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Abstract: Multi-access edge computing has become a strategic concept of the Internet of Things. 
The edge computing market has reached USD several billion and is growing intensively. In the 
edge-computing paradigm, most of the data is processed close to, or at the edge of, the network. 
This greatly reduces the computation and communication load of the network core. Moreover, 
edge computing provides better support for user privacy. On the other hand, an increase in data 
processing locations will proportionately increase the attack surface. An edge node can be put out 
of service easily by being flooded with spoofed packets owing to limited capacities and resources. 
Furthermore, wireless edge nodes are quite vulnerable to energy exhaustion attacks. In this situa-
tion, traditional network security mechanisms cannot be used effectively. Therefore, a tradeoff 
between security and efficiency is needed. This study considered the requirements under which the 
use of an intrusion detection system (IDS) is justified. To the best of our knowledge, this is a first 
attempt to combine IDS quality, system performance degradation due to IDS operations, and 
workload specificity into a unified quantitative criterion. This paper is an extended version of a 
report published in the proceedings of the ICCSA 2020 and differs from it in many ways. In par-
ticular, this paper considers novel mathematical problems regarding the deployment strategies for 
an IDS and the corresponding inverse problems and provides closed-form solutions for a few pre-
viously unsolved problems. 
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1. Introduction 
According to an estimate by Cisco Global Cloud Index, the data produced by the 

Internet of Things (IoT) will soon exceed 800 zettabytes. For efficient treatment of such 
huge volumes of data, the edge-computing paradigm has been suggested. In this para-
digm, most of the data is processed close to, or at the edge of, the network. Some func-
tions of the network core are delegated to the network edges, where the connected enti-
ties produce the data directly. The corresponding computing platforms and system re-
sources can fortify these facilities. Edge computing offloads the computation and com-
munication load of the network core, and by processing data near the data sources, it 
provides a better quality of service (QoS) for delay-sensitive applications and efficient 
structural support for user privacy, and it prevents and mitigates some types of DDoS 
attacks [1]. 

The ratio of enterprise-generated data, which is processed outside of a conventional 
centralized data center or cloud, is expected to reach 75%. ResearchAndMarkets.com 
estimates that the total edge computing market will increase to USD 9.0 billion by 2024, at 
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a compound annual growth rate of 26.5%. According to an alternative forecast provided 
by Gartner, this market will reach USD 13 billion by 2022. Worldwide, the financial in-
dustry is one of the largest beneficiaries of edge computing. The increased adoption of 
digital and mobile banking initiatives, advanced technologies such as blockchain, and 
payments through smart mobile devices is fueling the demand for modern edge compu-
ting solutions. The Asia-Pacific region is destined to become one of the main markets 
because companies and governmental organizations there show a greater inclination 
toward storing and processing data locally. 

However, an increase in the number of data processing locations will increase the 
attack surface proportionately [2]. Edge devices are generally used with limited resources 
[3], and the limited resources of the IoT poses a serious security threat as energy exhaus-
tion and flood attacks, as well as various types of related intrusions have been described 
[4–9]. In addition, limited computing power and storage size and low battery capacity 
prevent IoT devices from executing conventional actions to support network security 
[10]. Storing large amounts of data and executing a highly complex algorithm for intru-
sion detection are unreasonable. Considering the security challenges, leading academic 
researchers and experts from for-profit companies concluded that the current situation 
with IoT and edge computing security is far from satisfactory and essential efforts are 
required to overcome weaknesses and vulnerabilities. Thus, edge-computing security is 
rightfully recognized as an important area for future research. [11–13]. 

A lightweight and secure data analytics technique can increase its potential adop-
tion, which is a major benefit because ensuring that the resource consumption of security 
systems does not harm the performance of IoT devices is important [14]. Efficiency be-
comes a crucial issue in secure edge computing, particularly for applications with high 
real-time requirements. A few recent papers on the theme of intrusion detection systems 
(IDSs) for edge computing have been published. Some authors offered various IDS 
mechanisms, but they ignored quantitative analysis [15]. Other researchers focused only 
on the quality of detection method [16–18], but edge node slowdowns from intrusion 
detection activities were usually ignored. An edge node usually has extremely limited 
computational resources and the gateways/endpoints may have the same problem. 
Hence, it is necessary to take into account the effect of the corresponding additional 
computational operations. If it is possible to delegate some of the calculations to a central 
server then heavy ML-based methods like Convolutional Neural Networks, Recurrent 
Neural Networks can be used. An experimental review of the corresponding methods 
can be found in [19]. However, we should pay attention to the following circumstance: an 
intrusion, such as a flood of spoofed requests (packets, tasks) can be very effective against 
an edge node, regardless of whether the node processes the packet itself or sends it to the 
cloud. 

