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Abstract: Diagnostics of power and energy systems is obviously an important matter. In this paper
we present a contribution of using new methodology for the purpose of signal type recognition
(for example, faulty/healthy or different types of faults). Our approach uses Bayesian functional
data analysis with data depths distributions to detect differing signals. We present our approach
for discrimination of pole-to-pole and pole-to-ground short circuits in VSC DC cables. We provide
a detailed case study with Monte Carlo analysis. Our results show potential for applications in
diagnostics under uncertainty.

Keywords: cable diagnostics; Bayesian statistics; functional data analysis; uncertainty; Hamiltonian
Monte Carlo; data depth

1. Introduction

Effective and reliable monitoring and diagnostics of energy installations is of utmost
importance, as they are an important part of the world’s economy. Algorithms for fault de-
tection and isolation allow extension of system lifetime, reduction in operation interruption
and can lead to significant savings. The main difficulty in their development is that power
installations have a high level of complexity, are usually nonlinear and are influenced by
stochastic disturbances and parameter variations. Therefore, approaches based on first
principles models are difficult or even impossible to use on a wider scale. That is why
methods based on statistical models or machine learning are those most researched.

Typically, machine learning, data-driven models are providing complicated ‘black-box’
models, which are not transparent and hard to interpret. This means flaws are less prevalent
in statistical approaches which is a cause of their dominance of statistical approaches in the
field. Both of those groups, however, suffer from the typical situation that the real data
for system faults is extremely rare, and even if present it is often incomplete. That is why
it is crucial to develop methods that can handle issues of non-representative or missing
data. Bayesian methods are an emerging set of tools for solving many kinds of diagnostic
problems [1–3].

Time series diagnostics are usually based on extracting features and with that reduc-
tion of dimensionality as signals are represented as vectors of numbers. Unfortunately the
usual approach to feature extraction is to obtain certain typical statistical measures (such
as mean, standard deviation, kurtosis, median, peak-to-peak) in both time and frequency
domain and hope that they will contain enough information about the signal [4,5]. This
negatively influences reliability and efficiency of diagnostic models as it is very hard to
verify. In the case of transient diagnostics authors (e.g., [6]), they mostly use autoregressive
moving average models (or their variants) which is a significant limitation both because of
linearity and non-locality (it is difficult to capture localized behavior). Many cable fault
location studies are based on simulation models and methods and use simulation tools.

Functional data analysis (FDA) is a group of methods for analysis of data in the
form of functions, with a special focus on time series data. The main idea is to create a
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model of the signal using certain function basis and coefficients of that basis representation
can be considered as reduced dimensionality. FDA is a matured field in the area of
statistics, with focus on bases in functional spaces such as polynomials, wavelets and others.
Maturity of the field can be observed by recent review papers [7] or special issues [8] in
prestigious journals covering the field of statistics. We join FDA with Bayesian approach in
order to obtain probability distributions of basis coefficients, get generative models and
model uncertainty.

In the case of cable fault monitoring, popular approaches are based on first principle
model fitting. In the next section we provide a comprehensive overview of such methods.
An important aspect shared by all those methods is that they are not focused on uncertainty.
They are often considering point estimates or least squares fits. In this paper we want
to provide a certain proof of concept for using statistical methods for fault detection and
distinguishing types of faults. For this purpose we focus on a real problem of distinguishing
between pole-to-ground and pole-to-pole short circuits. Pole-to-pole and pole-to-ground
short circuits are the typical DC cable faults. These generally result in fast discharge of
the DC-link capacitor through the DC circuit, leading to transient overcurrent, which can
damage system components. In addition to fault type and DC system parameters (namely,
capacitance C of the DC-link capacitor and cable distributed parameters Rx, Lx), transient
response also depends on fault distance x and fault resistance Rf. VSC DC systems are
helpless against these DC faults because IGBTs are blocked for self-protection during the
fault, leaving freewheel diodes subject to overcurrent [9].

We propose a general algorithm for comparing signals with reference that takes
uncertainty under account and uses functional data analysis to provide dimensionality
reduction. Uncertainty modeling is obviously important to avoid ill-informed decisions.

Our main contributions are:

• Construction of Bayesian spline model capturing measurement and parameter uncer-
tainty,

• An algorithm for using Bayesian models to obtain data depth distributions allowing
analysis of signal similarity,

• An extended case study using simulated voltage source converter (VSC) direct current
DC cable fault data focusing on pole-to-pole and pole-to-ground short circuits.

