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Abstract: Hybrid electric aero-propulsion requires high power-density electric motors. The use of
a constrained optimization method with the finite element analysis (FEA) is the best way to design
these motors and to find the best solutions which maximize the power density. This makes it possible
to take into account all the details of the geometry as well as the non-linear characteristics of magnetic
materials, the conductive material and the current control strategy. Simulations were performed
with a time stepping magnetodynamic solver while taking account the rotor movement and the
stator winding was connected by an external electrical circuit. This study describes the magnetic
FEA direct optimization approach for the design of Halbach array permanent magnet synchronous
motors (PMSMs) and its advantages. An acceptable compromise between precision and computation
time to estimate the electromagnetic torque, iron losses and eddy current losses was found. The
finite element simulation was paired with analytical models to compute stress on the retaining
sleeve, aerodynamic losses, and copper losses. This type of design procedure can be used to find
the best machine configurations and establish design rules based on the specifications and materials
selected. As an example, optimization results of PM motors minimizing total losses for a 150-kW
application are presented for given speeds in the 2000 rpm to 50,000 rpm range. We compare different
numbers of poles and power density between 5 kW/kg and 30 kW/kg. The choice of the number of
poles is discussed in the function of the motor nominal speed and targeted power density as well
as the compromise between iron losses and copper losses. In addition, the interest of having the
current-control strategy as an optimization variable to generate a small amount of flux weakening is
clearly shown.

Keywords: electrical motors; Halbach array; permanent magnet; high-power density; constrained
optimization; finite element analysis

1. Introduction

Today, reducing fuel emissions is a global concern that poses many challenges. In
the civil aviation industry, manufacturers have pledged to halve aircraft carbon emissions
by 2050 compared with 2005. Electric motors are becoming an essential alternative to the
propulsion system because of their potential to reduce aircraft emissions. However, their
use requires batteries, converters and high power density electrical machines [1,2]. Perma-
nent magnet synchronous motors (PMSMs) are widely used in these applications due to
their high efficiency, high power density, and small size, making it a key energy conversion
element and an efficient alternative to conventional motors [3]. In addition, when these
motors have an array of permanent magnets with continuous changes in the direction of
magnetization, further advantages are added, such as magnetic flux concentration effect
and a more sinusoidal radial magnetic field in the airgap. It also provides higher torque
when a large amount of magnet is used. This array of magnets is known as the Halbach

Energies 2021, 14, 5939. https://doi.org/10.3390/en14185939 https://www.mdpi.com/journal/energies

https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0003-3939-4038
https://doi.org/10.3390/en14185939
https://doi.org/10.3390/en14185939
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/en14185939
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en14185939?type=check_update&version=1


Energies 2021, 14, 5939 2 of 19

array and the machines with this design are called surface mounted permanent magnet
motors with a Halbach array [4]. They are widely used in aircraft applications, as shown in
the high power density motor presented by [5] and the motor developed by the National
Aeronautics and Space Administration (NASA) [6].

Using an iterative optimization process is the best way to design a machine that meets
requirements and specifications, such as power density, volume, torque and weight. The
design method consists in finding the best feasible solution according to the application
and determines its topology, dimensions, characteristics of magnetic materials, conductive
materials, and current-control strategy [7]. During this iterative step, the optimization
algorithm uses the information on the performance estimation of each motor configuration
to propose a new set of motor dimensions that improves the performance [1]. For that, it
is necessary to use accurate numerical models able to estimate the motor’s performances
according to their size and their control method [8].

Coupled multiphysics modelling methods must be used to properly assess motor
performance [9,10]. Indeed, there are many interactions between the physical phenomena
in a machine and they must be considered as explained in [11]. Figure 1 shows the
multiphysical couplings and the connection between them. However, the trade-off between
the accuracy of these models and computational time is a critical factor when using an
iterative optimization procedure that may require a significant number of iterations before
converging to a solution [12].
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Figure 1. Multiphysics couplings in an electrical motor [11].

