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Abstract: Electrically excited synchronous motor (EESM) has the characteristics of high order, nonlin-
ear and strong coupling, so it is difficult to be controlled. However, it has the advantages of adjustable
power factor, high efficiency, and high precision torque control, so it is widely used in high-power
applications. The accuracy of a flux observer influences the speed control system of EESM. Based on
state observer in modern control theory and electrical excitation synchronous machine state equation,
a reduced-order flux observer is designed. Using the first-order difference method and forward
bilinear transformation method, the reduced-order flux observer is discrete, and the stability of the
motor system is analyzed. The analysis shows that the stability of the system using the bilinear
transformation method is better than that using the first order forward difference method. In motor
operation, motor parameters will be affected by the factors of temperature, magnetic saturation,
and motor frequency. In this paper, the influence of parameter variation on the motor system is
studied by using the variation of the pole distribution. Finally, the speed regulation system us-
ing the reduced-order observer is simulated, which verifies the accuracy of the reduced-order flux
observer observation.

Keywords: electrically excited synchronous motor; reduced order flux observer; first-order difference
method; parameter variation

1. Introduction

With the continuous development of the world economy, the problem of energy
consumption has attracted extensive attention from scholars [1–3]. In the face of severe
energy consumption and environmental pollution, it is urgent to seek ways to improve
energy utilization. In the modern industry, the loss of energy of the motor occupies a
large proportion, and the optimization of the motor speed regulation system has a great
impact on energy saving. In the field of electric drive, DC motor drive and AC motor
drive are two main types [4–8]. DC motor drive developed earlier, and its simple control
and better speed regulation performance make its research relatively mature. However,
due to the limitation of the DC motor brush and commutator, it is difficult to make a
big breakthrough in high-power drive. Compared with the DC motor, the AC motor can
avoid the limitation of power, but its control method developed slowly until the coordinate
transformation theory and vector control theory were put forward in the mid-20th century,
and the control theory research of the AC motor began to develop rapidly. The coordinate
transformation theory and vector control theory unify AC motor control and DC motor
control. With the maturity of vector control, the control performance of the AC motor
has also been improved, and the application range is more and more extensive. In the
AC motor, the synchronous motor has the advantages of high-power factor and small
moment of inertia, so it is widely used in high-power occasions and high-performance
speed regulation fields [9–11].

Energies 2021, 14, 5874. https://doi.org/10.3390/en14185874 https://www.mdpi.com/journal/energies

https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-9451-3311
https://doi.org/10.3390/en14185874
https://doi.org/10.3390/en14185874
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/en14185874
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en14185874?type=check_update&version=2


Energies 2021, 14, 5874 2 of 19

The synchronous motor mainly includes the electric excitation synchronous motor
and the permanent magnet synchronous motor. The difference between the two is that
the rotor magnetic field of the permanent magnet synchronous motor is provided by the
permanent magnet, while the rotor magnetic field of the electric excitation synchronous
motor is provided by the field winding, which can adjust the size of the excitation current.
Currently, with the research of the rotor excitation structure of electric synchronous motor,
the traditional brush excitation structure has been improved accordingly [12–15]. An
electrically excited synchronous motor has the characteristics of high-order nonlinear
strong coupling, so it is difficult to control but its power factor adjustable efficiency and
high torque control precision make it widely used in high-power occasions, such as mine
hoist rolling mills.

The vector control system began in the middle of the 20th century. The vector con-
trol theory is mainly based on the control principle of induction motor field orientation
published by F. Brazchke and other scholars of Siemens in Germany and the coordinate
transformation control of induction motor stator voltage applied by P.C.Custman and
A.A. Clarke in the United States established by the patent. In recent years, domestic and
foreign scholars have conducted a lot of research on the vector control of AC-DC-AC
synchronous motors, and large foreign companies, such as Siemens, ABB and Toshiba,
have mastered most of the core technologies [16–18]. In the vector control system, scholars
have conducted a lot of work to improve the performance of vector control systems; these
are mainly studies of the decoupling for the vector control system, the improvement of the
regulator on the vector control system, the angle of the closed-loop and magnetic chain
saturated. Direct torque control (DTC) was first proposed by Professor M. Depenbrock
from Ruhr University in Germany and Japanese scholar I. Takahashi in 1985, which has
aroused extensive attention and research in the academic world. At that time, DTC was
put forward mainly for asynchronous motors, and it was not until 1998 that some scholars
applied DTC to electrically excited synchronous motors. The torque control system directly
controls the torque and flux [19]. The traditional method is bang-bang control. In this
method, the torque and flux are transferred through the hysteresis comparator, respec-
tively, to determine the voltage vector switching state. The advantages of the traditional
method include simple control structure, fast torque dynamic response, low parameter
sensitivity and no need for rotation coordinate transformation, etc., and disadvantages
include low-speed torque observation error, large flux observation error, large current
pulsation, etc. Therefore, there is still a great distance from the actual production and
application. Because of the defects in the traditional direct torque control system, scholars
put forward many schemes to improve them. The SVM-DTC control method is a good
solution to the problems in traditional methods [20–22]. This method is mainly produced
by the combination of the space vector pulse width modulation (SVPWM) strategy and
direct torque control. With the improvement of the direct torque control method, more and
more industrial applications have seen the figure of direct torque control.