The rest of the paper is organized as follows. First we present a review of cable fault
modeling techniques. Then we present methodologies behind data depth and spline model-
ing using Bayesian hierarchical linear model. Then we describe our computational system
and thoroughly analyze current and voltage signals as an indicator, allowing distinguishing
between fault types. We finish the paper with the discussion and conclusions section.

2. Review of Cable Fault Modeling Research

Pollution, physical damage, aging and environmental impact may generate the fault
of the cable and cause a variety of serious consequences. It is crucial to detect and locate the
cable fault fast and accurately, in particular in case of aircraft cable. Because of this, cable
system behavior under fault conditions needs to be studied to enable rapid interruption
and isolation of damage. Therefore, many research papers deal with this problem.

In literature, papers present methods and algorithms detecting and locating faults
based on simulations and also propose a theoretical analysis of different cable faults.

Many papers investigate VSC DC system by performing various types of computer
simulations. Paper [9] deals with two-level VSC DC system response to DC cable faults and
analytical expressions for characterizing DC fault overcurrent and voltages and identifying
main DC fault characteristics. Yang et al. [10] investigate DC cable transient modeling
issues for VSC based high voltage direct current (HVDC) transmission systems. Loume [11]
focuses on the influence of cable modeling and grounding on DC fault current behavior in
a HVDC point-to-point cable system. In [12] authors propose a transient simplified model
with high-frequency components of the fault DC network reserved.
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A different important problem is designing extensive networks so that cable failures
do not cause further undesirable consequences.

Zhang et al. [13] present a sub-sea DC collection grid with robust control and protec-
tion scheme with the DC/DC converter. Network section interconnections are decoupled
in the event of DC faults. Jovic et al. [14] consider building large DC grids as an intercon-
nection of regional radial DC systems, which enables very simple and robust DC system
protection. An interesting approach is also the one of Bapijaru et al. [15], who present cable
models. Their purpose is the analysis of the faults’ nature using signatures of measurements
in offshore Multi-Modular Converter High Voltage DC (MMC-HVDC) systems.

Cable location studies rely mostly on simulation models, methods and tools. In par-
ticular, this concerns the underground power cables [16]. PSCAD™EMTP [17,18] and
PROTEUS version 8.1 [19] are the examples of the simulation tools used in cable diagnosis.
Gjabhiye et al. [20] review various fault locating methods and highly computational meth-
ods for underground cables and provide design of fault location and remote indicators.

In particular, it covers various types of methods (A-Frame Method, A-Frame Method,
Time Domain Reflectometry (TDR) and Bridge Method) and highlights the adverse effects
of some of them and the selection of methods to the type of fault. The authors in [21]
propose new method for online monitoring underground cable monitoring. The simulation
tool PSCAD/EMTDC is popular for fault model verification. In paper [22] authors present
model for both type pole-to-ground and the pole-to-pole faults detection for cables used in
photovoltaics (PV). In paper [23] authors present simulation model of sheath earth current
generation and the relationship between sheath earth current and load current. This model
simulates various faults of sheath grounding system.

Diagnostic systems for high voltage cables based on sheath current are also an impor-
tant issue. The sheath current is measured to locate a segment of transversely connected
fault, which leads to reduced maintenance time. In the paper [24] authors present an
equivalent circuit model of sheath current in a cross-connected cable system according to
the single-wire laying type. The model considers the operating mode, cable parameters
and line length. This paper [25] presents a model for cable over sheath damage at alter-
nating current (AC) voltage. Authors propose representation of the characteristics as a
combination of linear resistance and capacitance. The model is implemented in Alterna-
tive Transient Program (ATP) by using the true nonlinear resistance model and transient
analysis of control systems (TACS-controlled) switch.

The monitoring and diagnostic systems are designed also for Shielded Twisted Pair
cables so that there is no interference between the twisted pair cables. The paper [26]
discusses computer models of electrical wires in Shielded Twisted Pair cables and test
procedures based on an Enhanced Time Domain Reflectometry technique. The diagnostic
models for the coaxial cable are under consideration in papers [27,28]. In [27] faults of the
cables are modeled as radiating apertures using the Bethe theory. In the paper [28], Shi et al.
present the lossy transmission line model using time domain reflectometry and impedance
spectroscopy for the extraction of parameters.