As shown in a recent survey [20], previous works have mainly focused on the 
trade-off between IDS performance and resource consumption (energy). There are no 
quantitative methods in the literature to form a proper holistic view of a defense system 
and receive requirements for the efficiency of the underlying intrusion detection algo-
rithms. This paper intends to fill this gap partially by describing a novel IDS approach. 
To the best of our knowledge, this is a first attempt to combine IDS quality, the system 
performance degradation due to IDS operations, and workload specificity into the uni-
fied quantitative criterion. 

This paper is an extended version of a report [21] published in the proceedings of the 
20th International Conference on Computational Science and Applications (ICCSA 2020, 
Cagliari, Italy) and differs from it in significant ways. In particular, this paper considers 
novel mathematical problems concerning the strategies for deploying intrusion detection 
systems, corresponding inverse problems, and provides closed-form solutions for a few 
previously unsolved problems. 

The remainder of this paper is organized as follows. Section 2 introduces the related 
concepts in which the types of losses that should rely on an IDS are considered, and the 
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corresponding formalism is provided. Section 3 presents an analysis of IDS deployment 
applicability using additional assumptions. Section 4 outlines the criteria for IDS de-
ployment on the IoT edge nodes. Section 5 presents the performance analysis, and Sec-
tion 6 concludes the paper. 

2. System Model and Problem Statement 
A signature-based intrusion detection approach usually begins with an under-

standing of the attack patterns, and a detection algorithm is then implemented to find the 
signatures for the situation in question, assuming that the signature represented the at-
tack accurately. Failing to recognize a new attack is a serious limitation. In contrast, an 
anomaly-based intrusion detection approach is designed to enable security systems to 
learn from data without any explicit deterministic rules. The training dataset contains the 
input samples and the corresponding output. The detection algorithm is trained until the 
difference between its predicted outputs and real outputs becomes negligible. It is as-
sumed that the trained algorithm can predict intrusions missing from the training da-
taset. Therefore, the anomaly-based intrusion detection approach applies to a variety of 
attacks. On the other hand, some detection errors need to be allowed. There is no guar-
antee that an IDS would be able to protect against all threats even if it were theoretically 
possible. Even the best intrusion detection algorithm is unlikely to be 100% accurate. 
Thus, the detection error tolerance is an inherent feature of an IDS. This means that its 
protection mechanisms are not suitable for all scenarios. Therefore, the deployment of an 
IDS must be justified for suitability and throughput. 

This paper addresses a criterion for IDS deployment on IoT edge nodes and focuses 
on DDoS attacks such as flooding, which impedes legitimate users and quickly drains the 
batteries of the mobile edge nodes [4]. An IDS can filter out some of the malicious traffic, 
but the following losses to legal users are possible. 
• A false positive error, known as a false alarm, occurs when an IDS identifies a legal 

packet as malicious. 
• An IDS consumes system resources, which reduces the system throughput, and 

causes possible packet losses due to buffer overflow. 
Therefore, the benefits of using an IDS can be offset by the mentioned losses. Hence, 

it is necessary to choose a scenario (with or without an IDS) with minimal losses. Figure 1 
presents these concepts. 

The following two maps can be defined by introducing the corresponding formal-
ism: 𝐿 : 𝐗 → 𝐑  (1) 𝐿 : 𝐗 𝐘 → 𝐑  (2) 

where 𝐗 is a set of edge network environmental parameters; the functional 𝐿 (𝐱), 𝐱 ∈ 𝐗 
is the loss metrics in the case of the non-use of the IDS; 𝐘 is a set of IDS indicators; and 
the functional 𝐿 (𝐱, 𝐲), 𝐱 ∈ 𝐗, 𝐲 ∈ 𝐘 is the losses metric in the case of IDS deployment. 