The control strategies based on modern control theories include robust observer,
model reference adaptive and sliding mode variable structure control, etc. These theories
have been used in motor control systems. Model reference adaptive control (MRAS) is
widely used in sensorless motors [23–26]. Sliding mode control (SMC) as a hot spot in the
variable structure control is mainly used to replace the traditional PI regulator and has been
gradually applied in the field of motor control. The main disadvantages of modern control
theory are as follows: it is highly dependent on the mathematical model of the motor and
requires high sampling accuracy [27–36]. Therefore, it requires many sensors with high
accuracy for accurate observation. Moreover, most modern control theories are based on
linear systems, and their robustness is poor, so there is much room for improvement [37].
As discussed in above, lots of research has been conducted and many high-quality control
schemes are applied to the control of permanent magnet motors, thus Table 1 shows the
main advantages and disadvantages of the described control techniques.
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Table 1. Advantages and disadvantages of different control schemes for EESM.

Control Scheme Advantages Disadvantages

Direct torque control No coordinate transformation and
current control; simple structure Torque and flux ripple;

Model reference
adaptive control

Adjustable controller parameters;
independent of the controlled
object; strong fault tolerance

Difficult to prove stability;
convergence analysis method

lacks universality;
unclear robustness

Sliding mode control Fast response; simple algorithm;
strong robustness

Chattering in the dead zone;
long approach time

In the electrical excitation synchronous motor (EESM) speed control system, regardless
of vector control and direct torque control, it is needed to obtain accurate information about
the magnetic chain. The commonly used method is to construct a flux observer of flux
linkage amplitude and flux linkage angle. The flux observer design of electric excitation
synchronous motor speed control system has a great influence [38–40]. The improvement
of the flux observer can better improve the performance of the speed regulation system.
The working principle of the current model flux observer is to observe the flux by solving
the magnetization current of the motor current. This kind of flux observation model is
sensitive to the motor parameters and requires a higher accuracy of current sampling.
When the motor is running, the parameters of the motor tend to change with the change of
temperature [41–43]. Therefore, when the motor is running at medium and high speed, the
observed value of the current model for the flux linkage will deviate greatly from the actual
value. At the same time, the current model uses the approximate demagnetization curve to
solve the flux, but the influence of flux saturation in the actual operation will also lead to
the deviation of observation. In addition, the current model is based on the steady-state of
the motor, and the influence of the transient component of the motor on the observer is
not considered. The voltage model flux observer obtains the flux by integrating the back
electromotive force. The initial value of the integral and the accumulated errors of the
integral will affect the flux observation results. The observation deviation of the universal
voltage model flux observer is obvious at low speed, because the stator voltage is small at
low speeds, and the stator resistance has the effect of voltage division. By combining the
equation of the state of the motor with the design method of the state observer in modern
control theory, the motor flux can be observed [44]. The state observer can be divided
into full-order observer and reduced-order observer, which has been applied in the flux
observation of induction motor and sensorless control of permanent magnet synchronous
motor [45].

In this paper, the flux observer of the electrically excited synchronous motor is studied,
and the reduced-order flux observer of the electrically excited synchronous motor is
designed based on modern control theory. The influence of different discretization methods
on the stability of the motor control system is analyzed. The first-order forward difference
method and bilinear transformation method are used to discretize the reduced-order flux
observer, and the influence of the change of motor parameters on the stability of the motor
system is analyzed. The voltage parameters of the reduced-order flux observer are obtained
by voltage reconstruction of the frequency converter, and the simulation and experimental
analysis of the reduced-order flux observer are carried out.