In [9], the authors present an electric motor optimization process for aircraft propul-
sion. They develop an optimization tool for applications of PMSMs with high power
density, considering multiphysics couplings such as electromagnetic, thermal, and mechan-
ical models, with the ability to explore wide search spaces and compare different types of
electrical motors. Four radial PMSMs were optimized for a speed range of 8 to 20 krpm
considering different pole numbers corresponding to an upper electrical frequency limit
of 1.5 kHz. The power of the machine was 1 MW and the optimization target raised the
power density of the motor. In the same order of ideas for aircraft propulsion, ref. [10]
proposes an optimization procedure for the design of permanent surface magnet motors
using a cooling system based on the airflow produced by the speed of the aircraft. To solve
this problem, the authors integrate magnetic, electric, thermal and mechanical models in
an optimization procedure using a differential evolution algorithm. Two optimization
problems were studied: single objective problem minimizing losses on a 60-kW motor
with a nominal speed of 3000 rpm and multi-objective problems, maximizing the power
density with the restrictions imposed. This shows the feasibility of a direct optimization
of an electric machine by including a finite element model, but the resolution of the mag-
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netic field calculation was performed in magnetostatic. Therefore, some additional losses
like eddy currents in solid conductive parts were neglected such as in the magnets or
the retaining sleeve. An FEA with an external circuit coupling and a magnetodynamic
resolution makes it possible to evaluate more precisely the effects of a current control with
flux weakening and to take them into account in the optimization process.

Knowing the target specifications, the first step to develop an optimization process is
to identify the key parameters that needs to be computed. Examples of specifications for
a SMPM motor are the nominal speed, the nominal torque, the maximal heating, and the
efficiency [13]. Key parameters that must be evaluated are the electromagnetic torque, iron
losses, copper losses, eddy current losses in the magnets, magnetic flux densities in the teeth
and in the stator yoke, the torque ripple, mechanical constraints on the retaining sleeve,
windage losses, peak temperature of the winding and peak temperature of the magnets [14].
Indeed, depending on the class of their insulation, winding must not operate over a certain
temperature [15]. Likewise, magnets have a Curie temperature, and their performances
decrease with temperature [16]. Magnetic, electrical, mechanical, and thermal models are
then required [11].

The aim of this study is to present a direct magnetodynamic time stepping FEA opti-
mization process using the MATLAB “sqp” algorithm through the constrained nonlinear
optimization function “fmincon” and discuss its computational cost and implementation.
This method has the advantages that iron losses, magnet losses, magnetic flux densities and
electromagnetic torque estimations are more accurate. Moreover, magnetic non-linearity
is considered with FEA and an original approach is to set the sinusoidal current control
strategy (module and angle) as an optimization variable. The implementation of this
method makes it possible to find general design rules such as the choice of the number of
poles according to the nominal speed to achieve a target power density.

2. Implantation and Modelling Overview

Optimization processes are composed of an optimization method and modelling
techniques so the algorithm can compute the key parameters (or constraints) at every
iteration. As explained in [1], there are two main families of constrained nonlinear opti-
mization methods: methods with gradient-based algorithms and methods with intelligent
optimization algorithms. The first family includes the conjugate gradient algorithm and the
sequential quadratic programming algorithm while the second family includes evolution-
ary algorithms as genetic algorithms and multi-objective optimization algorithms. These
methods and their advantages are widely discussed in [17]. Figure 2 shows the families of
optimization methods and their modelling techniques.
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From Figure 2 can be observed that there are several iterative optimization methods
that use FEA and/or analytical models, among these are analytical modelling, direct
FEA modelling, space mapping [18] and metamodeling [19] for constraints and objective
function evaluations.

Analytical modelling consists, as its name suggests, of an analytical model. It has a low
numerical cost, and it is generally easy to implement but less accurate than other modelling
techniques. The author of [20] shows a direct analytical model using an equivalent magnetic
network where magnetic non linearities are considered paired with a mathematical model
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analysis (MMA) optimization algorithm. The authors concluded that there is consistency
between both methods with a maximum error of 5% for torque results and up to 14.5% for
results in the winding temperature model.