Thus, the general goal is to solve the following problem: 𝑗∗ = arg max∈{  , } 𝐿  (3) 

In other words, this paper addressed the following issue: is it advisable to deploy an IDS 
with given parameters in a given environment? 
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Figure 1. Losses of legitimate users due to the use of an IDS. 

This study also considered various problem statements related to (3). For example, if 
there is an opportunity to affect the environment, then it is reasonable to consider the 
following problem: min𝐱∈𝔜 𝐿 (𝐱), 𝔜 ⊂  𝐗 (4) 

Here, 𝔜 is a subset of 𝐗, depending on resource limits and service-level agreements. An 
alternative problem can be formulated as follows: This is example 1 of an equation: min𝐱∈𝔜 𝑓 (𝐱) (5) 𝔜 ⊂  𝐗  𝐿 (𝐱) ≤ 𝜁   

where the function 𝑓 (𝐱) describes the cost of recourses used, and 𝜁  is the level of ad-
missible losses. 

The effective functioning of an IDS entails an increase in resource consumption. 
Therefore, the overall throughput of the system will be reduced if an IDS is actively used. 
The problem of IDS deployment is reduced to determining the set: Ω =  {𝐲| (𝐱, 𝐲) ⊂  𝐗 𝐘, 𝐿 (𝐱, 𝐲) < 𝐿 (𝐱) } (6) 

Taking tight budget constraints for IDS implementation into account, the problem 
can be formulated as follows: min𝐲∈ 𝐿 (𝐱, 𝐲) (7) 𝐱 ∈ 𝔜   𝑓 (𝐲) ≤ 𝜁   

where the function 𝑓 (𝐲) provides a cost of IDS implementation, and 𝜁  is the 
maximum allowable cost. 
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The choice of loss metrics mentioned above can be influenced by the system archi-
tecture, the service agreement, the goal of the researcher, the nature of the losses and how 
they are interpreted by the participants, and the details of the application. If we obtain a 
convex optimization problem, then the Lagrange multiplier method, which finds the lo-
cal optima, can be used to find the global minimum of our problem. In general, we deal 
with non-convex optimization problems (see, for example, [22]); that is, we often need to 
study the problem of minimizing a loss function over nonconvex sets. Moreover, the 
domain of a loss function can contain discrete subsets (the number of servers, the 
memory chip sizes, the number of features used for classification tasks). In these cases, 
stochastic optimization methods (simulated annealing, swarm algorithms, evolution 
strategies) can be preferable. Fortunately, in some practical cases, the loss metric is 
strictly monotonic and continuous. Thus, as will be seen below, a simple consequence of 
the Weierstrass extreme value theorem allows for the finding the optimal solution and 
derivation of a criterion, formulated in closed form, for IDS deployment. 

Consider some particular implementations of problem (3) using the features typical 
of wireless communications. In these assumptions, a set of IoT edge nodes serves a us-
er-generated workload. The set includes traffic, which needs to be treated and retrans-
mitted. Let us use the following designations: 
• λ: the traffic intensity; 
• μ: the intensity of the request treatment; 
• α: the percentage of the workload of legal users, which can be estimated using an 

observable sample or an auxiliary model; and 
• 𝐵: the probability of packet/request rejection––the blocking probability. 

Here, a situation with two types of users is considered. Legitimate users generate 
traffic with intensity 𝜆𝛼. Therefore, malicious users generate traffic with the following 
intensity: 𝜆(1 − 𝛼). Owing to limited resources of edge nodes, a part of the traffic does 
not receive service and is rejected. Generally, the blocking probability (𝐵) is a function of 𝜆 and μ, (the losses rate) is 𝜆𝐵(𝜆, 𝜇), (8) 

and the served workload rate is 𝜆 1 − 𝐵(𝜆, 𝜇) , (9) 

Note that not all packets are useful. The actual loss rate of legal users is 𝐿 = 𝛼𝜆𝐵(𝜆, 𝜇). (10) 

Consider the edge nodes equipped by an IDS. It is reasonable to assume that part of the 
malicious requests will be rejected and the novel workload intensity 𝜆 will be reduced 
(𝜆 < 𝜆). On the other hand, it does not guarantee that the system throughput will im-
prove. IoT devices need to perform additional operations for intrusion detection, system 
maintenance, and malicious request filtering. Therefore, the performance of the request 
treatment needs to be reduced, i.e., the novel intensity of the request treatment becomes 𝜇, and 𝜇 <  𝜇. 