Few papers use predictive methods and data analysis to predict the occurrence of cable
fault and the location of it. Such methods include Backpropagation (BP) neural network
and Levenberg–Marquardt data-optimized method [29], recursive regression analysis and
the amnesic factor regression analysis [30] and the method of data fusion based on Bayes
estimate [31]. Successful applications of these methods include locating of cable faults
and parameter estimation (e.g., resistance, inductance, conductance and capacitance).

In conclusion, our approach is a good supplement to existing methodology, as it is at
least partially data driven, uncertainty focused and relatively simple. It fills certain gaps
and has a potential for greater development.

3. Materials and Methods

In this section we introduce the main concepts on which our work is built. Firstly, we
introduce the data depth function, which is certain measure of similarity of a multivariate
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datapoint to certain probability distribution. Then we present the idea for construction of
Bayesian functional data models with splines. Finally, we give the algorithm for comparing
signals to reference.

3.1. Data Depth

Data depth, as proposed by Tukey in 1975 [32], was considered a multivariate gener-
alization of median, so a function that allows certain ordering of datapoints with respect
to distribution. Data depth has multiple uses. Idris considered it for multivariate control
charts for easier control of multidimensional processes [33]. Chenouri used it for improving
the quality of nonparametric tests [34]. Nagy and Ferraty [35] use functional data anal-
ysis to represent discontinuous data. It was also used to analyze functional data [36,37].
By analyzing function curves, it is much easier to detect distant data. In addition, finding
anomalies is easier by using the data depth derived from the functional mean.

We define the data depth as the distance of the measurements from the center of the
point x ∈ Rd regarding a distribution function F. The outermost observations have lower
values than the near-center data. They are determined by the depth function. This way,
you can identify which data is anomalous throughout the process. First, let us start with
the definition of the depth function.

Let the mapping D(·; ·) : Rd ×F → R be bounded, non-negative and meet the as-
sumptions:’

1. D(Ax + b; FAX+b) = D(x; FX) holds for any random vector X in Rd, any d× d non-
singular matrix A and any d-vector b;

2. D(θ; F) = supx∈Rd D(x; F) holds for any F ∈ F having center θ;
3. for any F ∈ F having deepest point θ, D(x; F) ≤ D(θ + α(x − θ); F) holds for

α ∈ [0, 1];
4. D(x; F)→ 0 as ‖x‖ → ∞, for each F ∈ F .

Then D(·; F) is called a statistical depth function [38].
There are multiple definitions fulfilling depth function conditions. Tukey proposed

the half space depth, known also as Tukey depth or location depth. In the following years,
researchers proposed new types like Euclidean depth, Lp depth, Mahalanobis depth, projec-
tion depth, Oja depth and many others [39,40]. Those definitions have various properties,
but for practical use, most important are computational complexity and scaling properties.
Tukey’s depth has complexity of O(2n), with n being number of dimensions, which makes
it practically useless for high dimensional problems. Oja’s depth uses n-dimensional vol-
umes of simplexes and has a complexity of O(n4). Unfortunately, because of the curse of
dimensionality, simplex volume in high-dimensional space can be infinitesimally small
and get lost in rounding errors. Projection depth could be attractive but requires solution
of n dimensional convex programming problem, which is hard to bound in the number of
multiplications. Other mentioned depths have fewer problems, with best and most efficient
results we obtained for Mahalanobis depth, which we define below.

Mahalanobis Depth

Mahalanobis proposed a method of determining the distance between two points x
and y in Rd in the following form

d2
M(x, y) = (x− y)′M(x− y) (1)

where M is positive definite d× d matrix.
Based on the Mahalanobis distance, the depth function can be defined as

MHD(x; F) =
(

1 + d2
Σ(F)(x, µ(F))

)−1
(2)

where Σ(F) is covariance matrix of F and µ(F) is the mean.
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3.2. Bayesian Functional Spline Models

In this section we will not cover main principles of Bayesian statistics, for more details
we refer the reader to Gelman’s book [41]. In the main principle we will be creating a joint
probability distribution model for data and parameters.