Direct FEA modelling consists of automated parametric FEA simulations that are
driven by an iterative optimization algorithm. These can be in 2D or in 3D and can
be dynamic or static. These models are computationally expensive but accurate. For
instance, [21] shows a two variable direct 3D FEA optimization process for a PMSM with
a novel rotor structure and [22] proposes a modified robust design optimization (RDO)
paired with a parametric FEA model for brushless DC motors. The model direct FEA
employs design analysis models to evaluate the objectives and constraints in the model,
and by using an algorithm (for example GA), optimizes all parameters at the same time [1].
It is characterized by its simplicity in implementation and can be integrated within different
software, for example, MATLAB and EXCEL. The finite element field calculation software
such as ANSYS MAXWELL or CEDRAT FLUX can be driven by MATLAB or EXCEL to
carry out multiphysics optimization. Finite elements analysis (FEA) is widely used in the
design analysis and calculation in electrical machines due to its good accuracy but requires
a large computation time and is harder to implement. For example, consider a PMSM with
10 optimization parameters by using genetic algorithms, with an approximate number
of 200 iterations to converge and an overall population size equal to 50 (10 × 5), this
implies that around 10,000 (200 × 50) optimization model evaluations are required, which
translates into high computing times [1].

Space mapping combines a computationally cheaper model with a correction based
on a more expensive model that helps in the optimization using a parameter space
transformation [11,18]. The interest of a space mapping approach is also clearly shown
in [23]. It is slower than direct analytical models because of FEA simulations but is more
accurate. Metamodeling uses a population of FEA simulation results to generate a model
using, for example, neural networks [24] or the Kriging method [25]. It is also possible to
use multiple metamodeling methods and compare their performances [8]. This method is
numerically expensive when it comes to the FEA simulation results generation, but it is
otherwise accurate and fast.

The design of PMSMs by the FEA and piloted by an optimization method helps to
realize the optimal conception of the motor by preselecting different topologies, evaluating
for each of them the key parameters, the restrictions imposed, and the objective function
posed. This approach helps to find the best solution and helps to establish general rules for
the design of PMSMs.

As it can be seen in Figure 3, the “fmincon” function of the MATLAB software with the
“sqp” algorithm option is the main optimization algorithm. Analytical models for the stress
on the retaining sleeve, the copper losses and the windage losses were also implemented
in MATLAB. Moreover, a direct FEA coupled electromagnetic model was implemented on
FLUX2D software, a parametric FEA software. FEA simulations were called from MATLAB
and ran by the FEA software via python files.
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3. Parametric Motor Simulations with FEA Software

FEA electromagnetic simulations are performed with a parametric FEA software
(Flux2D version 10). Python scripts were written so machines with different numbers of
poles, number of slots and other geometric parameters can be constructed, meshed, and
simulated by the FEA software but launched from the MATLAB software.

3.1. Parametric Motor Construction and Meshing

First, a python script constructs the machine in the FEA software by placing points,
connecting them with lines, filling in the created faces with materials and meshing the do-
main. The main input parameters of the machine construction, and meshing are presented
in Table 1 and Figure 4. The chosen input parameters are general so that it is possible to
construct machines with different topologies.

Table 1. Input parameters of the parametric construction and meshing of an electric motor.

Description Symbol Units Value in Figure 4

Internal Dirichlet boundary condition diameter Ddiri m 0.02
Rotor internal diameter Dint m 0.044

Rotor back iron thickness Tb-iron m 0.007
Magnets thickness Tmag m 0.01

Thickness of the retaining sleeve Tsleeve m 0.002
Thickness of the air gap Ta m 0.002

Thickness of the stator teeth wedge Tw m 0.003
Stator slots depth ds m 0.012

Stator yoke thickness Ts m 0.01
Axial length of the active part L m 0.0935

Inner slot opening angle θe rad 0.15
Outer slot opening angle θe2 rad 0.165

Wedge-opening angle θw rad 0.05
Number of winding layers in a slot Nlayers - 2

Number of turns in a coil Nturns - 1
Number of magnets in a rotor pole NsecMag - 6

Total number of slots of the machine Nslots - 24
Number of slots in the study domain Nslots2 - 6

Total number of rotor poles pairs P - 2
Factor between the external diameter of the

machine and the diameter of the external
boundary condition

fdiri - 1.1

The python script also has other parameters including the choice between rounded or
rectangular bottom slots, magnetization orientation of the magnets and the distribution
of phase coils in every layer of every slot. Figures 4 and 5 respectively show an electric
motor with rounded bottom slots and with rectangular bottom slots. The magnetization
orientations of the magnets for the Halbach rotor are calculated exactly as explained in [26].
The outer slot opening angle, θe2, can be calculated so the width of the stator teeth is
constant. With rectangular bottom slots, θe2 can be calculated in the function of the motor
geometry as follows:

θe2 =
2π

Nslots
−

Dw

(
2π

Nslots
− θe

)
Des

(1)

where
Dw = Dint + 2Tb−iron + 2Tmag + 2Tsleeve + 2Ta + 2Tw (2)

Des = Dw + 2ds (3)
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For rounded bottom slots, θe2 respects Equation (4).