A signature-based IDS can be used if the security system is designed to counteract a 
limited set of known attacks. In this case, the IDS uses a set of rules (signatures) that can 
detect the presence of an attack pattern. This provides a high level of accuracy for 
well-known intrusions. A signature-based IDS is usually characterized by low computa-
tional cost (𝜇 ≈  𝜇). The same effect can be reached using a small number of secret bits for 
requests verification. On the other hand, this situation is not typical for IoT environ-
ments. Hands-on experience has shown that attackers often change their hacking tactics 
and develop new intrusion approaches and instruments. Signature-based detection does 
not detect slightly modified attacks; much less, it does not detect unknown attacks. 
Hence, advanced intrusion detection methods must be applied. Furthermore, 𝜇 ≪ 𝜇 is 
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not typical for the IoT considering the edge devices level [23]. Low resources render 
heavy computation algorithms, such as deep learning, ineffective. Therefore, it is rea-
sonable to assume that the performance of a requested treatment did not increase dras-
tically. Moreover, some legitimate requests are mistakenly recognized as illegal and are 
filtered by an IDS. 

The following section examines the cases where IDS deployment makes sense. These 
cases are formulated, and condition (6) is specified using mathematical modeling. 

3. Analysis 
3.1. IDS Application 

For the purposes of the present study, it is sufficient to consider the IDS parameters 
as follows: 
• 𝑝  is a false positive, the probability of an event when a legitimate request is rejected 

by the IDS; 
• 𝑝  is a false negative, the probability of an event when an illegal request is accepted. 

Therefore, the IDS rightly rejects the 𝜆(1 − 𝛼)(1 − 𝑝 ), (11) 

spoofed request per time unit. The loss of legal traffic is 𝜆𝛼𝑝  (12) 

Hence, the edge nodes need to treat an offered load of intensity: 𝜆 = 𝜆(𝛼(1 − 𝑝 ) + (1 − 𝛼)𝑝 ). (13) 

The ratio of legitimate requests has been changed. Now, this ratio is 𝛼 = 𝜆𝛼(1 − 𝑝 )𝜆 = 𝛼(1 − 𝑝 )𝛼(1 − 𝑝 ) + (1 − 𝛼)𝑝  (14) 

In the case of IDS application, the actual loss rate of legal users is 𝐿 = 𝜆𝛼𝑝 + 𝛼𝜆𝐵 𝜆, 𝜇  (15) 

The IDS (with the given quality parameters, 𝑝  , 𝑝 ) is justified if and only if 𝐿 (𝑝  , 𝑝 ) < 𝐿  (16) 

Figure 2 illustrate this point. Therefore 𝛼𝜆𝐵(𝜆, 𝜇) − 𝛼𝜆𝐵 𝜆, 𝜇 > 𝛼𝜆𝑝  (17) 

The blocking probability is a non-negative monotonically decreasing function of the 
variable 𝜇. Hence, the novel intensity of request treatment needs to satisfy the inequality 𝜇 > 𝐼 𝜆, 𝛼𝜆(𝐵(𝜆, 𝜇) − 𝑝 )𝛼𝜆  (18) 

where 𝐼(∗) is the inverse function of 𝐵(∗). 
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Figure 2. Detailing the problem of choosing an IDS deployment. 

In view of the above considerations, inequalities (17) and (18) can be rewritten as 
follows: 𝐵 𝜆, 𝜇 < 𝐵(𝜆, 𝜇) − 𝑝1 − 𝑝  (19) 

𝜇 > 𝐼 𝜆(𝛼(1 − 𝑝 − 𝑝 ) + 𝑝 ), 𝐵(𝜆, 𝜇) − 𝑝1 − 𝑝  (20) 

These formulae contain only the original system and introduced IDS parameters. The 
blocking probability function and its inverse can be calculated using an appropriate 
queuing model. For example, the Erlang-B loss function is perhaps one of the most im-
portant mathematical tools that describes the impact of competition for a non-queued 
limited resource. 