We consider that our data generating process is given by

yn ∼ N (µn, σ)

µn =
M

∑
m=1

θmφm(tn)
(3)

where yn are our sampled measurements, n = 1, . . . , N, which with uncertainty of normal
distribution given by σ. Functions φm(t) are B-splines on the assigned M knot grid. µn are
transformed parameters of the model, as it corresponds to the mean of fitted distribution for
individual measurements. It could be avoided, as actual model parameters are coefficients
of B-splines combination θm, but it improves formula clarity. θm are all distributed with
respect to normal distribution

θm ∼ N (µ0, σ0) (4)

Parameters µ0, σ0 are not known and are inferred from data, making the proposed
model a hierarchical one. Relations of the entire model are presented using Bayesian
network plate notation in Figure 1.

θm

m ∈ M

µ0

σ0

N
yn

n ∈ N

σ

Figure 1. Graphical representation of parameters in Bayesian model for functional representation
of the signal. Spline weights θm come from the normal distribution with hyper-parameters µ0 and
σ0. Those parameters are inferred in the hierarchical way from data with uniform hyper-priors.
Measurements yn are disturbed by a zero mean Gaussian noise with standard deviation of σ.

We can join the likelihood (3) and the hyper-prior (4) to construct a full model, assign-
ing priors for all the parameters:

yn ∼ N (µn, σ)

n = 1, . . . , N

µn =
M

∑
m=1

θmφm(tn)

θm ∼ N (µ0, σ0)

m = 1, . . . , M

σ ∼ Exponential(1)

µ0, σ0 ∼ Uniform

(5)

Hyper-parameters were given uniform priors, as we have no justification for others,
but as well they could be just disperse normals. σ was given an exponential prior, as it
has heavier tail than half-normal allowing extra flexibility. The proposed model allows
sampling of parameters from posterior and sampling from posterior predictive distribution.
Posterior predictive distribution is a useful tool for generating predicted data from inferred
parameters. For the rest of the paper we will refer to (5) as ‘model’.

Parameters θm of the model are dimensionality reduction representation of the time
series. Their number M is naturally smaller than number of samples N. However, those



Energies 2021, 14, 5893 6 of 17

coefficients with basis functions allow for the representation of the signal up to the confi-
dence interval.

3.3. Algorithm for Fault Determination and Detection

Here we will propose a data-driven general Bayesian algorithm using data depths
and Bayesian functional models to capture uncertainty and compare signals to reference.

Main use of data-depth is the possibility of using it with data, as a statistic similar to
the median. Its usefulness reduces if data is not available in large quantities. However,
having a model of data generating process using posterior predictive distribution one can
generate as many datapoints are needed efficiently estimating data depth. This is the base
of our algorithm.

Algorithm consists of the following steps:

1. Create reference . Having a set of reference signals (for example, healthy behavior).
Fit the model with them and obtain the set of samples of (θm)M sequences.

2. Compute Mahalanobis depth distribution. Using the obtained samples, compute
mean and covariance matrices and determine depth of each of the samples. This will
be our reference depth distribution. It can be summarized by a histogram if needed.

3. Create model of the candidate. Using the same model, fit it with the candidate signal
and obtain the set of samples of (θm)M sequences.

4. Compute the depth distribution of candidate with respect to reference. Using mean
and covariance of the reference set compute the Mahalanobis depth of all the samples
of the candidate. This gives a marginal probability distribution of depth of candidate
with respect to reference.

5. Analyze the overlap/distance. The marginal distribution of the depth allows us to
verify if signal is ‘shallow’ with respect to the reference set or close to it. If there is an
overlap we can state that the similarity is strong. If there is a large gap, we can say
that the signal is an ‘outlier’ with respect to reference.

The main strength of the proposed approach is that it allows to compensate for a small
amount of data and its quality. Because the model of the candidate is available we can
capture uncertainty coming from the disturbances and protect ourselves from accidentally
stating that the signal is similar.

4. Results

In this section we present results of our case study applying our algorithm to deter-
mining in the VSC DC cable the type of fault between pole-to-pole and pole-to-ground
short circuits. First we provide a brief description of our data. Then we describe the
computational system used. Finally, we go in depth in to analysis of current and voltage
signals for their diagnostic use.

4.1. Considered Data

For our data we have considered results from simulation models given by Mesas et al. [9]
for configurations presented in Figure 2. Proposed models represent the initial 5 ms
period after the fault occurrence. For those signals we have simulated with randomized
parameters 100 voltage-current pairs for both pole-to-pole and pole-to-ground faults. We
have taken parameters normally distributed with means equals to parameters provided
by Mesas et al. and standard deviations corresponding to 10% of those values. Simulated
signals are presented in Figure 3.



