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Abstract: Optimal planning of a remote area electricity supply (RAES) system is a vital challenge to
achieve a reliable, clean, and cost-effective system. Various components like diesel generators, renew-
able energy sources, and energy storage systems are used for RAES systems. Due to the different
characteristics and economic features of each component, optimal planning of RAES systems is a
challengeable task. This paper presents an overview of the optimal planning procedure for RAES
systems by considering the important components, parameters, methods, and data. A timely review
on the state of the art is presented and the applied objective functions, design constraints, system com-
ponents, and optimization algorithms are specified for the existing studies. The existing challenges
for RAES systems’ planning are recognized and discussed. Recent trends and developments on the
planning problem are explained in detail. Eventually, this review paper gives recommendations for
future research to explore the optimal planning of components in RAES systems.

Keywords: electricity cost; energy storage system; optimal planning; reliability; remote area electric-
ity supply; renewable energy

1. Introduction
1.1. Background and Motivation

Globally, it is estimated that 17% of the world’s population (about 1.2 billion people)
lack access to national electricity [1]. Around 1.1 billion of these people live in Asia
and Africa. The remaining 0.1 billion live in the Middle East, Latin America, and the
developed countries. In Asia, 512 million people suffer from electricity inaccessibility,
where 244 million live in India, 41 million in Indonesia, and 11 million in the Philippines [1].
Worldwide, deploying remote area electricity supply (RAES) systems is the main solution
to provide and maintain electrification of remote areas [2]. Indeed, an RAES system is a
desirable alternative for national grid extensions. Figure 1 demonstrates important sites
with the necessity to develop RAES systems.

Conventionally, the RAES systems are designed based on diesel generators [3]. Re-
serves of fossil fuels are, however, limited and depleted rapidly, which need urgent at-
tention and appropriate manners to eschew a potential energy crisis in the future [4]. In
addition, the harmful emission of fossil fuels, including greenhouse gasses (GHGs), con-
tributes to the global warming challenge [5]. Furthermore, the petroleum price fluctuates
severely, especially after the COVID-19 pandemic. These challenges along with some other
main concerns in the electricity supply for remote areas are summarized in Figure 2.

To overcome the aforementioned challenges, distributed renewable energy resources
(DRERs) are competent options. DRERs use the straight environment resources to generate
power that will not run out. DRERs emit little to no greenhouse gases or pollutants into
the air. In most cases, DRERs require less maintenance than conventional generators,
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which use traditional fuel sources. On the other side, using DRERs not only decreases
the maintenance cost but also reduces the operation cost of the system. Despite all the
advantages, DRERs suffer from a higher upfront cost, geographic limitations, and high
intermittency [6]. Even though the prices are dropping for DRERs, energy storage systems
(ESSs) are essential to overcome the intermittency problem [7]. It is worth noting that the
ESS cost is not in a favorable range yet, especially when a high capacity is needed in large-
scale renewable power plants. Hence, a hybrid diesel generator-DRER-ESS configuration
is recommended to achieve an environmental-friendly system with a low cost. A hybrid
RAES system with multiple components is, however, a complicated system and optimal
planning of the system is the utmost important part. The optimal planning topic is crucial
to achieve the most economical and reliable system with the lowest emission.

Figure 1. Important sites with the necessity to develop RAES systems.

Figure 2. Electricity supply challenges in remote areas.
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1.2. Critical Literature Review

A literature survey indicates several review papers on hybrid energy systems (HESs).
In [8], the developments of HESs with diesel generators, solar PV, WT, and ESS were
reviewed. The study investigated the types of converters and controllers without high-
lighting the methodology and software for solving the problem. In [9], the PV-WT hybrid
renewable systems were reviewed without highlighting any technical challenges in the
field. Software tools for hybrid systems based on DRERs were discussed in [10] without
highlighting the methodologies. In [11], only the optimization techniques for HES were
investigated without any system challenges. The energy management systems of HESs
were explained in [12]. However, how the management systems can be integrated with
optimal planning was not addressed. A comprehensive review on storage options and
architectures for HESs was provided in [13] without highlighting their role in RAES. In [14],
the HESs were investigated by addressing the model of components without addressing
the sizing basics. However, these studies did not consider HESs for remote areas. The
RAES systems should receive greater attention due to critical electrification issues, which
were discussed in the background.

Several studies have specifically focused on standalone and remote area systems.
In [15], standalone systems with solar PV, WT, and fuel cell (FC) technologies were interro-
gated for energy management systems. The role of the diesel generator, which is highly
integrated in RAES systems, was neglected. Applications and technologies of components
for RAES were analyzed in [16]. The benefits of designing a HES for off-grid systems was
discussed in [17] by briefly describing the models. Different configurations of HESs for
off-grid systems with description of the available components were introduced in [18].
Modelling, applications, and control of HESs for electricity supply in standalone systems
were considered in [19]. The benefits of decentralized electrification of rural areas were
described in [20] by discussing the electricity demand in remote communities. In [21], the
development and classification of HESs for electrification in rural areas were discussed.
The implementation of HESs in small communities was reviewed in [22]. However, none
of those studies investigated the optimal sizing issue, which is the most important stage of
RAES design.

In [23], the configuration and sizing of standalone systems were discussed without
addressing any critical challenges. In [24], the optimization process and algorithms were
studied. A comprehensive review of topologies, methods, and models was presented
in [25]. In [26], a review was conducted on the HOMER software tool for optimal sizing.
Multi-objective optimal sizing of system components in HESs was overviewed in [27]. The
planning and operation of a remote area power supply was discussed in [28]. However,
the study in [28] focused more on the control levels of the system without discussing the
planning challenges, trends, and developments.

Based on the presented literature review, the main review gaps can be described
as follows:

• The existing studies did not provide a thorough review of optimal planning of RAES
systems. This includes the optimization process, input data, methods, objective
functions, study based on the country, and design constraints.

• The technical challenges of the existing studies were not found by the review papers.
• The advantages and disadvantages of applied methodologies and data uncertainties

for RAES optimal planning were not described by the review studies.
• The potential future directions were not introduced for researchers. Since the optimal

planning problem of RAES systems is extremely critical, future perspectives should
be identified to develop more significant studies.

1.3. Contribution

This paper critically reviews the optimal planning problem of energy systems for
electrification of remote areas. By considering the research gaps in the literature review,
this review paper contributes the following:
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• Overviewing the optimization problem of RAES systems’ planning.
• Conducting a review on the state of the art in optimal planning of RAES systems.
• Classifying the existing studies on optimal planning of RAES systems.
• Identifying the current technical challenges on optimal planning of RAES systems.
• Outlooking the future research trends in optimal planning of RAES systems.

A general view of the technical roadmap for this review study is illustrated in Figure 3.
There are four main stages to accomplish this review study. In the first stage, problem
identification is achieved by overviewing the system components, objective functions, fea-
sibility constraints, and methodologies. In the second stage, the existing studies associated
with the topic are reviewed and classified based on important factors like component,
objective function, method, and country. The deficiencies in the studies are identified and
explained. In the third stage, the latest developments are identified and deeply discussed.
Eventually, in the fourth stage, the future trends in the optimal planning of components for
remote area power supply are introduced.

Figure 3. A general view of the technical roadmap of this review study on optimal planning of
RAES systems.

1.4. Article Organization

This paper is organized as follows. Section 2 describes the optimal planning of RAES
systems with an emphasis on important factors in remote areas. The existing studies on
optimal planning of RAES systems and existing challenges are scrutinized in Section 3.
The latest achievements in optimal planning of RAES systems are highlighted in Section 4.
The future scopes for optimal planning of RAES systems are proposed in Section 5. The
conclusion is presented in Section 6.