θe2 =
2π

Nslots
− Dw

Des
·
(

2π

Nslots
− θe

)
·
(

1 + sin
(

θe2

2

))
(4)

As it can be seen in Figure 4, boundary conditions must be specified. The internal
Dirichlet condition is optional, but the external boundary condition is mandatory. To speed
up the simulation, the study of the 2D geometrical domain was minimized to a portion the
transversal plane. A cyclic or anti-cyclic boundary condition was added in the function
of the number of poles in the studied domain. If the number of poles drawn is even, the
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periodicity must be cyclic. On the contrary, if the number of poles drawn is odd, the
periodicity must be anti-cyclic.

The mesh was performed with an automatic mesh generator and the number of nodes
(nn) was used to adjust the density of the mesh as shown in Figure 5.

The choice of the number of nodes makes it possible to find a compromise between the
computation time and the precision of the magnetodynamic simulations. It was found that
the magnetic losses and electromagnetic torque computed with a mesh having 4124 nodes
(Figure 5b) are very close (less than 0.05%) to those obtained with a mesh with 8595 nodes
(Figure 5a). The main difference is on the computation time which is divided by two.
Therefore, for the iterative optimization process, it is very advantageous to reduce the
number of nodes and to use the mesh of Figure 5b.

A finer mesh can also be imposed in the magnet to compute eddy current losses in
the magnets. Magnets skin depths were meshed with three elements along the skin depth
dmagSkin. An approximate skin depth was calculated with Equation (5). This computation
assumes that the magnet material is linear, that magnets are a semi-infinite block and that
there is no wave reflection at the interface between the magnets and the rotor back iron [27].

dmagSkin =

√
ρmag

π µmag fmag
(5)

where ρmag is the resistivity of the magnets in [Ω × m], µmag is their permeability in [H/m]
and fmag is the highest field harmonic frequency with a significant magnitude in [Hz]. As
discussed in [28] and [29], this frequency often depends on the inverter PWM frequency.
However, since the phase currents imposed here were perfectly sinusoidal, this frequency
was supposed equal to the slot frequency of the stator, as shown in (6). Nrpm is the rotor
speed in [rpm].

fmag =
Nrpm

60
Nslots (6)

3.2. Electric Circuit and Stator Winding Supply

Once the machine geometry is designed with the help of FEA software, a python
script must specify the external circuit of the machine with sinusoidal current sources and
impedances. Input parameters for the stator current waveforms are shown in Table 2. The
motor circuit is studied in receptor convention.

Table 2. Input parameters of equivalent electric circuit.

Parameter Description Symbol Units

Electrical angle between phase A axis and the pole axis for the
initial rotor position θac rad

RMS value of the phase current Is A
Electrical angle from current “Is” to no-load emf “E” Ψ rad

The current waveforms are sinusoidal with an RMS value of Is and are forming
a three-phase balanced circuit. As can be seen in Figure 6, θac is the electric angle between
the rotor magnetic pole axis in its initial position and the magnetic axis of phase A. For
example, the value of θac for the machine drawn on Figure 6 is 0.2618 rad or 15◦.

A phase shift must be added to the phase currents in function of θac and Ψ. The three
current waveforms can be expressed as:

ia =
√

2Is sin(ωst− θac −Ψ) (7)

ib =
√

2Is sin
(

ωst− θac −Ψ +
2π
3

)
(8)
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ic =
√

2Is sin
(

ωst− θac −Ψ− 2π
3

)
(9)

where ωs is the electric frequency in rad/s. RMS current values in the d axis and q axis can
be obtained from Is and Ψ with the following relations.

ID = Is sin(Ψ) (10)

IQ = Is cos(Ψ) (11)
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3.3. Full Load Magnetodynamic Simulations

Electromagnetic torque, iron losses and magnetic inductions in the teeth and the stator
yoke were calculated by a 2D magnetodynamic simulation launched by a python script
where the rotor was rotating at its nominal speed. The initial position of the rotor was set
to zero and its final position was set to three polar steps for the computation the iron losses
with the Bertotti model.