3.2. Erlang-B Function 
Let us consider a specific model of losses. Taking the requirements of delay-sensitive 

services into account, it is reasonable to use the M/M/n/n queuing system to model the 
functioning of the cluster head (gateway), which can serve n requests (e.g., edge devices 
and sessions) simultaneously. Thus, the assumptions are 
• Incoming Poisson flow (with intensity 𝜆 or 𝜆), 
• Exponential service time (with intensity 𝜇 or 𝜇), and 
• No buffer (waiting room). 
In this case, the blocking probability is described using the Erlang-B formula (see, for 
example [24]), 

𝐵(𝜌, 𝑛) = 1 + Γ(𝑛 + 1) 1𝜌 Γ(𝑖 + 1)  (21) 

where 
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𝜌 = 𝜆𝜇 (22) 

and Γ(𝑛 + 1) is the gamma function. 
The inequality (19) can be solved numerically. Please note that the assumption of an 

exponential cumulative distribution function (CDF) for the service time is unnecessary. 
The formula (21) is true for M/G/n/n queuing system as well. 

Let us consider the case of the equation 𝑛 ≪ 𝜌 (23) 

which generally takes place under attack. The following theorem [25] was used: 

Theorem. If 𝜌 ≥ 𝑛 + ∀ 𝜀 > 0,  (24) 

then 𝐵(𝑛, 𝜌) − 1 − ≤  𝜀.  (25) 

Corollary. If 𝜀 is small enough, then an approximation for an Erlang-B function can be obtained 
as 𝐵(𝑛, 𝜌) ≈ 1 − ,  (26) 

and the inverse functions approximations can also be calculated easily 

𝜌 ≈ 𝑛1 − 𝐵, (27) 

𝑛 ≈ 𝜌(1 − 𝐵). (28) 

For heavy workloads, the approximation accuracy reaches machine zero. Therefore, 
without diminishing the generality, in the consideration below, the entities “approxi-
mately equal” and “equal” are identified. 

Thus, the M/M/n/n system under a heavy load provides the outgoing rate (served 
requests) as follows: 𝜆 1 − 𝐵(𝑛, 𝜌) = 𝜆 𝑛𝜌 = 𝑛𝜇, (29) 

and the losses rate is as follows: 𝜆𝐵(𝑛, 𝜌) = 𝜆 − 𝑛𝜇 (30) 

3.3. Related Problems 
The facts presented in the previous section make it possible to obtain closed-form 

solutions for a family of problem statements (5). The proposed results can be applied to 
security issues and various situations, such as placement and resource allocation in mo-
bile edge computing systems, bandwidth minimizing in LoRaWAN, and optimizing the 
clustering mechanism in VANET. Consider the problem of service differentiation in the 
term of losses rate, which can arise in situations such as security differentiation for dif-
ferent classes of customers, traffic management, and prioritized time slot assignments 
performed by V2X protocols. In the case of jamming attacks [26], this technique can be 
used to assign non-attacked channels to support the survivability of the most critical ap-
plications. In general, the problem statement can be formulated as follows. The con-
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sumed resources, subject to the required quality of service (limited losses rate) provided, 
should be minimized as in equation (31): ℭ(𝑁)  → 𝑚𝑖𝑛 (31) 

𝑁 = 𝑛   

𝐵 𝑛 , 𝜌 ≤ 𝑏  , 𝑗 ∈ {1,2, . . , 𝐶},  

where ℭ is the function of cost for the consumed resources or energy consumption; 𝑁 is 
the total number of computational resources (channels, servers, service centers, IDS 
agents); C is the number of user classes; 𝑛  is the number of resources assigned to the 
class j; and 𝑏  is the QoS required by class j (i.e., the losses rate). 

In most cases, minimizing the objective function means minimizing the number of 
channels, i.e., ℭ(𝑁) ≡ 𝑁. In the case of limited resources (the most critical case), the ap-
proximation above helps solve the problem. The optimal solution is as follows: 𝑛 = 𝜌 (1 − 𝑏 ) , 𝑗 ∈ {1,2, . . , 𝐶}, (32) 

and the optimal total number of channels: 

𝑁∗ = 𝜌 (1 − 𝑏 ). (33) 

The theorem in the previous section gives the analytical solution for the following 
problem of cluster member optimization: 𝑀  → 𝑚𝑎𝑥 (34) 𝐵(𝑁, 𝑀 , 𝜆 , 𝜇) ≤ 𝑏  