2. Overview on Optimal Planning of RAES Systems

The optimal planning problem of RAES systems is to determine the best capacity of
system components (decision variables) by minimizing/maximizing objective functions
considering feasibility constraints. It is notable that in this study, it is assumed that the
RAES grids are already installed, and only optimal planning of generation and storage
units are investigated. This is because of the fact that the RAES grids are mostly installed
and expanded by governments. Hence, there is not enough information and cost analysis
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about the distribution grid installation in RAES systems. Furthermore, the generation and
storage units are mostly installed close to the remote areas and hence the cost of RAES grid
is highly lower than that of the conventional power systems.

A generic algorithm for optimal planning of RAES systems is demonstrated in Figure 4.
The optimal planning algorithms for RAES system design are commenced with the input
data of the system. Then, the system configuration of the RAES system should be specified.
The optimization algorithm initializes the planning problem. The operation of the RAES
system is evaluated in the next step. Satisfaction of the feasibility constraints is checked
after the operation of the RAES system. If all the constraints are satisfied, the objective
function is calculated to finalize the optimization problem.

Figure 4. A generic algorithm for the optimal planning procedure of RAES systems.

The important factors in optimal planning of RAES systems are components or units,
input data, objective functions, feasibility constraints, operation strategies, and optimiza-
tion methodologies.

2.1. System Components

There are several system components that can be utilized for power supply in remote
areas. Figure 5 classifies the components into three groups: (1) fuel-based components,
(2) renewable energy components, and (3) energy storage components. The fuel-based
components like diesel generators or gas generators generate power using fossil fuels and
they have a high impact on greenhouse gas emission. Recently, variety of renewable energy
components that can be integrated with RAES systems have been available. Solar PV, WT,
hydropower, tidal power, and biogas generators are the most available and applicable
components that can be applied in RAES. However, their application highly depends on
the geographical location of the studied site [29]. For example, the use of tidal power
is appropriate for islands. Solar PV systems have a wider application because of sun
availability in most locations, easy installation on rooftops, and availability in different
scales (from W to MW). The WT systems need a wide land with an acceptable wind to be
installed. Hydro power needs to be installed in a location that we has access to dams or
water that can be pumped from rivers to reservoirs. Biogas generators will receive more
attention soon because of biomass availability in remote areas [30]. The applicable storage
components in RAES systems are battery energy storage (BES), hydrogen energy, thermal
storage, and flywheel. The characteristics of different types of ESSs are well explained in
the literature [31].
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Figure 5. System components in remote area electricity supply systems.

2.2. Input Data

Figure 6 demonstrates the input data used for optimal planning of RAES systems.
Technical and economic data of system components are needed based on the availability in
the market of the studied country. The economic data contains the capital cost, maintenance
cost, and replacement cost of the components [32]. Technical data involves the specifications
like the capacity and efficiency of the components. The electricity demand should be
available for a long period. The available loads for demand response should be specified in
the case system if it contains demand side management. Weather data contains the ambient
temperature, solar irradiance, wind speed, water availability in the reservoir, and wave
speed, which like electricity demand, should be available for a long period. Project data for
the study involves the project lifespan, interest/discount rate, and escalation rate of fuel.
All data should be properly arranged to achieve an accurate optimal planning study. Any
improper input data may result in a nonreliable and expensive system.

Figure 6. Input data for the optimal sizing procedure of RAES systems.
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2.3. Objective Functions

The most important objective functions for the RAES optimal planning problem
are demonstrated in Figure 7. Financial and reliability objective functions are the major
types of targets that have been considered. The other objective functions are related
to emission and some technical issues. Selection of the objective function depends on
the type of study. In most of the cases, financial objective functions are the priorities.
Reliability is another concern if the project financial is limited. In some cases, emission has
received much attention. Due to the different natures of the objectives, optimal planning
in RAES systems can be done by solving a single-objective or sometimes multi-objective
optimization problem. In multi-objective problems, the results are shown in the form of
Pareto fronts and a compromise between the objective functions needs to be achieved [33].

Figure 7. Objective functions for optimal planning of RAES systems.

2.3.1. Financial Objective Functions

The net present cost (NPC), levelized cost of electricity (LCOE), total annual cost
(TAC), simple payback period (SPP), and internal rate of return (IRR) are the functions
that can be used as financial objectives. The NPC is a summation of the total present costs
of capital, maintenance, replacement, and salvage of components, as well as the present
cost of fuel consumption in the case that a diesel generator is integrated [34]. The LCOE is
calculated by multiplication of NPC by the capital recovery factor over the annual energy
demand of the system [35]. The TAC is the sum of the annual capital and maintenance
costs and annual fuel cost [36]. The SPP is the number of years to pay back the capital cost
of components by the annual profits [37]. The IRR is the discount rate that makes the NPC
of all cash flows equal to zero [38]. Table 1 presents the mathematical formulation of each
financial objective function for the RAES optimal planning problem.

Table 1. The mathematical formulation of financial objective functions for the RAES optimal planning problem.

Objective Function Equation Equation Number

NPC

fc1 = min(NPC) = NPCk +NPC f (1)

NPCk = PCc + PCm + PCr −PCs (2)

NPC f =
(
(1+r)n−1
r(1+r)n

)
×

(
T
∑

t=1

(
f (t).C f

))
(3)

LCOE fc2 = min(LCOE) = NPCk+NPC f
Ep

× d(1+d)n

(1+d)n−1
(4)

TAC fc3 = min(T AC) =
T
∑

t=1

(
f (t).C f

)
+ACk (5)
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Table 1. Cont.

Objective Function Equation Equation Number

SPP fc4 = min(SPP) = PCc
AP (6)

IRR
fc5 = max(IRR) (7)

−PCc +
Y
∑

y=1
My × (IRR)y = 0 (8)

Parameters and variables

NPC: Total NPC of the RAES system,NPCk: NPC of the RAES components,NPC f : NPC of the fuel
consumption, PCc,PCm,PCr,PCs: Present values of capital, maintenance, replacement, and

salvation costs, f : Amount of fuel consumption, C f : Fuel price, T: Total time period of the planning
project, n: Project lifetime, r: Interest rate, Ep: Total energy demand of the RAES system, d: Discount

rate, ACk: Annual cost of components, AP : Annual payment of the RAES system for the external
system,My: is the net cash flow in year y.

2.3.2. Reliability Objective Functions

The loss of power supply probability (LPSP), expected energy not supplied (EENS),
loss of load expectation (LOLE), and loss of energy expectation (LOEE) are the most com-
mon measures and objective functions for the reliability of RAES systems. Other reliability
indices that are less studied for optimal planning are the system average interruption
frequency index (SAIFI) and system average interruption duration index (SAIDI). The
LPSP is the probability of the unmet load over the total energy demand of the RAES [39].
The EENS is the expected energy that is not supplied by the RAES system [40]. The number
of hours of the year in which the RAES load exceeds the generation system is known
as the LOLE or loss of load probability (LOLP) [41]. The LOEE is the total energy not
supplied by the RAES system [42]. The SAIFI is the average number of times that a system
customer experiences an outage during the year project period. The SAIDI index measures
the total duration of an interruption for the average customer during the project period.
The mathematical formulations of the reliability objective functions for the RAES optimal
planning problem are presented in Table 2.

Table 2. The mathematical formulations of the reliability objective functions for the RAES optimal planning problem.