The paper is organized as follows. First, the mathematical model of EESM is presented
in Section 2. Section 3 describes the design and discretization of the reduced-order flux
observer of EESM. The simulation results are presented in Section 4. Finally, the conclusion
is given in Section 5.
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2. Mathematical Model of EESM

Figure 1 shows the commonly used coordinate systems for EESM, namely, the three-
phase static coordinate system, the two-phase static αβ coordinate system, the two-phase
rotating dq coordinate system and the magnetic field oriented two-phase rotation MT
coordinate system. The axis coincident with the stator winding A is defined as the α axis,
while the coordinate axis coincidentally with the rotor axis is defined as the d axis and the
coordinate axis coincident with the flux ψδ is defined as the M axis.
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Figure 1. Reference coordinates of the synchronous motor.

The included angle between axis d and axis α is the rotor position angle λ, the included
angle between axis M and axis α. ϕ is the flux linkage angle, and the included angle between
axis M and axis d. δ is called the load angle.

The meaning of symbols used in following equations are listed in Table 2.

Table 2. Symbols list.

Symbol Meaning

ψdq The flux of dq axis
Ldq
Idq

The synchronous inductance of dq axis the current of dq axis

Udq The voltage of dq axis
Rdq The resistance of dq axis
ωr The speed of rotor
TL The load torque

The mathematical expression of the electrically excited synchronous motor in the
coordinate system of dq axis is:

1. Mathematical expression for flux linkage

[ψ]dq = [L]dq[I]dq (1)

where the flux matrix, current matrix and inductance matrix in the coordinate system
of dq axis are, respectively: [ψ]dq =

[
ψsd ψsq ψ f ψDd ψDq

]
, [I]dq =

[
isd isq i f iDd iDq

]
,

[L]dq =


Ld 0 Lad Lad 0
0 Lq 0 0 Laq

Lad 0 L f Lad 0
Lad 0 Lad LDd 0
0 Laq 0 0 LDq

, where Lad, Laq are, respectively, the dq axis

armature reaction inductance, Ld Lq are the synchronous inductance of dq axis, Lf
is the rotor excitation winding self-induction, LDd and LDq are the self-induction of
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the damping winding dq axis; the relationship between inductors can be expressed
as follows: 

Ld = Lad + Lsl
Lq = Laq + Lsl
L f = Lad + L f l
LDd = Lad + LDdl
LDq = Laq + LDql

(2)

where Lsl and Lfl are the leakage inductance of stator winding and rotor excitation
winding, LDdl and LDql are the leakage inductance of the damping winding dq axis.

2. Mathematical expression of voltage

[U]dq = [R]dq[I]dq + p[ψ]dq + ωr[D][ψ]dq (3)

where the voltage matrix, resistance matrix and D matrix are, respectively: [U]dq =

[
usd usq u f 0 0

]T
, [R]dq =

[
Rs Rs R f RDd RDq

]
, [D] =


0 −1 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

.

3. Mathematical expression of electromagnetic torque

Te = pn(ψsdisq − ψsqisd) (4)

where pn is the pole logarithm of EESM.
4. The expression between electromechanical magnetic torque, load torque and speed is

as follows:
Te − TL = J

dωr

dt
(5)

3. Design and Discretization of Reduced-Order Flux Observer of EESM

Flux observer is used to observing the flux amplitude and flux angle in the speed
regulation system of EESM. The quality of flux observation will directly affect the perfor-
mance of the motor speed regulation system. Due to the existence of excitation winding
and damping winding, the state equation of EESM is complicated. To simplify the de-
sign of state observers, a reduced-order flux observer can be designed according to the
reduced-order observer design method. When using different discretization algorithms to
discretize the reduced-order flux observer, the stability conditions are also different. Since
the state observer is based on the state equation of the motor, it depends very much on
the parameters of the motor, so this paper analyzes the stability of the speed regulation
system of the electric excitation synchronous motor under the change of the parameters of
the motor.

3.1. Equation of State for EESM

Since the reduced-order flux observer is based on the state equation of the motor, the
state equation of the EESM is firstly obtained, and the state equation requires the flux as
the state variable.