Where 𝑀  is the number of cluster members; the number of channels N assumed to be 
fixed; and 𝜆  is the intensity of traffic generated by a single cluster member. Remark: 𝜆 = 𝑀 𝜆  (35) 

The Erlang-B function is a monotonically decreasing function of 𝜆. Hence, the op-
timal number of cluster members is as follows: 𝑀∗ = arg max  {𝑀 ∈ ℕ | 𝐵(𝑁, 𝑀 , 𝜆 , 𝜇) = 𝑏} (36) 

From here 𝑀∗ =  𝑁𝜇𝜆 (1 − 𝑏)  (37) 

In cognitive radio sensor networks, the set of channels and the set of cluster mem-
bers are defined in an alternative manner based on link quality metrics and network to-
pology [27]. For these systems, analogically, a solution to the problem of maximizing the 
permissible traffic intensity for secondary users is 𝜆∗ = 𝑁𝜇𝑀 (1 − 𝑏). (38) 

4. Criterion 
A closed-form solution can be obtained for the inequality (18) in the case of a heavy 

workload. 

Proposition. The IDS is justified if the following inequality is true: 
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𝜇 > 𝜇 (𝛼(1 − 𝑝 ) + (1 − 𝛼) 𝑝 )1 − 𝑝 . (39) 

This inequality can be used to estimate and select the intrusion detection algorithms. 
For convenience, the inequality (39) can be rewritten as a ratio of the request treatment 
intensities: 𝜇𝜇 > 𝛼 +  𝑝 (1 − 𝛼)1 − 𝑝  (40) 

It is often (but not always) expected that a way to improve the false-positive pa-
rameter entails the consequences of the proportional degradation of the false-negative 
parameter and vice versa. This is specific to IDS design. On the other hand, if the IDS 
quality is good enough, both 𝑝  and 𝑝  are small enough. Consider the following ratio:  𝑝1 − 𝑝  (41) 

If the IDS is of poor quality, the values of 𝑝  and 𝑝  will be in the vicinity of 1. Therefore, 
the ratio becomes large. If the IDS quality is good enough, then the ratio is around zero. 
Despite some uncertain intermedia cases, the ratio indicates the IDS quality. Thus, let us 
define the ratio in (41) as the “IDS Performance Index (IDS-PI)”. Generally, packets are 
processed individually by the IDS; hence, this value does not depend on the legal users’ 
packet proportion. 

Consider a situation when the efficiency of applied intrusion detection algorithms is 
very high: lim →→

 𝑝1 − 𝑝 = 0 (42) 

In this case, the criterion for the appropriateness of an IDS takes a simple form: 𝜇𝜇 > 𝛼 (43) 

Please note that it is natural to accept that 𝜇 < 𝜇, hence 𝜇/𝜇 ∈ (𝛼; 1). 
The decision to deploy an IDS (or provide requirements for one) can be based on 

profitability analysis. Therefore, a criterion can take a set of various forms, such as “the 
IDS should improve the loss rate k times”: 𝐿𝐿 > 𝑘 (44) 

where k is a desired constant. In this case, the inequality (18) takes the form 𝜇 > 𝜆𝑛 + 𝑘 𝜇 − 𝜆𝑛  𝛼 +  𝑝1 − 𝑝 (1 − 𝛼)  (45) 

An alternative criterion could be: “An effect of IDS implementation is that it has to provide 
the desired loss threshold h”: 𝐿 < ℎ (46) 

Here, the requirements for system throughput are 𝜇 > 1𝑛 𝜆 − ℎ𝛼  𝛼 +  𝑝1 − 𝑝 (1 − 𝛼)  (47) 

The approximation above allows a closed-form solution for various similar cases of system 
profitability analysis. In addition, various solutions can be obtained for inverse problems. 
For example, if the system performance degradation (𝜇) due to IDS deployment is given, 



Energies 2021, 14, 5954 11 of 14 
 

 

and it is necessary to define the conditions for one of the other parameters of 
IDS/environment, then 𝑝 < 1 − (1 − 𝛼) 𝑝 𝜇𝜇 − 𝛼𝜇  (48) 

𝑝 <  𝜇𝜇 − 𝛼 1 − 𝑝1 − 𝛼  (49) 