Objective Function Equation Equation Number

LPSP fr1 = min(LPSP) = Ep+Ed+Eb,ch−Ere−E f−Eb,dis
Ep

(9)

EENS fr2 = min(EENS) =
T
∑

t=1
Lp.Dp (10)

LOLE fr3 = min(LOLE) =
T
∑

t=1
∑
sεS

Fs.Ts (11)

LOEE fr4 = min(LOEE) = Ep + Ed + Eb,ch − Ere − E f − Eb,dis (12)

SAIFI fr5 = min(SAIFI) = ∑ λi Ni
∑ Ni

(13)

SAIDI fr6 = min(SAIDI) = ∑ Ui Ni
∑ Ni

(14)

Parameters and variables

Ere: Total energy generation by renewable energy, E f : Total energy generation by diesel generators,
Eb,dis: Total discharged energy generation by battery, Eb,ch: Total charged energy generation by

battery, Ed: Total dumped energy, Lp: Average annual load, Dp: Duration of unmet load,
Fs: Probability of meeting state s, Ts: Loss of load duration, S: all loss of energy states, λi: Rate of

power interruption, Ui: Duration of power outage, Ni: Number of customers for location i.

2.3.3. Emission and Technical Objective Functions

The other groups of objective functions are emission and technical objectives, which
contain renewable factor (RF), carbon emission (CE), battery lifetime (BL), customer comfort
level (CCL), and dumped energy (DE). The RF shows how much of the energy demand
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in the RAES system is supplied by renewable resources [43]. The CE is the amount of
carbon emission by the designed RAES system during the project lifetime [44]. The BL is
the lifetime of the integrated battery in RAES, which is affected by degradation. A suitable
operation strategy should be developed to decrease degradation of the battery and hence
increase its lifetime. The CCL is applied when the demand response is integrated in the
optimal planning problem [45]. The extra energy of the DRERs and diesel generators after
supplying the load is known as DE, which should be curtailed by an inverter or dumped
by resistors [46]. The mathematical formulations of the emission and technical objective
functions for the RAES optimal planning problem are presented in Table 3. It is notable
that the formulation of CCL depends on the demand response solution in the study. For
example, if load shifting is examined, then the number of hours in which the load shifting
is applied can be minimized to reach the maximum CCL. The EFR can be formulated by
considering the control system of inverters to minimize the power fluctuations and hence
there is minimum disruption to the power supply.

Table 3. The mathematical formulations of the emission and technical objective functions for the RAES optimal planning problem.

Objective Function Equation Equation Number

RF ft1 = min(RF ) =
(

1− E f
Ep

)
× 100 (15)

CE ft2 = min(CE) = α + β
T
∑

t=1
Pf (t) + γ

(
T
∑

t=1
Pf (t)

)2

(16)

BL ft3 = max(BL) = 1− Db (17)

CCL ft4 = max(CCL) (18)

DE ft5 = min(DE) = Ere + E f + Eb,dis − Ep − Eb,ch (19)

Parameters and variables α, β, γ: Approximate emission coefficients, Pf : Generated power by diesel generator, Db: Battery
capacity degradation due to charging/discharging cycles and environmental issues

2.4. Feasibility Constraints

The feasibility constraints in the optimal planning problems of RAES systems are
illustrated in Figure 8. There are two major types of feasibility constraints: (1) constraints
associated with components and (2) technical constraints of the system.

Figure 8. Feasibility constraints in optimal planning of RAES systems.

The components constraints can be related to diesel generators, DRERs, or ESSs.
The constraint can be applied on the number of the components based on their unit
capacity. Land availability is an important constraint to install PVs, WTs, and ESSs. The
diesel generator’s output power must be constrained between the minimum and maximum
generation limits. The fuel consumption and tank capacity can be considered as a constraint
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to limit the obtained emission from diesel generators. The hub height and blade diameter
are considered as constraints to limit the size of WT. The constraint of the PV panel’s
tilt-angle is considered to extract higher power. There are several constraints on ESSs like
the energy of the pump-storage hydro, energy at the hydrogen tank, as well as the battery
SOC and power limits.

The most important technical constraint is the power balance of the RAES system,
which means that the equilibrium between load and generation should be maintained. The
power reserve of the RAES system should always be maintained using diesel generators or
ESSs. The budget of the project to invest in the system components is an important con-
straint. The LPSP index can be used as a constraint to limit the amount of load curtailment.
A part of the load can be limited to be supplied using the renewable generation; this is
the renewable energy fraction. In some cases, the planning procedure of RAES systems
is constrained by the country’s policies. If demand response is applied, then constraints
should be considered to limit the DR strength.

2.5. Operation Strategies

The essence of the operational strategy is to control the power flow between com-
ponents and loads in the RAES system. The main aim of the operation strategies is to
achieve a reliable and clean energy supply while reaching the minimum cost. The operation
strategy of RAES systems is affected by several factors. The generation of renewable energy
resources is the first factor. This uncertainty affects the operation of the RAES. To overcome
this challenge, the forecasting data of renewable generation should be provided before
making a decision for the power flow. The load consumption is another uncertainty that
affects the operation. In RAES systems, prediction of the load consumption is not an easy
task. Hence, the operation strategy should be carefully designed to take into account
the uncertainty of the load. The state-of-charge (SOC) of the battery is a constraint that
greatly affects the operation. This constraint should be accurately modelled in the RAES
system operation to ensure a reliable operation. The operation strategy should consider
the amount of remaining fuel in the site to decide on the best operation in the system.
Another factor is the availability of suitable loads to develop demand side management
in the system operation. This factor should be considered when the operation strategy
considers demand response. The operational strategies of RAES systems can be classified
into three groups [47]: (1) optimization model, (2) rule-based, and (3) model predictive.

2.6. Solving the RAES Optimal Planning

The optimal planning problem of RAES systems can be solved using a wide range of
optimization algorithms. The most applied methods are metaheuristic algorithms. Using
software to solve the problem is also evident in the literature.

2.6.1. Metaheuristic Methods

The metaheuristic methods are powerful optimization algorithms that can handle the
nonlinearity and complexity of optimization problems [48]. Another advantage of meta-
heuristic is the ability to be used for optimal planning of single-objective and multi-objective
optimization problems. A wide range of metaheuristic methods have been developed
by researchers. Some of the best-known metaheuristic methods are the particle swarm
optimization (PSO) algorithm, genetic algorithm (GA), and artificial bee colony (ABC).

2.6.2. Other Optimization Methods

Probabilistic, sensitivity analysis, classic mathematical, and iterative algorithms are
other methods that have been used for optimal planning of components in RAES systems.
Probabilistic methods have the capability to consider the unpredictability of the parameters
in the optimization model [49]. The methods based on sensitivity analysis measure the
sensitivity of the component’s capacities against the defined objective functions in the
problem [50]. In classic methods, the optimization problem is mathematically solved [51].
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2.6.3. HOMER Software

Hybrid Optimization Model for Electric Renewables (HOMER) software is one of the
most powerful tools for optimal planning of components in energy systems. HOMER was
developed by National Renewable Energy Laboratory (NREL) [52]. The software includes
a broad range of components like PV, WT, converters, diesel generator, BES, etc. To solve
the optimal planning problems, HOMER minimizes the net present cost of the energy
systems. HOMER software shows a wide range of results like optimal sizes, sensitivity
analysis, cash flows, and other economic and technical analysis.