The mathematical expression of flux (1) and voltage (3) in the mathematical model of
the motor dq axis in chapter 2 can be obtained:{

usd = Rsisd + pψd −ωrψq
usq = Rsisq + pψq −ωrψd

(6)

and 
ψ f = Ladisd + L f i f + LadiDd
ψsd = Lsdisd + Ladi f + LadiDd
u f = R f i f + pψ f

(7)
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u f = pψsd − Lsσ pisd + L f dσ pi f + R f i f (8)

According to the relation between the flux and the current of the EESM, we can get: pψsd = (Lsσ +
Lad LDdσ

LDd
)pisd +

Lad LDdσ
LDd

pi f − RDd
LDd

ψsd +
LadRDd

LDd
i f

pψsq = (Lsσ +
Laq LDqσ

LDq
)pisq −

RDq
LDq

ψsq +
LsqRDq

LDq
isq

(9)

By substituting Equations (6) and (8) into Equation (9), then arranging them, the state
equation of the EESM can be obtained:

[ .
x1.
x2

]
=

[
P11P12
P21P22

][
x1
x2

]
+

[
Q1
Q2

]
u

y = [0 I]
[

x1
x2

] (10)

where x1 = [ψsd ψsq]
T , x2 = [isd isq i f ]

T , u = [usd usq u f ]
T , P11 =

[
0 ωr
−ωr 0

]
,

P12 =

[
−Rs 0 0

0 −Rs 0

]
, P21 =

p1 p2
p3 p4
p5 p6

, P22 =

 p7 0 p8
0 p9 0

p10 0 p11

, Q1 =

[
1 0 0
0 1 0

]
, Q2 =

q1 0 q2
0 q3 0
q4 0 q5

, p1 =
L f σ RDd

G , p2 =
ωr(Lad LDdσ+L f σ LDd)

G , p3 = −ωr LDd
H , p4 = − RDq

H , p5 =

Lsσ RDd
G , p6 = − LDdσ Ladωr

G , p7 = − Rs(Lad LDdσ+L f σ LDd)+RDd Lsd L f σ

G , p8 = − Lad(RDd L f σ−R f LDdσ)

G ,

p9 = − Rs LDq+LsqRDq
H , p10 = − (−Rs Lad LDdσ+RDd Lsd Lsσ)

G , p11 = − R f (Lad LDdσ+Lsσ Lsd)+RDd Lad Lsσ

G ,

q1 =
Lad LDdσ+L f σ LDd

G , q2 = − Lad LDdσ
G , q3 =

LDq
H , q4 = − Lad LDdσ

G , q5 = Lad LDdσ+Lsσ LDd
G ,

G = (LsσLDd + LadLDdσ)L f σ + LadLDdσLsσ, H = LaqLDqσ + LDqLsσ.

3.2. Design of Reduced-Order Flux Observer in the Continuous Domain

It can be seen from Equation (10) that the state equation of the EESM is a fifth-
order equation, which is complex and has the characteristics of asymmetry on the dq
axis. Therefore, if the design method of the full-order observer is used to reconstruct
the flux model, the design method is complex, and the computation is huge. Therefore,
the reduced-order observer design method is needed to simplify it. In the output y of
the equation of state (10), isd and isq can be obtained by measuring the stator current
and adopting coordinate transformation, and it can be obtained by measuring the rotor
excitation current. Therefore, the output y can be used to directly generate x2 in the state
variable, thus reducing the order of the state equation of the EESM. The state equation can
be decomposed into two subsystems as shown:{ .

x1 = P11x1 + (P12x2 + Q1u)
.
y = P21x1 + P22x2 + Q2u =

.
x2

(11)

where P11, P12, P21, P22, Q1, Q2 represent different gain matrix of input x1,2.
Set u0 = P12x2 + Q1u, z =

.
y− P22x2 −Q2u. We can write the equation of state with x1

as the state variable after the reduced order of the fifth-order equation of state:{ .
x1 = P11x1 + u0
z = P21x1

(12)

Based on the equation of state (12), the state space expression of the reduced-order
observer is established, in which the feedback matrix K is 2 × 3 matrix, and the variables
containing ∧ are set as the observed values:
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
.
ˆ
x1 = P11

ˆ
x1 + u0 + K(

ˆ
z− z)

ˆ
z = P21

ˆ
x1

(13)

.
ˆ
x1 = (P11 + KP21)

ˆ
x1 + (P12x2 + Q1u) + K(P22x2 + Q2u− .

y) (14)

Variable ς are introduced to further organize Equation (14) into a standard type:
ˆ
ς =

ˆ
x1 + Ky

.
ˆ
ς =

.
ˆ
x1 + K

.
y

(15)

Substituting Equation (14) into Equation (15), Equation (16) can be obtained:
.
ˆ
ς = (P11 + KP21)

ˆ
ς + (Q1 + KQ2)u + [(P12 + KP22)− (P11x2 + KP21)K]y (16)

Set N1 = Q1 + KQ2, N2 = (P12 + KP22) − (P11x2 + KP21)K, the reduced-order ob-
server state-space standard form is formed:

.
ˆ
ς = (P11 + KP21)