Energies 2021, 14, 5893 7 of 17

Figure 2. Circuit diagrams of simulated cable faults in VSC DC systems: (a) Pole-to-pole short
circuits. (b) Pole- to-ground short circuits. For those faults Mesas et al. [9] have provided simulation
models using solutions of differential equations. x—location of fault, Lx—distributed inductance,
Rx—distributed resistance, C—capacitance of DC link capacitor, R f —fault resistance, vc—DC-link
capacitor voltage, icable—cable current, Lchoke is the grid-side choke inductance, iga,b,c—IGBT currents.

(a)

0.0

0.5

1.0

Cu
rre

nt
 [k

A]

0 1 2 3 4 5
Time [ms]

0.0

0.2

0.4

Vo
lta

ge
 [k

V]

(b)

0.0

0.5

1.0

1.5

Cu
rre

nt
 [k

A]

0 1 2 3 4 5
Time [ms]

0.0

0.2

0.4

Vo
lta

ge
 [k

V]

Figure 3. For algorithm verification we have used simulations of initial stages (5 ms) of faults of
VSC DC cables. We have selected a set of parameters, which was then randomized with normal
distribution with standard deviation equal to 10% of given parameter. Then we have simulated both
currents and voltages. Subfigure (a) describes the pole-to-pole faults and (b) pole to ground faults.
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4.2. Computational Setup

For Bayesian computation, we have used Hamiltonian Monte Carlo (HMC, also
known as hybrid Monte Carlo) algorithm. Currently, most advanced HMC software is
Stan [42]. HMC algorithm is a type of Markov Chain Monte Carlo (MCMC) method.
MCMC generates a Markov chain of samples. It generates them in a way that makes their
limiting distribution converge to the desired probability distribution. MCMC methods
are especially useful for Bayesian computation, as sampling from the posterior distribu-
tion is difficult. Using generated samples, we can estimate expected values of desired
functions of random variables. Because of that, we can answer practically all relevant
statistical questions.

HMC is a variant of the Metropolis–Hastings algorithm. Traditionally Metropolis–
Hastings algorithm uses Gaussian random walk proposal distribution. Algorithm accepts
or rejects samples from the random walk depending on computed acceptance probability.
In HMC, we generate proposals of random variables (system states) through a Hamiltonian
dynamics evolution. This evolution is simulated using a time-reversible and volume-
preserving numerical integrator (a symplectic integrator). HMC algorithm reduces the
correlation between successive sampled states by proposing moves to distant states. Those
states maintain a high probability of acceptance. This happens because symplectic integra-
tors conserve energy of the simulated Hamiltonian dynamic. The reduced correlation in
HMC means we need fewer Markov chain samples to get a desired level of Monte Carlo
error when computing expectations.

Simulation of Hamiltonian dynamics might numerically destabilize for probability
distributions with complicated geometry. This is an advantage of the method, because such
complications usually mean problems in identifiability of parameters. Destabilization
(known in the statistical field as “divergence”) is a useful diagnostic that can suggest
re-parametrization or other numerical adaptation of algorithm.

All the codes used for computation in this paper are available in the repository listed
at the “data availability” section.

For model computation we have decided to use limited sample of 10 signals in order
to increase the uncertainty and reduce averaging. We have assigned a spline base of 15
third order polynomials which are presented in the Figure 4. As a reference we have
selected pole-to-pole faults data and we were comparing them with pole-to-ground. This
had no influence as results in the other way are very similar.

0 1 2 3 4 5
time [ms]

0

1

ba
sis

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

knotsknots

basis functionsbasis functions

Figure 4. We consider a spline base of 15 third order polynomials. They are all based on equidistant
knots and are continuously differentiable except at the boundary.

4.3. Analysis of Current Measurements

First we have started with analyzing current signals. The reference set was created with
10 selected signals. Results of the fit are presented in Figure 5. Here we have visualization of
uncertainty of parameters of combination in the form of error bars Figure 5a and posterior
predictive distribution compared to quantiles of data, Figure 5b. As we can see there is an
underestimation of uncertainty in the middle of the signal.
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Figure 5. Bayesian model of the current signal manages to capture some of the uncertainty. Plot (a)
shows, that error bars for splines further from start are much thinner than initially. The ribbon plot
(b) shows quantiles of simulated output values compared to point quantiles of data. As we can see
there is an underestimation of uncertainty in the middle of the signal.