3. Review on Existing Studies and Technical Challenges

A review on the existing studies is conducted in this section. The studies are first
classified based on their conduced case system: (1) hybrid and (2) clean RAES systems.
Then, each category is classified based on the optimization model: (i) HOMER software
optimization, (ii) metaheuristic methods, and (iii) non-metaheuristic (i.e., mathematical,
iterative, probabilistic, etc.) methods.

3.1. Hybrid RAES Systems with/without ESS

The hybrid RAES systems are based on diesel generator power plants and renewable
energy sources. The energy storage systems can also be integrated. These systems have
a higher level of reliability because of the controllability of dispatchable diesel generator
units. However, the emission and high cost are the main challenges. Several studies have
been developed for optimal planning of hybrid RAES systems. The studies are reviewed
based on HOMER software as well as metaheuristic and other methods.

3.1.1. HOMER Software for Hybrid RAES Systems

Two studies were conducted on optimal planning of hybrid RAES systems without ESS
for Malaysia [53]. The optimal sizing of a diesel generator-PV-BES system was investigated
in [54] for remote communities. Optimal sizing of a diesel generator-PV-WT-BES system
was developed for islands [55], remote agriculture [56], telecommunication [57], and off-
grid villages [58]. The diesel generator-PV-WT-FC system was optimally sized in [59] for a
village and mining site. In [60], hydropower was used alongside a diesel generator-PV-WT
system for optimal sizing of a rural area in Iraq. A hybrid energy storage system (BES
with hydro) was optimally sized with a diesel generator-PV-WT in [61]. In [62], a biogas
generation unit was optimized for a hybrid RAES system with a diesel generator-PV-WT-
BES in a remote community of Bangladesh.

3.1.2. Metaheuristic Methods for Hybrid RAES Systems

The metaheuristic methods are widely used for optimal sizing of hybrid RAES sys-
tems. The existing studies of metaheuristic methods are classified based on single- and
multi-objective optimization studies. Table 4 shows the reference number, applied methods,
system components, RAES type, objective functions, and feasibility constraints, as well as
the country and publication year of the existing studies on single-objective optimal plan-
ning of hybrid RAES with metaheuristic methods. The hybrid diesel generator-PV-WT-BES
system was mostly sized by metaheuristic methods [63]. The number of components [64,65]
and power balance between generation and consumption [66] were the most used feasi-
bility constraints. In some studies, like [67], the LPSP was considered as a constraint to
improve the reliability. In [68], a system with diesel generator-FT-PV-WT-BES-FW was
optimized. In [69], a hydro component was added to a hybrid system. Several algorithms
were examined for optimization in [70]. Renewable factor [71], unit commitment [72],
and renewable energy portion [73] were also considered as the constraints for optimization.
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Table 4. Characteristics of studies on single-objective optimal planning for hybrid RAES systems.

Ref. Applied Method System Components RAES Type Objective Function Feasibility Constraints Country Year

[63] Particle swarm
optimization

Diesel generator-PV-
WT-BES Island village Life cycle cost

Power balance Diesel
generator output power,

Battery constraint
Thailand 2011

[64]
Grasshopper
optimization

algorithm

Diesel generator-PV-
WT-BES

Off-grid
community LCOE

Renewable energy
fraction, number of

components
Nigeria 2019

[65] Harmony search
algorithm Diesel generator-PV Remote

community NPC LPSP, number of
components Iran 2017

[66] Particle swarm
optimization

Diesel
generator-PV-BES Rural mini-grids NPC

Power balance, fuel
consumption and tank
level, curtailment of PV,

energy of BES

Kenya 2016

[67] Particle swarm
optimization

Diesel generator-
Biomass-PV-WT-BES

Small remote
area community LCOE LPSP India 2017

[68] Particle swarm
optimization

Diesel generator-FT-
PV-WT-BES-FW

Remote
community LCOE

Power balance, SOC,
number of components,

power reserve
Australia 2020

[69] Biogeography
based optimization

Diesel generator-PV-
WT-Hydro-BES Remote home Total cost Number of components,

power balance, SOC India 2013

[70] Several algorithms Diesel generator-PV-
WT-BES Remote village LCOE LPSP, power balance,

SOC Egypt 2019

[71]
Hybrid simulated

annealing–tabu
search

Diesel
generator-Biodiesel-

PV-WT-BES-FC

Educational
Institute LCOE

Initial cost, unmet load,
capacity shortage, fuel

consumption, renewable
factor, components’ size

Greece 2012

[72] Particle swarm
optimization

Diesel generator-PV-
BES-EV Residential Lifetime cost Size of components, unit

commitment constraints India 2019

[73] Crow search
algorithm

Diesel
generator-PV-FC

Remote area
community NPC LPSP, renewable energy

portion Iran 2020

Table 5 shows the reference number, applied methods, system components, RAES type,
objective functions, and feasibility constraints, as well as the country and publication year
of the existing studies on multi-objective optimal planning. The emission and reliability-
related objective functions were the most applied after economic objectives. In [74], RF
and CE were considered together with the cycle cost as the objective functions. However,
the CE and RF are in the same category of objective functions to minimize the emission
and so there is no advantage in considering these two objectives for optimal sizing. In [75],
the authors optimize the system based on three objective functions. The authors in [76]
considered new constraints like the WT hub height and tilt angle of PV along with three
objective functions. Such a study can achieve comprehensive and practical results. New
metaheuristic methods like the multi-objective line-up competition algorithm [77], crow
search algorithm [78], grey wolf algorithm [79], and fuzzy artificial bee colony [80] were
also examined for RAES optimal sizing. The grid voltage deviation as a technical objective
function was applied in [81].

Table 5. Multi-objective capacity optimization for hybrid RAES systems with metaheuristic methods.

Ref. Applied Method System Components RAES Type Objective Function Feasibility Constraints Country Year

[74] Multi-objective
genetic algorithm

Diesel generator-PV-
WT-BES Not specified LCOE, CE Not specified Spain 2011

[75] Multi-objective
genetic algorithm

Diesel generator-PV-
WT-BES

Residential
island Cycle cost, CE, RF SOC China 2014

[76]
Non-dominated
sorting genetic

algorithm II

Diesel generator-PV-
WT-BES Island TAC, LPSP and

emission

Number of components,
height of WTs, tilt angle

of PV, SOC
China 2017
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Table 5. Cont.

Ref. Applied Method System Components RAES Type Objective Function Feasibility Constraints Country Year

[77]

Multi-objective
line-up

competition
algorithm

Diesel generator-PV-
WT-BES Residential Total TAC, total

greenhouse gas

Energy of BES, power of
Diesel generator, number

of components, energy
supply constraint

Not
specified 2017

[78]
Multi-objective

crow search
algorithm

Diesel
generator-PV-FC Not specified NPC and LPSP Number of components,

tank energy Iran 2019

[79]
Multi-objective

grey wolf
algorithm

Diesel generator-PV-
WT-Tidal-BES Flinders island LCOE, emission Number of components,

operating reserve Australia 2018

[80]

Fuzzy artificial bee
colony

optimization
mechanism

Diesel generator-PV-
WT-BES An edge region Annualized cost,

emission
Number of components,

battery’s energy USA 2020

[81]
Non-dominated
sorting genetic

algorithm II

Diesel
generator-PV-BES Island LCOE, CE, grid

voltage deviation
Number of components,

battery’s energy Indonesia 2018

3.1.3. Non-Metaheuristic Optimization Algorithms for Hybrid RAES Systems

The existing studies that optimized the capacity of components based on methodolo-
gies rather than metaheuristic and HOMER for hybrid RAES systems are categorized in
Table 6. The applied method is specified for each study and the other characteristics are
represented in Table 6. As illustrated in the table, various optimization techniques were
used for optimal planning. The deterministic algorithm [82], iterative approach [83], new
developed method [84], decision support technique [85], mixed integer linear program-
ming (MILP) [86], triangular aggregation model [87], a new optimizer with JAVA [88], and
reformed electric system cascade analysis [89] are some of the applied methods. In [90],
a remote 38-bus distribution network was optimized by minimizing the annualized cost.
In [91], a dynamic programming algorithm was used for optimal sizing of vanadium redox
battery in a diesel generator-PV-BES system. The dynamic programming algorithm was
utilized to overcome the challenge of optimal scheduling by considering the operating and
efficiency characteristics of a vanadium redox battery. In [92], a stochastic mixed integer
non-linear programming (MINLP) optimization was conducted for optimal sizing which
was solved with GAMS software.