ˆ
ς + N1u + N2y

ˆ
x1 =

ˆ
ς− Ky

(17)

It can be seen from Equation (17) that the characteristic matrix of the speed regulation
system is (P11 + KP21). Therefore, the characteristic equation of the speed regulation
system is:

|sI − (P11 + KP21)| = 0 (18)

Transform Equation (17):
.
ˆ
ς = (P11 + KP21)

ˆ
x1 + (P12 + KP22)x2 + (Q1 + KQ2)u

ˆ
x1 =

ˆ
ς− Ky

(19)

Equation (19) can be condensed into an observer with feedback matrix as shown in
Figure 2.
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The design of feedback matrix K requires comprehensive consideration of the rapidity
and stability of the system. Equation (18) gives the characteristic equation of the system.
To satisfy the stability requirements, the eigenvalues of (P11 + KP21) need to be completely
in the left half-plane of the s plane. Moreover, the more left the eigenvalues of (P11 + KP21)
are, the faster the system is. The stability of (Q1 + KQ2) is needed.
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Combined with the simulation parameters of the electrically excited synchronous
motor, the pole distribution of the motor below the rated speed designed by the reduced-
order observer method can be made and shown in Figure 3:
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Figure 3. Pole distribution of motor under rated speed after designed.

The blue line is the pole distribution of the motor below the rated speed solved by
the determinant equation det(sI − P) = 0 under the fifth-order equation of the state, and
the red line is the pole distribution of the motor below the rated speed solved by the
reduced-order equation det[sI− (P11 + KP21)] = 0 under the determinant equation. As can
be seen from the figure, the selection of feedback matrix K meets the design requirements,
and the stability of the system can still be guaranteed after the reduced-order observer
design method is adopted.

3.3. Discretization Algorithm and Related Stability Analysis

5. First-order forward difference method

Set du(t)/dt = e(t), then, the formula of first-order forward difference method is:

u(k + 1)− u(k)
T

= e(k) (20)

In the first-order forward difference method, the s plane has the following transforma-
tion relation with the z plane:

s =
z− 1

T
(21)

To obtain the mapping relationship between s plane and z plane, let the poles of the
motor in s plane be s = p + jq, according to Equation (21):

z = 1 + Ts = (1 + pT) + jqT (22)

After discretization, the stability condition of the system is as follows: the poles on
the s plane of the motor must be in the unit circle of the z plane when they are mapped to
the z plane. The two ends of Equation (22) are squared and |z|2 < 1 is used to obtain the
following relation:

1
T2 > (

1
T
+ p)

2
+ q2 (23)

Therefore, only when the motor poles are in a stable circle with (−1/T, 0) as the center
of the circle and a radius of 1/T in the s plane can the discretized system be stable. Under
the condition that the sampling period T decreases and the motor speed increases in the
case of the weak magnetic field, the pole distribution diagram of the EESM before and
after order reduction is made, as shown in the figure below. The motor pole distribution
in blue was obtained by using the determinant equation det(sI − P) = 0 before using the
reduced-order observer design method. The motor pole distribution in red was obtained
by using the determinant equation det[sI − (P11 + KP21)] = 0 after the design method of
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the reduced-order observer. The green color is the stable circle at low switching frequency
with sampling cycle T = 0.002 s (500 Hz).

As can be seen from the figure, in the case of a low sampling period, as the speed
increases, the motor pole will be outside the stable circle, and the system at this time also
tends to be unstable. Therefore, when the first-order forward difference method is used for
discretization, it will be constrained by the sampling frequency and the motor speed.

6. The bilinear transformation method

Set du(t)/dt = e(t), then, the formula of the bilinear transformation method is:

u(k)− u(k− 1)
T

=
e(k) + e(k− 1)

2
(24)

In the bilinear transformation method, the transformation relation between s plane
and z plane is:

s =
2
T

z− 1
z + 1

(25)

Substituting s = p + jq into Equation (25), we can get:

z =
1 + T

2 s
1− T

2 s
=

(1 + T
2 p) + j qT

2

(1− T
2 p)− j qT

2

(26)

Square the magnitude of both sides:

|z|2 =
(1 + T

2 p)
2
+ (j qT

2 )
2

(1− T
2 p)

2 − (j qT
2 )

2 < 1 (27)

When a < 0 (left half of the s plane) is satisfied, the s plane is mapped to |z| < 1 (inside
the unit circle of the z plane). As can be seen from Figure 4, the poles of the motors before
and after the design of the reduced-order flux observer are distributed in the left half-plane
of the s plane and are mapped in the unit circle when they are in the z plane. Therefore,
when adopting the bilinear transformation method for discretization, the sampling period
T and the range of speed need not be considered, which can ensure the stability of the
motor system after discretization.
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3.4. Analysis of the Influence of Motor Parameter Variation on the Motor System Based on the
Reduced-Order Flux Observer

Since the state observer depends very much on the motor model, the change of motor
parameters has a great influence on the state observer. In the process of motor operation,
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due to the influence of temperature, magnetic saturation, motor operating frequency and
other factors, the motor parameters will produce deviation, which will lead to inaccurate
observation results of the state observer.