𝛼 < 𝜇 (1 − 𝑝 ) −  𝜇𝑝𝜇 (1 − 𝑝 − 𝑝 )  (50) 

5. Performance Evaluation 
In this consideration, it can be assumed that IDS-PI varied in the range (0; 1). Actu-

ally, there was no reason for using intrusion detection algorithms with 𝑝 > 0.5 or 𝑝 >0.5. The following function can be useful for determining the trade-off between the ad-
missible computational overhead and intrusion detection efficiency: 𝑔(𝛼, 𝑝 , 𝑝 ) = 𝛼 +  𝑝1 − 𝑝 (1 − 𝛼) (51) 

The function 𝑔 provides a critical line separating the acceptable deceleration from the 
unacceptable one. Figure 3 presents critical lines change according to the IDS throughput 
efficiency for 𝛼 ∈ {0.1; 0.3; 0.5; 0.7; 0.9}. In accordance with inequality (40), the IDS is 
justified if 𝜇𝜇 ∈ epi 𝑔 (52) 

Using this plot, we also obtained the IDS quality requirements. 
If the alpha is high enough, the IDS mostly handles legitimate traffic and wastes 

resources. A small proportion of spoofed packets does not have a significant impact on 
the network node. In this situation, using such an IDS was justified because it did not 
slow down the operation of the node and detected almost all spoofed packets. The effect 
of a mediocre IDS is more like a DDoS attack. It is intuitively clear and shown in Figure 3. 

If the portion of legitimate requests is approximately 10 percent, and the IDS leads to 
a 50 percent decrease in node performance, an IDS-PI of about 0.3 is allowed. This is a 
very mediocre IDS. In the next example, if the portion of legitimate requests is approxi-
mately 90 percent and there is only 15 percent degradation of node throughput, then 
there are no reasons to use even an ideal ID with no mistakes in algorithm detection (zero 
false positives and false negatives). 



Energies 2021, 14, 5954 12 of 14 
 

 

 
Figure 3. The computational overhead is acceptable if its value lies above the corresponding line. 

The suitability of α as a threshold for degradation in node performance was previ-
ously noted. Taking into account the inequality (43), we concluded that the throughput of 
the edge node equipped with IDS could be reduced by less than 𝛼  times; that is, 𝜇 > 𝜇𝛼 (53) 

This threshold needed to be applied carefully and in a balanced manner. The quality of 
this approach depends on the quality of the intrusion detection algorithm used. Let us 
illustrate this proposition. Consider the following value: deviation =  𝑝1 − 𝑝 1𝛼 − 1  (54) 

Assume that the false positive and false negative values are small enough. Here, without 
a loss of generality, 𝑝 = 𝑝 ∈ {1%, 2%, 3%, 5%, 10%}. 

If the quality of the intrusion detection algorithm used is very high (the error is ap-
proximately one percent or less), then α can be taken as a threshold for reducing the node 
performance due to the IDS operation. This would not be true if the values 𝑝  and 𝑝  exceeded 2 percent, even though this would still be a good enough intrusion detection 
algorithm. As the quality of intrusion detection algorithms decreases, the second term in 
formula (51) becomes comparable to 𝛼. Figure 4 illustrates this point. 

As a final remark, the false positive and false negative values of recently presented 
energy-efficient IDS reached 5% (see, for example, [28]). Assume that the admissible 
system performance degradation is limited to 10%. It would be advisable to activate the 
IDS if the proportion of spoofed packages exceeded 15%; otherwise it would be inap-
propriate. 
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Figure 4. Suitability of α as the node performance degradation threshold. 

6. Conclusions 
This paper offered a criterion for IDS deployment on IoT edge nodes. The results 

were based on a queuing theory. In particular, M/M/n/n (M/G/n/n) systems were used. In 
general, the approach can be applied to any kind of IDS. On the other hand, detailed re-
sults were provided for low-resource IoT devices (edge nodes). Using the Erlang losses 
function approximation, a quantitative condition was received when IDS deployment 
made sense. The offered approach can mainly be applied for flooding-type intrusions. 
Note that the result can be used in other application domains, such as enterprises man-
agement and hospital operations. In this paper, we provided general tools for analyzing 
the suitability of an arbitrary IDS. Analyses of specific practical systems will be consid-
ered in a future work. 
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