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Abstract: Variable moment of inertia systems are common, and a popular laboratory system of this
type is the “ball-and-beam”. Such systems are, however, nonlinear and often unstable. Efficient
control requires full state information (or at least partial velocities), which are generally difficult
to measure. That is why the design of state observers is a relevant problem. In this paper, a new
design of an observer is proposed. This new nonlinear observer uses partial output injection and
the circle criterion to ensure semiglobal stability. Moreover, we present a complete modeling of the
system and systematic testing of the observer in comparison to a baseline in the form of a linear
observer. The results show that the designed observer outperforms its linear counterpart and does
not impede control.

Keywords: nonlinear observer; nonlinear control; identification; modeling

1. Introduction

Systems with a varying moment of inertia are quite common in nature and in engi-
neering, so interest in their properties is natural. One of the more common laboratory
examples of such systems is the “ball-and-beam” (or “ball-on-beam”). Such systems remain
ever popular [1–3]. This system is a nontrivial example of nonlinearity and the fourth
order of dynamics with a mechanical realization. The control of such systems involving
complications requires full state information, which cannot be directly measured and has
to be estimated.

Methods for the control of “ball-and-beam” systems are various. Mazenc [4] used
the direct Lyapunov method for the stability analysis. Sira [5] considered trajectory plan-
ning. Huang [6] used robust nonlinear control. Teel [7] designed a semiglobal output
feedback. Ibanez [8] designed the control with the inverse Lyapunov approach. Lemos [9],
Marton [10], Turker [11], Koo [12], and Naredo [13] used adaptive control. Xi [14] used
nonlinear predictive control. Uran [15] used mechanism theory. Guo [16] designed a global
stabilizer. Andreev [17] used matching control laws. Hauser [18] relied on approximate
input–output linearization. Ortega [19] relied on interconnection and damping assign-
ments. Krishna [20] used gain-scheduled PID. Banu Sundareswari [21] used intelligent PID
tuning. Recently, fuzzy control was also applied to control the ball-and-beam system in
the works of Chang [22], Asadi [23], and Minh [24]. Aziz et al. in 2013 also presented some
methods for stabilization of the ball on a two-dimensional beam [25]. State observers were
presented for this system by Joo [26,27].

In this paper, we consider methods of state estimation for the system (1). Both
nonlinear and linear observer designs are presented, and their performance is compared
and illustrated with simulations. Our nonlinear observer design is novel, as it reformulates
its error dynamics as a Lurie system. Lurie systems are a type of feedback system with linear
dynamics and nonlinear, static (but potentially time-varying) feedback. Lurie systems
enjoy a well-grounded theory of stability [28], but are still a thriving field of study [29–33].

The main contributions of the paper are as follows:

• A systematic model design of the “ball-and-beam” system;
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• The design of a nonlinear observer with a specific structure and stability proven in a
novel way;

• A systematic analysis and comparison with a typical linear observer.

The comparisons are made both in open-loop and closed-loop (with a linear controller).
The observer design for the ball-and-beam system was also considered in [26,27].

The rest of the paper is organized as follows. First, we present the ball-on-beam
variable moment of inertia system; we formulate its equations and present the method by
which they were obtained and how to obtain the system parameters. Then, we describe the
methods that we used to illustrate our contribution. First, we show how a linear, reference
observer can be designed. Then, we present our proposed structure and prove its stability.
Finally, we explain which control structures were used to show how the observer operates.
Then, we move to the simulation experiments, where we show how observers operate
both independently and as a part of the control system. The paper ends with a discussion
and conclusions.

2. Ball-on-Beam Variable Moment of Inertia System

A schematic illustration of the ball-and-beam system is depicted in Figure 1. This
and similar systems were considered among others in [34,35] Typically, one is interested
in the stabilization of the position of the ball at the middle of the beam, while the beam is
in a position parallel to the ground. It is easily verifiable that the equilibrium considered
is unstable. Many different stabilization techniques can be applied to solve this problem.
One of them is static linear state feedback (i.e., it can be a solution to the linear quadratic
problem for the system’s linearization).

Figure 1. Rotating beam with a solid ball.

However, usually, only positions (x1 and x3) can be measured, so to apply the state
feedback controller, one needs to know the values of the velocities. A very good way to
obtain them is the state observer.