In this paper, the system stability is analyzed by analyzing the distribution of the
poles when the relevant parameters of the motor change by ±50%, and then the simulation
analysis of the vector control system of the EESM is carried out by combining with the
parameter change conditions.

Through the above analysis, it can be known that the stability of the motor system can
be analyzed through the pole distribution diagram of the motor system. Before the design
of the reduced-order flux observer with feedback matrix, the motor state equation can be
regarded as an open-loop full-order observer. At this time, the motor pole distribution
graph can be obtained from the determinant equation det(sI − P) = 0, which is the fifth-
order equation. After the design of the reduced-order observer with feedback matrix, the
flux observer has the closed-loop characteristic, and the pole distribution of the motor is
obtained by the determinant equation det[sI − (P11 + KP21)] = 0, which is the second-order
equation. At different speeds, the pole distribution of the motor can be drawn by solving
the corresponding determinant equation.

When the rated speed is below, draw the motor pole distribution diagram for different
speed segments, as shown in Figure 5.
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Figure 5. Pole distribution of different speeds under rated speed: (a) pole distribution diagram of
motor before design; (b) pole distribution diagram of motor after design.

In Figure 5, the blue segment is the motor pole distribution at the speed of 0–400 rpm,
the red segment is the motor pole distribution at the speed of 400–800 rpm, the green
segment is the motor pole distribution at the speed of 800–1200 rpm, and the black segment
is the motor pole distribution at the speed of 1200–1500 rpm. As can be seen from the
figure, before the design of the reduced-order observer was not adopted, the motor state
equation was a fifth order equation. Under this condition, the system determinant was a
fifth order equation, and the poles of the system expanded outward with the increase of
speed. After the reduced-order observer design about the feedback matrix, the motor state
equation is of second order, the system determinant is of second order, the poles of the
motor first converge and then divergent up and down with the increase of the motor speed.

1. Stator resistance to system stability analysis

When the stator resistance changes by ±50%, the pole distribution of the EESM before
and after the design is shown in Figure 6. In the figure, blue is the motor pole distribution
curve when the stator resistance is Rs, green is the motor pole distribution curve when the
stator resistance is 1.5 Rs, red is the motor pole distribution curve when the stator resistance
is 0.5 Rs, black is the stable circle with the discrete frequency of 5 kHz.
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Figure 6. Pole distributions of system between different stator resistance: (a) pole distribution
diagram of motor before design; (b) pole distribution diagram of motor after design.

As can be seen from Figure 6a, in the full-order state without a feedback matrix, when
the resistance value of stator resistance decreases, the motor pole shifts to the right, close
to the virtual axis, and with the increase of speed, the deviation from the normal curve
will become larger and larger, and there is an obvious tendency to break away from the
stable circle. When the discrete frequency decreases and the stable circle becomes small, the
system will be unstable. When the resistance value increases, the motor pole will deviate
from the normal curve to the left to a large extent. As can be seen from Figure 6b, in the
reduced-order state with the feedback matrix, the stability of the system is not affected by
changes in stator resistance parameters.

2. Rotor resistance to system stability analysis

When the rotor resistance changes by ±50%, the pole distribution of the EESM before
and after the design is shown in Figure 7.
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Figure 7. Pole distributions of system between different rotor resistance: (a) pole distribution diagram
of motor before design; (b) pole distribution diagram of motor after design.

In Figure 7, blue is the pole distribution curve of the motor with rotor resistance of
Rf, green is the pole distribution curve of the motor with rotor resistance of 1.5 Rf, red is
the pole distribution curve of the motor with rotor resistance of 0.5 Rf, black is the stable
circle with the discrete frequency of 5 kHz. As can be seen from Figure 7a, in the full-order
state without a feedback matrix, when the resistance value of the rotor is reduced, the
poles of the motor as a whole shift to the left. With the increase of speed, the poles first
deviate from the normal curve and then approach the normal curve. Although they are
far away from the virtual axis, the poles quickly diverge along the direction of the virtual
axis with the increase of speed. When the discrete frequency decreases and the stable
circle becomes smaller, instability will occur. When the rotor resistance increases, the pole
distribution of the motor will not deviate from the normal curve. It can be seen from
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Figure 7b that the system stability is not affected by changes in rotor resistance parameters
in the reduced-order state of the feedback matrix.