4. Analytical Models

This section presents the analytical models used in parallel with the FEA simulations
to compute copper losses, aerodynamic losses, the mechanical stress on the retaining sleeve.

4.1. Retaining Sleeve Stress Analytical Model

Input parameters required to calculate the mean stress on the retaining sleeve are
indicated in the Table 3.

Table 3. Input parameters for retaining sleeve stress analytical model.

Parameter Description Symbol Units

Magnet material density ρm kg/m3

Angular width of a magnet θm rad
Angular width of the back iron below a magnet θs rad

Retaining sleeve density ρs kg/m3

Radius measured below the magnets ra m
Radius measured below the retaining sleeve rla m

Radius measured outside of the retaining sleeve rs m
Thickness of the sleeve Tsleeve m
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Stress on retaining sleeves of high-speed SMPM machines has been discussed in many
articles such as [30,31]. The mean stress on the retaining sleeve is [32]:

σθmean = Ω2

(ρmθm
(
rla

3 − ra
3)+ ρsθs

(
rs

3 − rla
3))(

6Tsleevesin
(

θs
2

))
 (12)

where Ω is the rotor’s angular speed in rad/s. The maximum stress on the retaining sleeve
is estimated by performing mechanical FEA simulations before the optimization. When
the maximum acceptable stress on the sleeve is known, the minimum sleeve thickness
can be calculated with the MATLAB function “fmin”. The function to minimize is the
difference between the desired stress and the calculated stress on the retaining sleeve with
its thickness as the optimization variable. This method can be used to save a variable
and a constraint in the main optimization problem. Indeed, the minimum thickness of
the retaining sleeve can be calculated separately at every optimization iteration when the
maximum mechanical stress is known.

4.2. Aerodynamic Losses Analytical Model

Windage power losses are determined exactly as in [33] and considering that the
airflow is turbulent, that there are no shrouds and that rotor poles are not salient. These
losses can then be expressed as:

Wlosses = πCdρair

(
Ds

2

)4
Ω3L (13)

where ρair is the density of air, Ds is the diameter measured at the exterior of the retaining
sleeve, L is the active length of the rotor and Cd is the skin friction coefficient. The skin
friction coefficient is the value of Cd that respects the following equation [32]:

1√
Cd

= 2.04 + 1.768 ln
(

Re
√

Cd

)
(14)

where

Re =
(

Ds

2

)
TaΩ(

µ
ρair

) (15)

where Re is the Reynolds number Ta is the thickness of the air gap and µ is air dynamic
viscosity. This equation can be solved numerically with the MATLAB function “fmin” in
the same way the minimum retaining sleeve thickness equation was solved.

4.3. Copper Losses and Phase Resistance

Phase total resistance can be evaluated as following when the average coil turn length
is known. The number of phases is equal to 3:

Ncoil =
NslotsNlayers

6
(16)

Scu =
αSslot
Nlayer

(17)

Rs =
N2

s Ncoil Lav

σcuScu
(18)

where Ncoil is the number of coils per phase, Sslot is the total area of a slot minus the area
used by the wedges holding the coils or the tooth tips, σcu is the copper conductivity, α
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is the copper fill coefficient and other definitions can be found in Table 1. Once the phase
resistance is known, copper losses can easily be evaluated.

Pcopper = 3Rs Is
2 (19)

5. Direct Optimization Algorithm Implementation in MATLAB

The motor geometry was optimized with the MATLAB function “fmincon” with
the “sqp” algorithm. The function handles provided in parameters of “fmincon” started
a Flux2D server that launches the python scripts which construct and simulate the motor
with the finite element software. Optimization variables were scaled from 0 to 1 and the
output of the constraint function was also manually scaled. The overall implementation in
MATLAB is presented on Figure 7.
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In summary, “fmincon” takes in arguments a function handle for the computation
of the total losses “functionToMinimise”, a function handle for the computation of the
constraints “constraintsFunction” and an initial guess of the optimization variables. The
function “functionToMinimise” to simulate motors in finite element software, computes all
the useful results and saves them for further use in “constraintsFunction”. The function
“constraintsFunction” obtains the last saved results, compares them to the chosen values
and returns a vector that represents constraints violations.

6. Comparative Study of Optimized Motors

To illustrate the advantages of this design procedure, this method was applied to
compare machines optimized for a power of 150 kW and for different rated speeds. The aim
of the study is to determine the trade-offs between power density and efficiency. It is also
possible to deduce from this study, several design rules concerning the choice of the number
of poles, the current density and the flux weakening operation at the nominal speed.