The mathematical model of the system consists of the following equations:

ẋ1 = x2

ẋ2 = a1 sin x3 + a2x1x2
4 (1)

ẋ3 = x4

ẋ4 =
gx1 cos x3 − b2 sin x3

b1 + x2
1

+
b3u

b1 + x2
1

where x1 is the ball’s position, x2 is the ball’s velocity, x3 is the beam’s angle, and x4 is the
beam’s angular velocity. The driving torque is applied to the beam’s joint and is represented
as a control signal u. Such a model is convenient for implementation, and its determination
is described in the following section.

2.1. Determination of the Physical Model

A good method to determine models of mechanical systems is the Euler–Lagrange
formalism, which was used in [34]. A more advanced approach to modeling was used
in [11,36–39]. In order to create the model, its parameters have to be considered.

The system depicted in Figure 1 consists of a rotating beam and a ball rolling on it.
The system has the following physical parameters:
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Jbeam—beam moment of inertia (kg·m2);
m—ball weight (kg);
r—ball radius (m);
Lp—beam length (m).

We assumed that we can control the torque of the beam M. For the purpose of
modeling, we made the following assumptions:

(1) The ball does not slide on the beam (it only rolls);
(2) The angle of the beam |α| ≤ αmax;
(3) The friction is negligible;
(4) The ball is perfectly round and homogenous;
(5) The ball does not rebound from limiters;
(6) The ball does not lose contact with the beam;
(7) The beam is perfectly symmetric and flat.

There are many approaches in the literature to obtain the model’s equation. To derive
the state equations for this system, we used the Euler–Lagrange formalism [40]:

d
dt

(
∂L
∂ẋi

)
− ∂L

∂xi
+

1
2

∂P
∂ẋi

= Fi (2)

where L is the Lagrangian, P is the Rayleigh loss function, Fi are the forces having an
influence on the system, and xi are the generalized coordinates. The Lagrangian takes
the form:

L = Ek − Ep (3)

where:

Ep—the potential energy of the ball, given by the equation:

Ep = mgh (4)

Ek—the kinetic energy of the ball-and-beam given by the equation:

Ek =
1
2

mx2
2 +

1
2

Jballω
2 +

1
2
(Jbeam + Jball−0)x2

4 (5)

with ω the angular velocity of the ball.
The Rayleigh loss function in this case is very simple, as it only relates to the rolling

friction of the ball:
P = bx2

1 (6)

with b the friction coefficient. Fi is the torque applied to the axis of the beam, and we denote
it as M.

Remark 1. In Equation (4), we made an assumption about the ball’s vertical position h. We also
assumed that h = 0 on the beam axis level. It would be more common to assume h = 0 at the point
where the ball’s vertical position is minimal. However, in this case, h would be dependent on other
system parameters: the beam length l and the max beam angle αmax. This would make the equations
more difficult to compute and analyze. Nevertheless, it has to be mentioned that this assumption
allows the potential energy of the ball to be negative, and as a result, the sum of all energies in the
system can also be negative.

After a simple trigonometric operation, the following expression for the potential
energy can be written as:

Ep = mg(x1 sin x3 + r cos x3) (7)
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In the kinetic energy Equation (5), the moment of inertia of the ball with respect to the
beam junction and the moment of inertia of the ball in its body center can be expressed as:

Jball−0 =
2
5

mr2 + m
(

r2 + x2
1

)
(8)

Jball =
2
5

mr2 (9)

The angular rate of the ball is simply related to its linear velocity:

ω =
x2

r
(10)

Evaluating the Lagrange equation leads to the formulation of the following differen-
tial equations:

0 =
7
5

mẋ2 + mg sin x3 −mx1x2
4 + bx2

M = ẋ4

(
Jbeam +

7
5

mr2 + mx2
1

)
−mg(r sin x3 − x1 cos x3)

(11)

After substituting (3) into (2), we obtain the following state equations (with the
classical choice of physical symbols for generalized coordinates):

ẋ1 = x2

ẋ2 =
5
7

(
−g sin x3 + x1x2

4 −
b
m

x2

)
(12)

ẋ3 = x4

ẋ4 =
mg(r sin x3 − x1 cos x3) + M

(Jbeam + m( 7
5 r2 + x2

1))

In order to simplify the implementation of the model, it can be transformed to the
form of (1) with u = M. The parameters from (12) and (1) along with the explicit formulas
are presented in Table 1.