3. Analysis of damping d axis resistance to system stability

When the resistance of the damping d axis changes by ±50%, the pole distribution of
the EESM before and after design is shown in Figure 8.
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Figure 8. Pole distributions of system between different damping resistance in d-axis: (a) pole
distribution diagram of motor before design; (b) pole distribution diagram of motor after design.

In Figure 8, blue is the pole distribution curve of the motor with the resistance of the
damped d axis RDd, green is the pole distribution curve of the motor with the resistance of
the damped d axis 1.5 RDd, red is the pole distribution curve of the motor with the resistance
of the damped d axis 0.5 RDd, and black is the stable circle with the discrete frequency of
5 kHz. As can be seen from Figure 8a, in the full-order state without a feedback matrix, the
resistance of the damped d axis has little influence on the stability of the system. When the
resistance of the damped d axis decreases, it deviates from the normal curve. As can be seen
from Figure 8b, in the order reduction state of the feedback matrix, when the resistance
value of the damping d axis decreases, it will move to the imaginary axis, and when the
resistance value increases, it will move to the left.

4. Analysis of damping q axis resistance to system stability

When the resistance of the damping q axis changes by ±50%, the pole distribution of
EESM before and after the design is shown in Figure 9.
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Figure 9. Pole distributions of system between different damping resistance in q-axis: (a) pole
distribution diagram of motor before design; (b) pole distribution diagram of motor after design.

In Figure 9, blue is the pole distribution curve of the motor with the resistance of the
damped q axis as RDq, green is the pole distribution curve of the motor with the resistance
of the damped q axis as 1.5 RDq, red is the pole distribution curve of the motor with the
resistance of the damped q axis as 0.5 RDq, and black is the stable circle with the discrete
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frequency of 5 kHz. As can be seen from Figure 9a, in the full-order state without a feedback
matrix, the damped q axis resistance has little influence on the stability of the system. When
the damped q axis resistance decreases, it will deviate from the normal curve. As can be
seen from Figure 9b, in the down-order closed-loop state, when the resistance value of
the damping q axis increases or decreases, it will move to the imaginary axis. However,
when the resistance value decreases, the poles of the motor will increase rapidly along
the imaginary axis as the speed increases. When the discrete frequency decreases and the
stable circle becomes small, instability will occur.

5. Analysis of stability of the system by the inductance of armature d axis

When the inductance of the armature d axis changes by ±50%, the pole distribution of
the EESM before and after the design is shown in Figure 10.
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Figure 10. Pole distributions of system between different armature inductance in d-axis: (a) pole
distribution diagram of motor before design; (b) pole distribution diagram of motor after design.

In Figure 10, blue is the pole distribution curve of the motor with the inductance of the
armature d axis Lad, green is the pole distribution curve of the motor with the inductance
of the armature d axis 1.5 Lad, red is the pole distribution curve of the motor with the
inductance of the armature d axis 0.5 Lad, and black is the stable circle with the discrete
frequency of 5 kHz. It can be seen from Figure 10a that the inductance of the armature
d axis has little influence on the stability of the system in the full-order state without a
feedback matrix. As can be seen from Figure 10b, in the down-order closed-loop state,
when the inductance value of the armature d axis decreases, the motor pole shifts to the left
and rapidly diverges along the virtual axis with the increase of the rotational speed. When
the discrete frequency decreases and the stable circle becomes small, instability will occur.

6. Analysis of stability of the system by the inductance of armature q axis

When the inductance of the armature q axis changes by ±50%, the pole distribution of
the EESM before and after the design is shown in Figure 11.

In Figure 11, blue is the pole distribution curve of the motor when the armature q axis
inductance Laq, green is the pole distribution curve when the armature q axis inductance
1.5 Laq, red is the pole distribution curve when the armature q axis inductance 0.5 Laq, black
is the stable circle with the discrete frequency of 5 kHz. As can be seen from Figure 11a, in
the full-order state without a feedback matrix, when the inductance value of the armature q
axis decreases, the motor pole will shift from the normal curve. When the inductance value
of the armature q axis increases, the influence will be small. As can be seen from Figure 11b,
in the down-order closed-loop state, no matter the inductance value of the armature q axis
increases or decreases, the pole of the motor shifts to the right. When the inductance value
of the armature q axis increases, it quickly diverges along the direction of the virtual axis
with the increase of the rotational speed.
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Figure 11. Pole distributions of system between different armature inductance in q-axis: (a) pole
distribution diagram of motor before design; (b) pole distribution diagram of motor after design.