Table 6. Hybrid RAES system optimal planning studies with non-metaheuristic methods.

Ref. Applied Method System Components RAES Type Objective Function Feasibility Constraints Country Year

[82] Deterministic
algorithm

Diesel generator-PV-
WT-BES Not specified NPC Power balance, SOC,

number of components Senegal 2011

[83] Iterative approach Diesel generator-PV-
WT-BES Residential Energy cost Energy of battery Algeria 2014

[84] Developed method Diesel generator-PV Campus LCOE Not specified Burkina
Faso 2015

[85] Decision support
technique

Diesel generator-PV-
WT-BES Remote village NPC LPSP India 2007

[86] MILP with
GAMS/CPLEX

Diesel generator-PV-
WT-BES Not specified LCOE

Minimum Diesel
generator power,

battery’s energy, power
balance

Portugal 2015

[87]

Triangular
Aggregation

Model and the
Levy-Harmony

Algorithm

Diesel generator-PV-
WT-BES Island village

COE, TAC, loss of
renewable energy,
LOLP, emission,

LPSP

SOC, Diesel generator
output power, LPSP Australia 2018
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Table 6. Cont.

Ref. Applied Method System Components RAES Type Objective Function Feasibility Constraints Country Year

[88] CPLEX optimizer
in JAVA

Diesel
generator-PV-BES

Ten households
in rural area Capacity of battery SOC, Diesel generator’s

output power Australia 2018

[89]
Reformed electric

system cascade
analysis

Diesel generator-PV-
WT-BES

Residential
community with

100 homes

Defined based on
constraints

Final Excess Energy,
Renewable

Energy Fraction, LPSP,
Annual System Cost

USA 2019

[90]
MINLP in GAMS

using BARON
solver

Diesel
generator-PV-BES

A remote 38-bus
distribution

network
Annualized costs

Power flow, active and
reactive power mismatch

constraints, system
frequency

Not
specified 2019

[91]
Dynamic

programming
algorithm

Diesel
generator-PV-BES Not specified Total cost per day Power and energy of BES USA 2015

[92]
Stochastic MINLP
optimization with

GAMS

Diesel generator-PV-
WT-BES Not specified NPC

Power balance, Diesel
generator constraints,
operating reserve, BES

constraints, budget
constraint

Not
specified 2018

3.2. Clean (Renewable-Storage) RAES Systems

In clean power systems, all the electricity demand of the RAES system is supplied
using renewable energies and ESSs; hence, there is no diesel generator unit.

3.2.1. HOMER Software for Renewable-Storage RAES Systems

The optimal planning of renewable-storage RAES systems using HOMER software
was investigated by 13 papers. The NPC was the only objective function, and the feasibility
constraints were not specified in most of the studies. The PV-WT-BES system was the most
considered system for clean RAES [93]. FC, supercapacitor (SC), biogas, and hydro were the
other technologies used along with PV and WT in clean RAES. In [94], the optimal sizing
of a PV-FC system was investigated for small communities. Hybrid energy storage systems
for clean RAES systems were broadly examined. In [95], a hybrid FC-SC storage system
was employed with solar PV for a remote commercial load in South Africa. A combination
of BES and FC was optimally sized with PV and WT in [96]. A biogas generation unit was
used with a PV-WT-BES system to build a clean hybrid system with higher flexibility in the
electricity supply [97]. A biomass-biogas system was optimally sized for an agricultural
farm in [98]. The application of biogas generation units with hydropower in clean RAES
systems was also investigated by HOMER in [99].

3.2.2. Metaheuristic Methods for Renewable-Storage RAES Systems

The metaheuristic methods are applied as a single objective and multi objective for
optimal planning of clean RAES systems. However, due to the lack of diesel generators
in clean RAES systems, the emission objective functions are eliminated in the optimal
planning. Table 7 presents the characteristics of the existing studies on single-objective
optimal sizing of clean RAES with metaheuristic methods. Like Table 1, particle swarm
optimization was the most applied algorithm. In [100], a PV-WT-BES system was optimized
for a group of twenty houses. Optimizing system for a radio transmitter station was
considered in [101]. In some studies, like [102], four different algorithms were used for
optimal sizing to analyze the performance of metaheuristic methods. In [103,104], FC and
BES were optimized, respectively, with a PV-WT system. In [105], the supply of thermal
loads was also considered along with the electric loads using a PV-thermal system. In [106],
a backup natural gas boiler was also optimized along with a renewable system. A bio-
diesel component was optimized in [107]. A renewable system was optimized for a remote
house in [108]. In [109,110], two new methods known as hybrid grey wolf optimizer-sine
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cosine algorithm and improved bee algorithm were utilized. Particle swarm optimization
was used to optimize PV-WT-BES and Biogas-PV-WT systems in [111,112], respectively.
Tidal power was used along with PV-WT-FC system in [113]. In [114], four optimization
algorithms were compared. In [115], a PV-WT-PHS system was designed to supply the
loads in a coastline community. Such a system is very efficient in coastline communities
due to water availability for PHS.

Table 7. Single-objective metaheuristic capacity optimization for clean RAES systems.

Ref. Applied Method System Components RAES Type Objective Function Feasibility Constraints Country Year

[100] Firefly-inspired
algorithm PV-WT-BES Group of twenty

households COE
Energy of battery,

number of components,
load dissatisfaction rate

Algeria 2017

[101] Water cycle
algorithm

Biogas-PHES-PV-
BES

Radio transmitter
station NPC

LPSP, number of
components, SOC, upper

reservoir volume
India 2019

[102] Four algorithms PV-WT-BES
PV-WT-FC Not specified TAC

Number of components,
energy of tank and

battery
Iran 2014

[103]
Flower pollination

optimization
algorithm

PV-WT-FC Rustic NPC Number of components Egypt 2020

[104] Genetic algorithm PV-WT-BES

Remote
community

(2240 home with
4440 population)

NPC SOC, EENS India 2016

[105] Discrete harmony
search

MHP-Biogas-
Biomass-PV-WT-BES

Remote rural
households

(723 homes with
3031 population)

TAC
Unmet load, number of
components, energy of

BES
India 2017

[106] Particle swarm
optimization

PV-thermal, WT,
microturbine,

thermal storage,
backup natural gas

boiler

Not specified TAC

LPSP, SOC of energy
storage systems, thermal

power, number of
components

Iran 2019

[107]