To carry out this comparative study, it was necessary to repeat the optimizations of
the machine by changing the number of poles, the nominal speed, and the power density.
Only the three-phase Halbach rotor machines with an internal rotor were considered. The
number of slots per pole (spp.) and per phase in the stator is always set equal to 2.

6.1. Selected Motor Structure

Since the machine structure is imposed with a number of slots per pole and per phase
equal to two, the minimum study area for the finite element simulation is always one pole
even when the number of poles changes. The configuration of the stator winding can also
remain the same. A winding configuration with two layers and a short pitch of 5/6 was
selected (Figure 8).
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The average coil length (Lav), as shown in Figure 9, was estimated considering that
wires protrude by 1 cm on each side of the stator and that coil ends are 1.41 times longer
than the coil span.

CoilSpan =
2πrcslotNslotSteps

Nslots
(20)

Lav = 2(L + 0.02) + 2(1.41 ∗ CoilSpan) (21)

Figure 10 and Table 4 detail material properties.
The magnets are NdFeB magnets and their demagnetization curve was supposed

linear in the simulations. Rotor back iron was fabricated of 1010 steel (Figure 10a) and
stator sheets are NO20 (Figure 10b).

Iron loss parameters presented in Table 4 are for NO20 laminations and these param-
eters are kept constant even if the number of poles and the electric frequency vary. Iron
losses are computed element by element by the FEA software using the Bertotti method
with Equation (22).

dPmoy = kh B2
m f k f +

1
T

∫ T

0

[
σd2

12

(
dB
dt

(t)
)2

+ ke

(
dB(t)

dt

) 3
2
]

k f dt (22)
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Table 4. Material properties for the finite element simulations.

Description Symbol Value Description Value

Magnets remanent induction 1.19 T Magnets density 8300 kg/m3

Magnets relative permeability 1 Rotor back iron density 7872 kg/m3

Magnets resistivity 1.6 × 10−6 Ωm Stator iron density 7600 kg/m3

Stator sheets thickness d 0.2 mm Retaining sleeve density 1500 kg/m3

Stator sheets conductivity σ 1,776,199 S/m Retaining sleeve relative permeability 1
Hysteresis loss coefficient kh 183.9 WsT−2m−3 Copper density 8933 kg/m3

Excess loss coefficient ke 0.4 W(Ts−1)−3/2m−3 Copper resistivity 2.59 × 10−8 Ωm

Stator sheets stacking factor kf 0.98 Maximum mechanical constraint on
retaining sleeve 2650 MPa

6.2. Optimization Problem Definition

The objective function of the optimization problem consists in minimizing the total
losses by imposing the nominal power and the total mass as constraints. Thus, it is possible
to compare machines having the same power density (5 kW/kg, 10 kW/kg, 20 kW/kg,
and 30 kW/kg) even if the rotor speed is different.

The number of poles and the rotor speed must be fixed before each optimization. It
was decided not to exceed an electric frequency of 2.5 kHz given the uncertainty associated
with the estimation of the magnetic losses if the same parameters are always used for the
Bertotti model.
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Table 5 presents the eight variables used for this optimization problem. Other geo-
metric parameters such as the thickness of the rotor yoke rotor Tb-iron were fixed and
either calculated from these variables or from analytical models such as the thickness of
the sleeve. The constraints are detailed in Table 6. It should be noted that four different
mass values were used according to the problem studied.

Table 5. Optimization variables.

Parameter Description Symbol Units

Rotor internal diameter Dint m
Axial magnetic circuit length L m

Stator yoke thickness Ts m
Stator slots depth ds m
Magnets thickness Tmag m
Slot opening angle θe rad

RMS value of the phase current Is A
Electrical current angle between current and no-load emf Ψ rad

Table 6. Optimization constraints.