4. Simulated Analysis

MATLAB/Simulink was used to simulate the reduced-order flux observer discrete by
the two discretization methods, and the motor parameters were shown in Table 3. Figure 12
is the block diagram of the vector control system of an EESM with air gap flux orientation.

Table 3. EESM parameters.

Specification Value Specification Value

Power (kW) 8 q axis armature reaction inductance (mH) 51.8
DC-link voltage (V) 380 Stator winding leakage inductance (mH) 4.5
Rated speed (r/min) 1500 Rotor winding leakage inductance (mH) 11.3
Number of pole pairs 2 d axis damping winding resistance (Ω) 3.14
Stator resistance (Ω) 1.62 q axis damping winding resistance (Ω) 4.77
Rotor resistance (Ω) 1.2 d axis damping winding leakage inductance (mH) 7.33

d axis armature reaction inductance (mH) 108.6 q axis damping winding leakage inductance (mH) 10.15
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The simulation waveform of the discrete observer using the first-order forward dif-
ference method is shown in Figure 13. Figure 13a shows the stator current waveform,
Figure 13b the torque waveform and Figure 13c the speed waveform. In the simulation, the
rated speed of the motor is 1500 rpm, 20 Nm load is added at 2 s, and 51 Nm load is added
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at 3 s. The stator current harmonic is little when the torque changes and the motor speed
can reach the rated speed, and when the load torque changes, there is no big fluctuation.
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ference method is shown in Figure 13. Figure 13a shows the stator current waveform, Fig-
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rated speed of the motor is 1500 rpm, 20 Nm load is added at 2 s, and 51 Nm load is added 
at 3 s. The stator current harmonic is little when the torque changes and the motor speed 
can reach the rated speed, and when the load torque changes, there is no big fluctuation. 
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Figure 13. Simulation waveform of EESM by Forward Euler method: (a) a phase stator current
waveform; (b) motor torque waveform; (c) motor speed waveform.

The simulation waveform of the discrete observer using the bilinear transformation
method is shown in Figure 14. The condition is the same as the simulation waveform of the
discrete observer using the first-order forward difference method. Compared to Figure 13,
the amplitude of stator current using the bilinear transformation method is smaller than
that using the first-order forward difference method. The load waveform also has few
fluctuations compared to that in Figure 13.
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Figure 14. Simulation waveform of bilinear transformation method: (a) a phase stator current
waveform; (b) motor torque waveform; (c) motor speed waveform.

In the simulation, the sampling period is T = 0.0002 s (5 kHz), and the maximum
speed is the rated speed of 1500 rpm. It can be seen from the simulation waveform that
the reduced-order flux observer, using the two discretization methods, has achieved all
the control objectives in the simulation, and the speed has a small drop during loading,
but it all returns to the given value after a short period of adjustment, ensuring the stable
operation of the system.

5. Conclusions

In the speed control system of electrically excited synchronous motor (EESM), the flux
observer plays an important role, which can detect the rotating angle and the amplitude
of flux. In this paper, a reduced-order flux observer is designed by combining the state
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observer of modern control theory and the state equation of EESM. The first-order forward
difference method and the bilinear transform method are used to discretize the reduced-
order flux observer and the stability of the motor system after discretization is analyzed.

While motor operations, motor parameters will change with temperature magnetic
saturation, motor operating frequency and other factors. This paper studies the influence of
parameter changes on the motor system by using the change of the pole distribution of the
motor system. It is worth noting that according to the distribution diagram of motor poles,
when the constant rotor resistance changes, the stability of the system is not affected by
parameter changes after adopting the reduced-order feedback matrix. When the inductance
of the dq axis of the motor changes, the feedback matrix has little influence on the stability
of the system.

Finally, it can be seen from the simulation that the reduced-order flux observer can
accurately estimate the motor flux and flux angle, and the motor can run stably in the
vector control system of the electrically excited synchronous motor using the reduced-order
flux observer.

In the future, other flux observer methods will be studied, such as the first order
forward difference method and the bilinear transformation method. Different from other
synchronous motor, EESM has a complex mathematic model and high coupling character-
istics, thus high performance and stability flux observers need to be paid attention to.
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