Some statistics of inference are given in the Table 1. Hyper-prior parameters of the
current spline model are efficiently estimated. They get very thin distributions centered
in the neighbourhood of zero. Standard error of the current measurement is estimated
at 0.05 kA which is consistent with simulations. Probabilistic computation is efficient,
as Monte Carlo standard error (MCSE) is vanishingly small. Effective sample size of both
bulk of distribution and its tails is on the level of 42% (total number of samples is 4000),
which is a reasonable result. Figure 6 shows the distributions of the remaining parameters.

Table 1. Hyper-prior parameters of the current spline model are efficiently estimated. They get very thin distributions centered in
the neighborhood of zero. Standard error of the current measurement is estimated at 0.05 kA which is consistent with simulations.
Probabilistic computation is efficient, as Monte Carlo standard error (MCSE) is vanishingly small. Effective sample size of both bulk of
distribution and its tails is on the level of 42% (total numnber of samples is 4000) what is a reasonable result.

Mean sd hdi_3% hdi_97% mcse_Mean mcse_sd ess_Bulk ess_Tail r_Hat

µ0 0.070 0.022 0.028 0.112 0.001 0.0 1686.0 1742.0 1.0
σ0 0.090 0.018 0.059 0.123 0.000 0.0 1687.0 1599.0 1.0
σ 0.049 0.001 0.047 0.051 0.000 0.0 1689.0 2231.0 1.0

mean—mean value of variable, sd—standard deviation of variable, hdi_3%—bottom 3% of 94% best confidence interval, hdi_97%—top 3%
of 94% confidence interval, mcse_mean—mean of Monte Carlo standard error for variable, mcse_sd—standard deviation of Monte Carlo
standard error for variable, ess_bulk—effective sample size of samples from the bulk of distribution of variable, ess_tail—effective sample
size of samples from the bulk of distribution of variable, r_hat—potential scale reduction factor R̂.
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Figure 6. Kernel density estimators of (a) hyper-parameters µ0, σ0 (which have no units) and (b)
standard error of current measurement (kA) also show reasonable sampling behavior. However, flat
middle of µ0 distribution and ‘triangular’ shape of σ might suggest some issues.

In Figure 7 we present the application of the algorithm to two samples, one of pole-
to-pole and one of pole-to-ground faults. (a) Bayesian model has efficiently captured
the shape of measurements. (b) Distribution of data depth shows good discrimination
of pole-to-ground from the reference depth; however, isolated pole-to-pole fault is also
much more shallow. It suggests that current is a poor diagnostic indicator in this case. It is
further highlighted in Table 2. When analyzing current signal in the context of reference
depth of pole-to-pole fault (with mean of 6.23× 10−2 and spreading from 1.993× 10−2 to
2.14× 10−1) we can see that it is not the best indicator. While pole-to-ground scenarios are
being clearly discriminated as ‘shallow’ with depths at the level of 10−5, the pole-to-pole
current signals are also separated from the reference, not getting depths greater than 10−3.
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Figure 7. Application of the algorithm to two samples, one of pole-to-pole and one of pole-to-ground
faults. (a) Bayesian model has efficiently captured the shape of measurements. (b) Distribution of
data depth shows good discrimination of pole-to-ground from the reference depth; however, isolated
pole-to-pole fault is also much more shallow. It suggests that current is a poor diagnostic indicator in
this case.

Table 2. When analyzing current signal in the context of reference depth of pole-to-pole fault (with mean of 6.23× 10−2 and spreading
from 1.993 × 10−2 to 2.14 × 10−1) we can see that it is not the best indicator. While pole-to-ground scenarios are being clearly
discriminated as ‘shallow’ with depths at the level of 10−5, the pole-to-pole current signals are also separated from the reference not
getting depths greater than 10−3.

Pole-to-Pole Faults Pole-to-Ground Faults
Mean Min Max Mean Min Max

Exp. no.