Hybrid harmony
search and
simulated
annealing
algorithm

Bio
Diesel-PV-WT-BES

Five typical
residential
building

Life cycle cost Number of components,
power balance, SOC Iran 2018

[108] Particle swarm
optimization PV-WT-Tidal-BES Remote house NPC Number of components,

reliability, SOC France 2019

[109]
Hybrid grey wolf

optimizer-sine
cosine algorithm

PV-WT-FC
Residential-
commercial

center

lifespan cost of
hybrid system

Load interruption
probability, number of
components, energy at

tank

Iran 2020

[110] Improved bee
algorithm

PV-WT-BES-FC-
Reverse Osmosis

Desalination

Desalination
systems and

community load
Total life cycle cost

LPSP, energy at hydrogen
tank, SOC, number of

components
Iran 2018

[111] Particle swarm
optimization PV-WT-BES Single house NPC Power balance, number

of components Australia 2019

[112] Particle swarm
optimization Biogas-PV-BES Residential LCOE Constraint on deficit

power of PV Kenya 2017

[113]
Whale

optimization
algorithm

PV-WT-FC-Tidal Remote region NPC Load deficit probability
Size of components Iran 2020

[114] Four algorithms PV-WT-BES-PHS Remote island NPC Number of components,
battery’s energy and SOC China 2020

[115] Genetic algorithm PV-WT-PHS Coastline
communities Life cycle cost Not specified Nigeria 2020
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The existing studies on RAES optimal planning with multi-objective methods are
categorized in Table 8. The multi-objective particle swarm optimization algorithm was
the most applied method. Objective functions like volatility [116], and dumped energy
(DE) [117], were considered in the existing studies. In [118], the PV-WT-BES system was
combined with pumped hydro storage (PHS). A combination of FC and BES was considered
in [119]. A range of economic and reliability objective functions were applied. Most of the
studies optimized the capacity of three components: PV-WT-FC [120], PV-WT-PHS [121],
PV-WT-BES [122], PV-WT-FC [123], and PV-BES-FC [124]. Only [125] optimized a PV-BES
system with two components.

Table 8. Clean RAES systems optimal planning with multi-objective metaheuristic methods.

Ref. Applied Method System Components RAES Type Objective Function Feasibility Constraints Country Year

[116]
Multi-objective
particle swarm
optimization

PV-WT-BES Residential
LPSP, LOEP,

volatility, life cycle
cost

Number of components China 2017

[117]
Multi-objective

grey wolf
algorithm

PV-WT-BES Rural telecom
tower COE, LPSP, DE SOC India 2020

[118]
Multi-objective

grey wolf
algorithm

PV-WT-BES-PHS Isolated
farmstead COE, LPSP Energy of battery and

pump-storage hydro Algeria 2019

[119] Multi-objective
genetic algorithm PV-WT-BES-FC Not specified NPC, excess energy,

life cycle emission
Number of components,

energy of tank Australia 2015

[120]
Imperial

competitive
algorithm

PV-WT-FC Not specified Total cost, emission

Equivalent loss factor,
angle of PV array,

number of components,
energy stored at tank

Iran 2015

[121]
Multi-objective
particle swarm
optimization

PV-WT-Hydro-PHS Not specified
LPSP, LCOE,

curtailment rate of
wind and PV power

Not specified China 2020

[122] Multi-objective
genetic algorithm PV-WT-BES

A residential
home with four

occupants

Life cycle cost,
embodied energy,

LPSP
SOC USA 2014

[123]
Multi-objective
particle swarm
optimization

PV-WT-FC Not specified TAC, LOEE, LOLE
Energy at tank, number
of components, PV tilt

angle

Not
specified 2016

[124]
Non-dominated
sorting genetic

algorithm II
PV-BES-FC Residential (10

houses)

LPSP, system cost,
potential energy

waste
Number of components China 2019

[125]
Mutation adaptive

differential
evolution

PV-BES Rural area Life cycle cost, LOLP,
LCOE SOC Malaysia 2020

3.2.3. Non-Metaheuristic Optimization Algorithms for Renewable-Storage RAES Systems

Table 9 lists the characteristics of the studies on capacity optimization for clean RAES
systems with other methods rather than HOMER and metaheuristic methods. To solve
the multi-objective problem by the methods rather than metaheuristic approaches, the
ε-constraint method [126], hybrid multi-criteria decision-making method [127], sensitivity
analysis [128], Simulink design optimization [129], iterative technique [130], power pinch
analysis [131], object-oriented programming [132], probabilistic simulation [133], cascade
calculation [134], enumerative method [135], and pattern search optimization [136] were
developed by the existing studies. In [137–139], iterative based optimization was applied
for optimal planning. A PV-WT-BES system was optimized for a remote area mountain
lodge [140], a remote community [141], and a forestry camp [142]. A concentrating solar
power (CSP) plant was combined with WT and BES in [143]. Sensitivity method was used
to optimize a PV-WT-FC-PHS in [144].
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Table 9. Existing studies on optimal planning of clean RAES systems with non-metaheuristic methods.

Ref. Applied Method System Components RAES Type Objective Function Feasibility Constraints Country Year

[126] ε-constraint
method PV-WT-BES-FC Not specified NPC, LPSP, DE

SOC, energy in hydrogen
tank, number of

components

Not
specified 2018

[127]

Hybrid
multi-criteria

decision-making
method

PV Water pumping Life cycle cost, LOLP,
excess water volume Not specified Malaysia 2018

[128] Sensitivity analysis PV-WT-BES-PHS Remote island Life cycle cost Not specified Hong
Kong 2014

[129] Simulink Design
Optimization PV-BES-FC Not specified Cost Not specified Spain 2013

[130] Iterative technique PV-WT-BES
Remote

residential
household

LPSP and LCOE SOC, number of
components Algeria 2011

[131] Power Pinch
Analysis PV-BES Remote

community Cost Not specified Bhutan 2017

[132] Object-Oriented
Programming PV-WT-BES Not specified NPC LPSP, SOC Algeria 2014

[133] Probabilistic
simulation PV-BES

A refrigerator
used for medical
supply in remote

area

Loss of load hour,
energy not supplied Not specified USA 1998

[134]

Linear
programming

based on a cascade
calculation

PV-WT-Tidal-BES Island Equivalent loss
Factor SOC France 2016

[135] Enumerative
method PV-BES House LCOE

Unmet load percentage,
number of days of

autonomy
Spain 2018

[136]
Pattern

search-based
optimization

PV-WT-BES Not specified Total system cost
SOC, load constraint for
DR, EENS, energy index

of reliability
USA 2014

[137] Iterative method in
MATLAB PV-WT-BES-FC

Pumping system
(centrifugal

pump)

Deficiency Power
Supply, NPC SOC, tank energy Tunisia 2018

[138]
Iterative

simulation-
optimization

PV-WT-BES-FC Not specified LCOE LOLE Iran 2016

[139] An iterative
method PV-WT-BES Ten houses in a

remote island NPC LPSP, COE China 2019

[140] MILP PV-WT-BES Remote area
mountain lodge NPC Energy of BES, power

balance Italy 2020

[141] Logical approach PV-WT-BES Remote
community NPC Number of components South

Korea 2016

[142] MILP with CPLEX
solver in GAMS PV-WT-BES Forestry camp NPC

BES energy and charge/
discharge, demand
response constraint

Iran 2017

[143] Stochastic
optimization

WT-concentrating
solar power (CSP)

plant-BES
Island Overall cost

SOC, power balance,
output power of

components
China 2020

[144] Sensitivity based
method PV-WT-FC-PHS University RES fraction Not specified Cyprus 2020

3.3. Discussion

Regarding the used objective functions in the existing studies, the priority goes to the
cost objectives in most of the studies. Then, the reliability objectives have received more
attention than the emission aims because of the grid’s absence in remote areas’ systems.
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Finally, due to global concern, emission objective functions have received enough attention
from researchers after the cost and reliability targets.