Parameter Description Value Units

Minimum motor power 150 kW
Maximum motor mass 5, 7.5, 10, 15 kg

Maximum induction in stator teeth 1.8 T
Maximum induction in the stator yoke 1.5 T

Maximum mechanical stress on the retaining sleeve 2650 MPa

6.3. Losses in Function of Nominal Speed and Number of Poles

The results correspond to an optimization with a mesh of 4124 nodes, with 24 rotor
positions per simulation, resulting in a time of 100 s (≈0.02778 h) to complete each simula-
tion. A total of 300 simulations were considered, which corresponds to a total of 8.33 h, for
a personal computer (16 Gb of RAM with an i7 processor)

Optimization results were gathered to compare the performance of machines with the
same power density. Thus, Figure 11a shows machines optimized for 30 kW/kg; those of
Figure 11b, machines of 20 kW/kg; those of Figure 11c, machines of 10 kW/kg; and those
of Figure 11d, machines of 5 kW/kg.

The total losses of optimized motors were smaller as the nominal speed increase. This
can be understood by the fact that these motors had the same nominal power but not
the same torque since they were not rotating at the same speed. It can be seen that the
differences between the loss minima (or the efficiency maxima) are relatively small as the
power density varies. However, the position of these minima is different depending on the
nominal speed of the motor and its number of poles. The minimum losses were 3.5 kW
above 30 krpm in the case of machines at 30 kW/kg (efficiency of 97.7%), 3 kW above
25 krpm in the case of machines at 20 kW/kg (efficiency of 98%), 2.3 kW above 15 krpm in
the case of machines at 10 kW/kg (efficiency of 98.4%), 3.2 kW above 8 krpm in the case of
machines at 5 kW/kg (efficiency of 97.9%).

There were several assumptions taken into account in the study, such as the consid-
eration of an ideal current form in the machine, which neglects the presence of a large
number of harmonic currents injected by the inverter. The current ripple changes the
magnetomotive force and generates additional losses in the stator and rotor core, due to
hysteresis and eddy current losses [34–36]. These additional losses would be significant in
a high speed motor application but several modifications of rotor geometries are possible
to minimize them such as a magnet segmentation [36].The main source of error in these
calculations comes from the analytical models used for the calculation of magnetic losses
and windage losses [37]. However, since the parameters of these models were kept constant
in this comparative analysis, the trends that can be deduced from them are valid.
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6.4. Effect of the Current Control Angle at Nominal Speed and Compromise between Copper Losses
and Iron Losses

The optimization method minimizes losses in the machine by acting on the electrical
angle Ψ between phase current and no-load emf. If the angle Ψ is greater than 0, the stator
magnetic reaction produces a flux weakening effect. This action makes it possible to adjust
the stator iron losses in relation to the Joule losses and find the best compromise on the
total losses. Indeed, it can be seen in Figures 12 and 13, that for a given number of poles,
total losses remain constant at the same value as the electric frequency increases.
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According to Bertotti model, iron losses should be almost proportional to the square
of the electric frequency, but the optimization process decreases Ψ for higher speeds which
reduces flux densities and iron losses in the stator. This can clearly be observed on the
6 poles, 10 kw/kg motors. Indeed, total losses reached a plateau at approximately 20 krpm
which also corresponds to the point where the angle Ψ was starting to decrease. It can also
be observed that when total losses remain constant, iron losses were almost equal to copper
losses. For a given power density, total losses are minimized almost in the range of electric
frequency regardless of the motor’s nominal speeds, as shown in Figure 13.

Table 7 summarizes the optimal electrical frequency ranges.

Table 7. Optimal electrical frequency ranges in function of targeted power densities.

Targeted Power Density Optimal Frequency Range

kW/kg Hz

10 800–2000
20 >1400
30 >2500

For a given nominal speed and a targeted power density, the optimal frequency range
can help the designer to set the number of poles of the machine. For example, according to
these results, a 10 kW/kg, 14 krpm motor should have between 4 and 10 poles (Figure 13).

6.5. Cooling Effort Approximation with Equivalent Current Density Product

Once optimizations were finished, the cooling efforts were approximated with the
equivalent current density product “AJeq” [12]. This parameter approximates the cooling
effort required to cool the motor and should not be greater than 2 × 1012 Wm−3Ω−1 with
a direct water cooling as explained in [12]. This parameter can be calculated as follows:

AJeq =
Ptot σcu

ktb 2π R L
(23)

where Ptot are the total losses, ktb is the end-winding coefficient, R is the inner stator radius,
L is the active length of the motor and σcu is copper conductivity. A fixed end-winding
coefficient of 1.4 was used. Figure 14 presents the equivalent density products of the motors
obtained by direct optimization. Total losses were still the function to minimize.

