I)

(50)

5. Performance Evaluation

In this consideration, it can be assumed that IDS-PI varied in the range (0; 1). Actually,
there was no reason for using intrusion detection algorithms with pI > 0.5 or pI I > 0.5.
The following function can be useful for determining the trade-off between the admissible
computational overhead and intrusion detection efficiency:

g(α, pI , pI I) = α +
pI I

1− pI
(1− α) (51)

The function g provides a critical line separating the acceptable deceleration from the
unacceptable one. Figure 3 presents critical lines change according to the IDS throughput
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efficiency for α ∈ {0.1; 0.3; 0.5; 0.7; 0.9}. In accordance with inequality (40), the IDS is
justified if

µ̃

µ
∈ epi g (52)

Using this plot, we also obtained the IDS quality requirements.

Figure 3. The computational overhead is acceptable if its value lies above the corresponding line.

If the alpha is high enough, the IDS mostly handles legitimate traffic and wastes
resources. A small proportion of spoofed packets does not have a significant impact on the
network node. In this situation, using such an IDS was justified because it did not slow
down the operation of the node and detected almost all spoofed packets. The effect of a
mediocre IDS is more like a DDoS attack. It is intuitively clear and shown in Figure 3.

If the portion of legitimate requests is approximately 10 percent, and the IDS leads to
a 50 percent decrease in node performance, an IDS-PI of about 0.3 is allowed. This is a very
mediocre IDS. In the next example, if the portion of legitimate requests is approximately
90 percent and there is only 15 percent degradation of node throughput, then there are
no reasons to use even an ideal ID with no mistakes in algorithm detection (zero false
positives and false negatives).

The suitability of α as a threshold for degradation in node performance was previously
noted. Taking into account the inequality (43), we concluded that the throughput of the
edge node equipped with IDS could be reduced by less than α−1 times; that is,

µ̃ > µα (53)

This threshold needed to be applied carefully and in a balanced manner. The quality of
this approach depends on the quality of the intrusion detection algorithm used. Let us
illustrate this proposition. Consider the following value:

deviation =
pI I

1− pI

(
1
α
− 1
)

(54)

Assume that the false positive and false negative values are small enough. Here,
without a loss of generality, pI = pI I ∈ {1%, 2%, 3%, 5%, 10%}.
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If the quality of the intrusion detection algorithm used is very high (the error is
approximately one percent or less), then α can be taken as a threshold for reducing the
node performance due to the IDS operation. This would not be true if the values pI and
pI I exceeded 2 percent, even though this would still be a good enough intrusion detection
algorithm. As the quality of intrusion detection algorithms decreases, the second term in
formula (51) becomes comparable to α. Figure 4 illustrates this point.

Figure 4. Suitability of α as the node performance degradation threshold.

As a final remark, the false positive and false negative values of recently presented
energy-efficient IDS reached 5% (see, for example, [28]). Assume that the admissible system
performance degradation is limited to 10%. It would be advisable to activate the IDS if the
proportion of spoofed packages exceeded 15%; otherwise it would be inappropriate.

6. Conclusions

This paper offered a criterion for IDS deployment on IoT edge nodes. The results were
based on a queuing theory. In particular, M/M/n/n (M/G/n/n) systems were used. In
general, the approach can be applied to any kind of IDS. On the other hand, detailed results
were provided for low-resource IoT devices (edge nodes). Using the Erlang losses function
approximation, a quantitative condition was received when IDS deployment made sense.
The offered approach can mainly be applied for flooding-type intrusions. Note that the
result can be used in other application domains, such as enterprises management and
hospital operations. In this paper, we provided general tools for analyzing the suitability of
an arbitrary IDS. Analyses of specific practical systems will be considered in a future work.
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