The number of publications per continent for RAES optimal planning is demonstrated
in Figure 9. It is observed that most of the studies (about 100 papers) were conducted for
Asian case studies. After Asia, optimal planning for African case studies has attracted the
greatest attention with more than 30 papers. Figure 9 also shows the number of publications
per country in Asia. It is observed that a high contribution of studies were developed in
Iran and India. China is the next country with about 15 studies on RAES optimal planning.

Figure 9. Number of publications per countries for RAES optimal planning.

3.3.1. Electricity Supply Cost for RAES Systems

Conventionally, the power of RAES grid is supplied by diesel generators. Because
of the high fuel price and the transportation problem, the cost of electricity supply by
the diesel generators is high. When the renewable energy resources were introduced, the
price of the components was high. However, due to the technology maturing, the price
of the renewable components has dropped, and they are now competitive with the diesel
generator. Most of the studies have shown that including renewable energy components
can decrease the cost of the electricity supply for RAES systems. For example, in [68], it was
addressed that adding PV and WT to the diesel generators in RAES systems decreases the
electricity cost slightly. However, adding a battery energy storage system can significantly
decrease the electricity cost. In [145], it was found that adding flywheel storage is not
economical for integration with renewable energy in RAES systems. It was illustrated
in [146] that a clean renewable-battery system is competitive with diesel generator systems.

3.3.2. Discussions on Methods

Metaheuristic methods have been broadly used for optimal planning of RAES systems
because of their good potential to escape from the local optimal point, freeness from
gradient calculation, and simple implementation. These methods could effectively prevail
over the nonlinearity and complexity of optimization formulation. The other merit of
these algorithms is the capability to deal with non-convex optimization problems that is
hardly possible when classical methods are utilized. The metaheuristic methods have the
capability to reach the near-optimal solutions effectively. Since the problem of optimal
planning with several components deals with the fact that many results may be found as
possible solutions, it may not be required to find the exact optimal result and hence, the
near-optimal result by satisfying the design constraints can be a potential solution. The
literature has reported that more than 70% of the existing papers have used metaheuristic
methods for RAES optimal planning.

As the number of objectives has increased, solving the optimal planning problem
of an RAES system from a multi-objective basis has become more popular. On the other
hand, the number of constraints is also increased, and the types of constraints become
more complicated. Hence, the multi-objective metaheuristic methods can be used as
an appropriate method for such problems. These methods are able to generate several
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solutions in form of a Pareto front in each run of the simulation. This is the main advantage
of multi-objective metaheuristic methods over the classic methods. The multi-objective
genetic algorithm is the most applied method for multi-objective optimal planning.

Using HOMER software, NPC is the only objective function that was considered by
all existing studies. The main deficiency of using HOMER is that the objective function
cannot be changed. The design constraints are improvised in the block of the components
and the designer cannot define new constraints or models. This is the main reason that
the design constraints are not specified in most of the studies by the HOMER. Another
deficiency by HOMER is the incapability to run multi-objective optimization. However,
due to the simplicity of the software, HOMER is widely used for RAES systems planning.

Among the non-metaheuristic methods, solving the RAES optimal planning problem
with MILP using commercial software was the most utilized one. In such a method, the
mathematical formulation of the problem is modelled. A high computational burden and
inability to handle the nonlinearities are the main shortcomings of such classic methods.
The iterative methods may be trapped in local solutions and hence the global optimal
solution may not be attained. To overcome this challenge, the iterative approach should
be repeated multiple times by random initial conditions. Hence, the best local solution
obtained by the approach is chosen as the optimal solution. It should be noted that
repeating the simulation for different initial conditions increases the calculation time of
the approach.

Analytical approaches evaluate the performance of the system for a set of feasible
configurations for the specific capacity of the components in the RAES system. Then, the
best system configuration is selected by evaluating single or multiple performance indices.
Probabilistic methods develop suitable models for the generation of resources and/or load
demand and they create a risk model by a combination of the developed models. The
probabilistic methods for the planning of RAES systems were used by a few studies. This
is because the probabilistic methods cannot characterize the dynamic changing nature of
hybrid or integrated RAES systems.

3.3.3. Technical Challenges

Although a considerable number of studies have been conducted on optimal planning
of RAES systems, several challenges exist in the present status that should be discussed.
These major challenges can be highlighted as follows:

• High capacity of BES in clean remote area energy supply systems.
• Demand response strategies for optimal planning in RAES systems.
• Robust optimal planning of components for clean RAES systems.
• Neglecting guidelines for customers in RAES systems.
• Neglecting distribution network constraints in the optimal planning model.

Due to the intermittency of renewable energy, a large mismatch may happen between
generation and consumption in clean RAES systems. To compensate the power deficiency,
a large capacity of BES is required. This high capacity of the battery is a technical challenge
due to the high cost of the battery. To reduce the capacity of the battery, demand response
programs should be developed [147]. Although the DR strategies have been developed
for grid-connected systems [148], the application of DRs in optimal planning of remote
areas systems was neglected. Due to the high intermittency of renewable energies and
load, a robust optimal planning of a clean RAES system can guarantee the energy supply.
However, a robust optimal planning in the RAES system was neglected. Guidelines for
customers in RAES systems to purchase PV, WT, and BES were neglected in the existing
literature. If customers are equipped with renewable-storage systems, the high pressure
of the energy supply can be efficiently reduced in RAES systems. Only limited studies
considered some distribution network indices in the planning process of RAES systems.
However, the distribution network constraints like voltage and frequency constraints can
greatly affect the optimal planning problem [149].
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4. Recent Developments

Recently, some research developments have been achieved for optimal planning of
RAES systems, which are discussed in this section.

4.1. EV Charging Stations and Diesel Generator

In [150], an optimal sizing methodology was developed for allocation of EV charging
station and DGs in a remote community. A multi-objective optimization problem was
developed to minimize the emission and cost of the microgrid. It was assumed that by
substituting fossil-fueled vehicles with EVs, the pollutant emissions from driving would be
zero. It was found that it will be both economic and environmentally friendly for investors
to construct EV charging stations in remote communities.

4.2. Integrated Energy System with Solar PV and Biogas

In [151], optimal sizing of an integrated energy system with solar PV, battery, and
biogas was proposed for a remote area residential load. The main purpose of adding the
biogas system was twofold: (1) to decrease the capacity of the battery, and (2) to design a
system for thermal, electricity, and gas supply in remote areas. The study showed that the
proposed system resulted in a low LCOE for the case study. Such studies, by considering a
multi-energy system for remote areas, reccomend to not only supply the electricity but also
the thermal and gas demands.

4.3. Hybrid Energy Storage and PV

In [152], a standalone system was developed based on solar PV, ice-thermal energy
storage (TES), and BES for an islanded building. This study achieved two valuable de-
velopments: first, optimal planning of an RAES system; and second, deployment of the
dynamic model of the system to show the system operation in real-time simulation on
the OPAL-RT platform. A coordinated operation between BES and TES was proposed to
decrease the capacity of BES. It was found that the system based on hybrid energy storage
is more economical than the system with only BES. Such studies are valuable for RAES
systems to validate both the planning and operation of the system.