The minimum cooling efforts of optimized motors in the function of their power
density were approximately 6 × 1012 Wm−3Ω−1 for 30 kW/kg, 3.6 × 1012 Wm−3Ω−1 for
20 kW/kg, 2.8 × 1012 Wm−3Ω−1 for 10 kW/kg and 1.5 × 1012 Wm−3Ω−1 for 5 kW/kg.
However, lower equivalent current density products can be obtained by setting it as the
function to minimize by the optimization.
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7. Conclusions

The design of a permanent magnet motor using an optimization process based on FEA
ensures excellent accuracy and very good sensitivity of the numerical model. The finite
elements modelling of the magnetic field allows to consider nonlinear phenomena such
as magnetic saturation, the rotor movement, the presence of eddy currents and the motor
control method. This reduces the number of approximations and simplifies the assumptions
of the numerical model. Although the computation time was increased, we showed
that an eight-variable optimization problem can be solved in less than 9 h with a typical
personal computer. Under these conditions, it is easy to repeat the optimizations to compare
different machine topologies for a given specification and determine the best solution.

We used this design procedure to analyze the trade-offs between power density
and efficiency and determine the most suitable number of poles and electrical frequency
for a 150-kW application at different rotational speeds. More than 90 machines were
optimized for four different power densities (30 kW/kg, 20 kW/kg, 10 kW/kg, 5 kW/kg)
and then compared. This represents approximately 800 h of computing time with a single
personal computer. We found several configurations of machines with similar performances
knowing that the optimization adjusts the d-axis current to achieve a flux weakening and
to make a better compromise between the joule losses and the magnetic losses.

For all power density values, this comparative analysis shows that it is advantageous
to increase the electrical frequency to minimize the losses but a flux weakening control
must be used to balance the magnetic losses and the copper losses. The electrical frequency
can be adjusted by appropriately selecting the number of motor poles relative to the
rated operating speed. In this case, the motor efficiency can be over 97.7% in a 150-kW
application, regardless of motor power density.

This type of design procedure is very efficient, but it is essential to consider all the
phenomena and the physical couplings. In particular, a reliable thermal model must be
added to take into account the cooling method in the mass and power density estimation.
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Nomenclature

Ddiri Internal Dirichlet boundary condition diameter
Dint Rotor internal diameter
Tb-iron Rotor back iron thickness
Tmag Magnets thickness
Tsleeve Thickness of the retaining sleeve
Ta Thickness of the air gap
Tw Thickness of the stator teeth wedge
ds Stator slots depth
Ts Stator yoke thickness
L Axial length of the active magnetic part
θe Inner slot opening angle
θe2 Outer slot opening angle
θw Wedge-opening angle
Nlayers Number of winding layers in a slot
Nturns Number of turns in a coil
NsecMag Number of magnets in a rotor pole
Nslots Total number of slots of the machine
Nslots2 Number of slots in the study domain
P Total number of rotor poles pairs
fdiri Machine and the diameter of the external boundary condition
dmagskin Magnets skin depths
ρmag Resistivity of the magnets
µmag Permeability of the magnets
fmag Highest field harmonic frequency
Nrpm Rotor speed in [rpm]
θac Electrical angle between phase A axis and the pole axis for the initial rotor position
Is RMS value of the phase current
Ψ Electrical angle from current “Is” to no-load emf “E”
ωs Electric frequency in rad/s
ID RMS current values in the d axis
IQ RMS current values in the q axis
ρm Magnet material density
θm Angular width of a magnet
θs Angular width of the back iron below a magnet
ρs Retaining sleeve density
ra Radius measured below the magnets
rla Radius measured below the retaining sleeve
rs Radius measured outside of the retaining sleeve
Tsleeve Thickness of the sleeve
Ω Angular speed of rotor
Wlosses Windage power losses
Cd Skin friction coefficient
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ρair Density of air
Ds Diameter measured at the exterior of the retaining sleeve
L Active length of the rotor
Re Reynolds number
Ta Thickness of the air gap
µ Air dynamic viscosity
Ncoil Number of coils per phase
Sslot Total area of a slot minus
σcu Copper conductivity
α Copper fill coefficient
Pcopper Copper losses
Rs Phase resistance
Lav Average coil length
d Stator sheets thickness
σ Stator sheets conductivity
kh Hysteresis loss coefficient
ke Excess loss coefficient
kf Stator sheets stacking factor
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