0 8.947× 10−4 8.868× 10−4 9.028× 10−4 3.738× 10−5 3.727× 10−5 3.751× 10−5

1 2.531× 10−3 2.485× 10−3 2.575× 10−3 4.732× 10−5 4.712× 10−5 4.752× 10−5

2 1.795× 10−3 1.775× 10−3 1.817× 10−3 4.460× 10−5 4.436× 10−5 4.481× 10−5

3 4.183× 10−4 4.156× 10−4 4.208× 10−4 2.772× 10−5 2.766× 10−5 2.777× 10−5

4 2.590× 10−4 2.579× 10−4 2.602× 10−4 2.645× 10−5 2.639× 10−5 2.650× 10−5

5 2.632× 10−4 2.620× 10−4 2.645× 10−4 4.359× 10−5 4.349× 10−5 4.369× 10−5

6 2.432× 10−3 2.394× 10−3 2.467× 10−3 3.290× 10−5 3.282× 10−5 3.300× 10−5

7 3.642× 10−4 3.618× 10−4 3.662× 10−4 8.290× 10−5 8.230× 10−5 8.347× 10−5

8 3.198× 10−3 3.141× 10−3 3.260× 10−3 3.570× 10−5 3.560× 10−5 3.580× 10−5

9 2.255× 10−3 2.222× 10−3 2.290× 10−3 5.212× 10−5 5.184× 10−5 5.236× 10−5

Exp. no.—experiment number, mean—mean value of data depth of candidate signal consisting of one type of faults (no unit), min—minimal
value of data depth of candidate signal consisting of one type of faults (no unit), max—maximal value of data depth of candidate signal
consisting of one type of faults (no unit).
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5. Analysis of Voltage Measurements

We have then continued our analysis with the voltage signal. As previously, we have
used 10 signals for reference using the voltages corresponding to previously included
currents. Similarly we have fitted the model which is illustrated in Figure 8. The fit is
slightly better at the end of the signal without overestimation.
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Figure 8. Bayesian model of the voltage signal gives better representation of the uncertainty than in
the case of current. Plot (a) shows that error bars for splines further from the start are much thinner
than initially. The ribbon plot (b) shows quantiles of simulated output values compared to point
quantiles of data. As we can see there is an underestimation of uncertainty in the middle of the signal;
however, initial and final quantiles are covered without overstepping the data.

Inference statistics are given in Table 3. Hyper-prior parameters of the voltage spline
model are also efficiently estimated but with more difficulty. They get very thin distribu-
tions centered in the neighborhood of zero; however, all of them are positive. Standard
error of the voltage measurement is estimated at 0.02 kV which is consistent with simu-
lations. Probabilistic computation is efficient, as Monte Carlo standard error (MCSE) is
vanishingly small. Effective sample size of both bulk of distribution and its tails is on the
level between 15% and 25% (total number of samples is 4000), which is a reasonable result.

Potential scale reduction factor R̂ is reasonably close to 1, indicating good mixing of
Markov chains. Kernel density estimators (Figure 9) of (a) hyper-parameters µ0, σ0 and (b)
standard error of voltage measurement also show reasonable sampling behavior. All the
distributions are reasonably normal-like.

Figure 10 presents the application of the algorithm to two voltage samples, one of
pole-to-pole and one of pole-to-ground faults. (a) Bayesian model has efficiently captured
the shape of measurements. (b) Distribution of data depth shows good discrimination of
pole-to-ground from the reference depth. Isolated pole-to-pole fault is also shallower than
reference but reasonably close. It suggests that voltage is a much better diagnostic indicator
in this case. It is also supported by the analysis in Table 4.
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Table 3. Hyper-prior parameters of the voltage spline model are also efficiently estimated but with more difficulty. They get very thin
distributions centered in the neighbourhood of zero; however, all of them are positive. Standard error of the voltage measurement is
estimated at 0.02 kV which is consistent with simulations. Probabilistic computation is efficient, as Monte Carlo standard error (MCSE)
is vanishingly small. Effective sample size of both bulk of distribution and its tails is on the level between 15% and 25% (total number
of samples is 4000), which is a reasonable result. Potential scale reduction factor R̂ is reasonably close to 1, indicating good mixing of
Markov chains.

Mean sd hdi_3% hdi_97% mcse_mean mcse_sd ess_bulk ess_tail r_hat

µ0 0.031 0.011 0.011 0.051 0.0 0.0 840.0 987.0 1.00
σ0 0.044 0.009 0.029 0.060 0.0 0.0 742.0 877.0 1.00
σ 0.019 0.000 0.018 0.020 0.0 0.0 733.0 634.0 1.01

mean—mean value of variable, sd—standard deviation of variable, hdi_3%—bottom 3% of 94% best confidence interval, hdi_97%—top 3%
of 94% confidence interval, mcse_mean—mean of Monte Carlo standard error for variable, mcse_sd—standard deviation of Monte Carlo
standard error for variable, ess_bulk—effective sample size of samples from the bulk of distribution of variable, ess_tail—effective sample
size of samples from the bulk of distribution of variable, r_hat—potential scale reduction factor R̂.