4.4. Optimal Configuration

In [153], optimal sizing of standalone microgrids was modelled with full identification
of the system topology. In this model, the optimal type of microgrid (AC, DC, or hybrid
AC/DC) as well as the capacity optimization of the DGs, storages, capacitors, and power
electronic converters were assigned by minimizing the total sizing cost. If a hybrid topology
was found as the best configuration, the model calculated the optimal size of interlinking
converters. By considering the control, sizing, and topology of the RAES system, such
studies are of interest.

4.5. Accurate Battery Lifetime Estimation and Technology Selection

In [154], a two-stage methodology was developed to determine the optimal capacity,
maximum depth of discharge, and the service lifetime in years of BES for a remote micro-
grid. The different performance of full and half cycles was investigated. It was found that
the higher capacity of BES results in lower DODs and hence a higher estimated lifetime for
RAES microgrids.

4.6. Concentrating Solar Power Plant

In [143], a renewable-storage system was proposed for a remote area electricity and
water supply system based on a WT, concentrating solar power (CSP) plant, and BES. By
using the CSP plant, superheated steam was generated to run generators to produce elec-
tricity. The low/medium-temperature exhaust steam of the CSP was used in desalination
units to produce freshwater. A TES was also considered in the CSP plant to reduce the BES
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capacity. An integrated CSP-desalination unit could be very useful for RAES systems. Such
a system would give more flexibility for energy scheduling.

4.7. Cooperation of a Diesel Generator and Flywheel with Incentive DR

In [155], the flywheel (FW) was examined for optimal planning of the RAES system.
The authors optimized a diesel generator-FW-PV-WT-BES system by considering an in-
centive DR program. The FW reduced the number of offline diesel generators to supply
the loads. By the incentive DR, customers received a financial benefit to contribute to load
shedding. The study provided some good views on the optimal sizing problem; however,
a flat incentive was selected.

5. Future Scopes

This paper facilitates future scopes on the optimal planning of RAES systems. The
future scopes are discussed in this section.

5.1. Incentive Demand Response

An incentive DR in a clean RAES system can be an efficient strategy to decrease
the battery capacity and hence the electricity cost of the system. In such a strategy, the
customers are incentivized to reduce, shift, or curtail their load demand. The time of the DR
can be changed based on the forecast data of renewable generation and load consumption.
For example, on cloudy days, a high battery charge is required to compensate for the lack
of solar generation. To reduce the required battery charge, some of the load demand can be
curtailed by an incentive payment to the customers. Using this strategy, the capacity of
the battery is automatically decreased. Incentive DR was not investigated properly in the
existing studies, and it is a potential research area for the future.

5.2. Distribution Network Constraints

Optimal planning of RAES systems by considering distribution network constraints
obtains more practical results. Generally, the households are located far from each other in
remote and rural areas, which causes long distribution lines between customers in RAES
systems. Hence, the distribution network in an RAES system needs more attention due
to power losses as well as voltage and frequency deviations [156]. The optimal planning
should be accomplished by considering all distribution constraints. The optimal allocation
of components should be investigated in an RAES system by considering the distribution
network and components requirements.

5.3. Considering Voltage and Frequency Control

New studies can be conducted by considering the voltage and frequency control of
the components in the RAES systems. This should receive greater attention for the recent
RAES systems because of the higher contribution of DRERs with inverter interfaces. For
example, the dumped power has been investigated in several studies as a constraint or
objective function. However, how the inverter of DRERs can control the dumped power
was not mentioned. An efficient way to approach this challenge is to first optimize the
capacity of the components and then validate the optimal system through hardware-in-the-
loop testing.

5.4. New Software Tools for Optimal Planning of RAES Systems

The only available software for RAES systems’ optimal planning is HOMER. However,
HOMER software suffers from a range of limitations. For example, the only type of objective
functions that can be applied in the optimal planning process with HOMER are financial
objectives. On the other hand, the operation of the system cannot be changed in HOMER.
Therefore, new software for optimal planning of RAES systems with the capability of using
different objective functions, applying multi-objective optimization, and flexible operation
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strategies are of great interest for future perspectives. The new software should also be
able to develop demand response strategies due to smart grid developments.

5.5. Guidelines for RAES Customers

Guidelines in RAES systems should be rendered for the customers to purchase
renewable-storage systems. The guidelines can help electricity consumers to invest the
right cost in solar PV, WT, and BES for their properties [157]. The guideline can be based
on the budget, the available rooftop for PV installation, the available land for WT, and the
possibility of DR application. Such guidelines can reduce the electricity cost and increase
the reliability of the electricity supply of customers in RAES systems.

5.6. Feed-in-Tariff in RAES

An effective incentive for the customers in RAES systems is to assign feed-in-tariff
for exporting electricity from their PV and WT systems to the distribution network. The
feed-in-tariff can be based on the flat rate or time-of-use rates [158]. When the feed-in-
tariff is assigned, the customer exports the power to supply the electricity demand of the
other electricity consumers in the system. Using the feed-in-tariff, the electricity bill of
the customers is reduced and the high pressure of the electricity supply by the main grid
will be lifted. An efficient feed-in-tariff program for customers in RAES systems is a good
policy in the future.

5.7. Robust Optimal Planning

To achieve a clean reliable RAES system to supply the load uninterruptedly, a robust
optimization is essential. Optimal planning with robust strategies can overcome the
intermittency of consumption and generation sides as well as the demand variations
subjected by population change. The robust strategies can consider the worst-case scenario
of renewable generation and load consumption to generate the optimal capacities [159].
Due to the robustness of these methods, the designed system can supply the load in the
days with lower renewable generation and higher load variations. Robust optimal planning
of a clean RAES system is an efficient future direction.

5.8. Resilient Optimal Planning

The resiliency of an RAES system is the ability to withstand grid outages (low-
frequency high-impact incidents) significantly while ensuring the minimum possible inter-
ruption in the supply of electricity and enabling a quick restoration of the system to the
normal operation. Resiliency is an important issue that can be considered in the planning
stage of RAES systems. Grid outages may happen in RAES systems due to several reasons.
The power supply of a conventional RAES system is generally vulnerable due to the lack of
diversity in the types of available power generation resources. On the other hand, since the
RAES systems are located far from service centers, it takes time to send service teams for
maintenance. Therefore, the probability of electricity outage should be considered in the
planning stage. This topic has been ignored in the literature for RAES optimal planning.
Hence, it is a potential study area for researchers.

6. Conclusions

This paper investigated the state-of-the-art optimal planning of remote area electricity
supply (RAES) systems. The existing studies on the field were classified based on hybrid
or clean systems, optimization methodologies or software optimization, and as single- or
multi-objective problems. The existing challenges were explained and the latest develop-
ments in the optimal planning of RAES systems were discussed. The future perspectives
were introduced to highlight potential research ideas for researchers. The main findings of
this review paper can be briefly explained as follows:

It was found that feed-in-tariffs (FITs) should be introduced for customers in RAES
systems. This increases the penetration level of distributed renewable energy resources in
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RAES systems. By the FIT, the customers can sell their extra power to the RAES grid in
order to reduce the electricity cost.

New software tools are necessary to optimize the capacity of components based on
various objective functions. The current tools like HOMER software cannot solve multi-
objective problems. In addition, it is not easy to implement demand response strategies.
Hence, new software can be introduced by giving more flexibility to the designers for
optimal planning of RAES systems.

The inclusion of guidelines for RAES customers is a positive point of this paper.
Indeed, the identification of guidelines would be expected as a tangible result of this review.
The guidelines can help the customers to select the best capacity of renewable resources
and energy storage systems to achieve the minimum emission and energy bills.
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