(a)

0.02 0.04

0

0.03 0.04 0.05 0.06

0

(b)

0.01825 0.01900 0.02000

[kV]

Figure 9. Kernel density estimators of (a) hyper-parameters µ0, σ0 (which have no units) and
(b) standard error of voltage measurement (kV) also show reasonable sampling behavior. All the
distributions are reasonably normal-like.



Energies 2021, 14, 5893 14 of 17

(a)

0 ms 2.5 ms 5 ms
Time [ms]

0.0

0.1

0.2

0.3

0.4

0.5

vo
lta

ge
 [k

V]

pole-to-pole fault

pole-to-ground fault

(b)

10 4 10 3 10 2 10 1

Data depth

pole-to-pole fault

pole-to-ground fault

reference
pole-to-pole
depth

Figure 10. Application of the algorithm to two voltage samples, one of pole-to-pole and one of
pole-to-ground faults. (a) Bayesian model has efficiently captured the shape of measurements.
(b) Distribution of data depth shows good discrimination of pole-to-ground from the reference depth.
Isolated pole-to-pole fault is also shallower than reference but reasonably close. It suggests that
voltage is a much better diagnostic indicator in this case.

Table 4. When analyzing voltage signal in the context of reference depth of pole-to-pole fault (with mean of 6.223× 10−2 and spreading
from 2.108× 10−2 to 2.135× 10−1) we can see that it is a much better indicator than current. Pole-to-ground scenarios are being clearly
discriminated as ‘shallow’ with depths at the level of 10−5 as in the previous case. The pole-to-pole current signals are also separated
from the reference but their depths are even sometimes overlapping reference or are relatively close to it.

Pole-to-Pole Faults Pole-to-Ground Faults
Mean Min Max Mean Min Max

Exp. no.

0 9.176× 10−3 5.036× 10−3 1.934× 10−2 3.672× 10−5 3.553× 10−5 3.802× 10−5

1 4.282× 10−4 3.818× 10−4 4.818× 10−4 6.690× 10−5 6.360× 10−5 7.041× 10−5

2 2.489× 10−3 1.813× 10−3 3.540× 10−3 2.596× 10−5 2.510× 10−5 2.673× 10−5

3 1.124× 10−3 9.160× 10−4 1.398× 10−3 2.265× 10−5 2.193× 10−5 2.342× 10−5

4 7.260× 10−4 6.172× 10−4 8.566× 10−4 4.809× 10−5 4.596× 10−5 5.037× 10−5

5 1.881× 10−4 1.744× 10−4 2.029× 10−4 1.104× 10−4 1.032× 10−4 1.202× 10−4

6 1.163× 10−4 1.091× 10−4 1.236× 10−4 2.081× 10−4 1.905× 10−4 2.279× 10−4

7 5.456× 10−3 3.664× 10−3 8.499× 10−3 3.052× 10−5 2.903× 10−5 3.206× 10−5

8 6.295× 10−4 5.348× 10−4 7.457× 10−4 5.398× 10−5 5.131× 10−5 5.675× 10−5

9 3.252× 10−3 2.331× 10−3 5.029× 10−3 3.930× 10−5 3.789× 10−5 4.080× 10−5

10 1.521× 10−2 6.879× 10−3 3.795× 10−2 3.035× 10−5 2.923× 10−5 3.148× 10−5

Exp. no.—experiment number, mean—mean value of data depth of candidate signal consisting of one type of faults (no unit), min—minimal
value of data depth of candidate signal consisting of one type of faults (no unit), max—maximal value of data depth of candidate signal
consisting of one type of faults (no unit).
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6. Discussion and Conclusions

The results presented in this paper are obviously in an early stage. Certainly there is a
potential for diagnostic use of functional Bayesian models with data depth as a statistic.
This application can find a place in energy systems, for example, in cable diagnostics.
Certain aspects still require consideration. Perhaps a more varied reference set would
provide better performance. This will certainly be investigated. We have also arbitrarily
chosen the spline basis. Proper selection of order could be for example made using leave
one out cross validation or Watanabe–Akaike Information Criterion. Those are aspects that
we will continue to investigate. Finally, we want to investigate the method for joining both
signals for diagnostics (a functional data fusion); this is also an open challenge.
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