Table 1. Physical model parameters are inconvenient to use when implementing models in software
environments. That is why for our implementation, we preferred the form with nonphysical, precom-
puted parameters. For convenience, this table includes both physical and precomputed parameters
along with explicit formulas.

Physical Parameters Computational Parameters

m 0.208 kg a1 =
5
7

g 7.007

r 0.018 m a2 =
5
7

0.7143

Lp 0.4 m b1 =
Jbeam

m
+

7
5

r2 0.0365

Jbeam 0.0075 kg·m2 b2 = g · r 0.1814

g 9.81
m
s2 b3 =

1
m

4.8077

b 0

2.2. Model Parameters

The ball mass m and radius r, along with the beam’s length Lp can be computed
directly. To compute the beam’s inertia moment, we need to compute its mass mb as well.
Afterwards, we performed the following experiment: The beam was hung on a thread with
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length Ln (see Figure 2). Afterwards, the beam was made to have small oscillations (we
assumed in the α range sin α = α). The period of this oscillation T was measured.

Figure 2. It is possible to estimate the moment of inertia Jbeam of the beam of length Lp by making a
physical pendulum with it, by hanging it on a string with a length of Ln. As long as the angle α is
small, the period of oscillation can be used to compute Jbeam.

Afterwards, we used an equation for the physical pendulum:

T = 2π

√
Jbeam
mbgd

(13)

where d is the distance between the beam’s center of gravity and the point where the thread
is attached, in our case:

d =
1
2

Lp + Ln (14)

where: Lp—length of the beam, Ln—length of the thread.
After substituting (14), Equation (13) can be transformed to the following:

Jbeam = mbg
(

1
2

Lp + Ln

)(
T

2π

)2
(15)

Factors on the right side, such as the weight, the length of the thread and the beam,
and the pendulum’s period, are easy to measure and allow estimating the beam’s inertia
moment. Finally, the friction coefficient was assumed to be negligible.

3. Methods

In this section, we cover the methods of state estimation that were considered in this
paper. First, we present the design of the linearized observer and determine the Jacobi
matrix, the observability, and the observer gain. Then, we move to the new proposed
observer structure and prove its semiglobal stability. Finally, we present the control
structures that we considered to analyze the observers.

3.1. Linear Observer Design

First, we present the observer for a linearized system. We present it first because it can
be seen that for the system (1), the Jacobi matrix takes the form:

J(x) =


0 1 0 0

a2x4
2 0 a1 cos(x3) 2 a2x1x4

0 0 0 1

f1(x) 0 f2(x) 0

 (16)

where:

f1(x) =
g cos(x3)

b1 + x1
2 − 2

(gx1 cos(x3)− b2 sin(x3))x1

(b1 + x1
2)

2
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f2(x) =
−gx1 sin(x3)− b2 cos(x3)

b1 + x1
2

This form of the Jacobi matrix is coupled with the system output:

y =

[
1 0 0 0
0 0 1 0

]
x = Cx (17)

allowing the use of the strongest observability criteria for the nonlinear systems. The criteria
(see for example [41] or compare with the analogous result for controllability [42]) state that
the nonlinear system is locally observable at the point x∗ if the pair (C; J(x∗)) is observable.
For the considered system, we can verify that the observability matrix (see for example [43])
takes the form:

Q =

[
C

CJ(x∗)

]
=


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


Therefore, Q is independent of x∗ and nonsingular. This means that the system (1)

with (17) is locally observable everywhere. Knowing the Jacobi matrix, we can compute
linear approximation of system (1) near the 0 equilibrium, resulting in the linear system:

∆ẋ = A∆x + Bu

where A = J(0) and B = ∂
∂u F(x, u) with F(x, u) being the right side of (1) and ∆x is a devia-

tion from 0 equilibrium. Using such a system, one can propose a linear Luenberger observer:

˙̂x = Ax̂ + Bu + G1(y− Cx̂) (18)

For this observer, the gain matrix G1 was chosen in such a way that eigenvalues of
the matrix A− G1C were real in the interval range [−21,−20]. Such a choice of the gain is
not perfect, and the search for the optimal one is advised. Such problems were considered
among others in [44,45]. The observer gain was computed using the place method from
the MATLAB® Control Toolbox™ [46] (or equivalently using the Python Control Systems
Library [47]; both implement the algorithm by Kautsky et al. [48]) and has the form:

G1 =


41 0

420 7.007
0 41

268.496 415.033

 (19)

3.2. Nonlinear Observer Design

For the design of the nonlinear observer for the system (1), one should see that the
right side of (1) has the following structural property:

F(x, u) = Lx + F1(x1, x3) + F2(x1, x4) + F3(x1)u

where L is in block-diagonal Frobenius form (see [49]):

L =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0


Using this form, one can propose a nonlinear observer:

˙̂x = Lx̂ + G2(y− Cx̂) + F1(x1, x3) + F2(x1, x̂4) + F3(x1)u (20)
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This is similar approach to the so-called output injection observers, where it is intended
to cancel as many as possible nonlinear terms in the error equation.

The dynamics of the error for such an observer has (after simple transformations and
setting x̂4 = x4 − e4) the following form:

ė = (L− G2C)e− b f (cTe, t) (21)

where:

b =


0
1
0
0

 c =


0
0
0
1


and:

f (v, t) = a2x1(t)(v2 − 2x4(t)v) (22)

Therefore, the dynamics of the error is a linear system with one scalar, time-varying
nonlinearity (nonautonomous Lurie system [28]).

Remark 2. It should be noted that because x3 is bounded due to the assumptions, x1 is bounded
because of the finite length of the beam, and the control torque is bounded; for practical reasons, also
x2 and x4 are bounded, and those bounds can either be computed through simulations or estimated
analytically. In other words, one can consider x1 and x4 as bounded time-varying parameters,
so (22) is a quadratic function with time-varying parameters. In Figure 3, one can see the sector in
which the values of (22) are contained: the upper bound of the sector is supx1,x2

f (v, t), and the
lower bound is infx1,x2 f (v, t).

The system (21) is in the form that allows the application of the circle criterion
(see [28,50]). In Figure 3, one can see that the global asymptotic stability of (21) is im-
possible, because the sector containing the nonlinear function (22) grows quadratically.

5 0 5
x4 x4

14.29

0.00

14.29

Sector boundary

Admisible values
Example attained
values

Figure 3. The nonlinearity of the error dynamics treated as a Lurie system is constrained to a
piecewise quadratically bounded sector. Because of this quadratic growth, it cannot be globally
bounded by a linear term, which is why the observer can be made only semiglobally stable. What
should be noted, however, is that the values of the nonlinearity depend on the dynamics on the
control system, so as long as they are far from the boundary values (so that stabilization works),
they are much smaller. Examples of the values taken by the nonlinear function in a closed-loop
experiment are marked in black.

For such a system, we can compute the transfer function:

G(s) = cT((L− G2C)− sI)−1b
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which for the appropriate choice of G2 and setting the eigenvalues of the matrix A−G2C as
real and contained in the interval [−21,−20], allows achieving the modulus of the transfer
function with a 10−17 order of magnitude. This gain, computed similarly to the previous
one, has the form:

G2 =


41 0
420 0
0 41
0 420

 (23)

For such a gain, one can see that the appropriate frequency inequality is fulfilled (see [28]):

I +
1
2
(k1 + k2)(G(jω) + G(−jω)) + k1k2|G(jω)|2 ≥ 0

where k1, k2 are chosen so that k1v + ε ≤ f (v, t) ≤ k2v− ε for v ∈ [e4min, e4max] and some
ε > 0. This allows solving the appropriate Lyapunov equation and finding the quadratic
form, that is the Lyapunov functional for (21) and semipositive definite, giving the basin
of attraction consisting of all the possible initial errors (because of the original system
state constraints).

Such a situation is the example of the so-called semiglobal stability property. Regard-
ing the observer design, by the choice of the parameter (in our case G2), one can achieve
any desired finite basin of attraction.

3.3. Considered Control System

As stated earlier, our idea for the observer design was to estimate the velocities (linear
of the ball and angular of the beam) that cannot be implemented directly. Then, we would
have the full state information that we could use to construct the feedback. As a simple
solution to the feedback problem (as it is not the main focus of the paper), we used a linear
feedback control, designed to set the eigenvalues of the closed-loop system as linearized
around the equilibrium and as real in the interval [−3,−4]. This can be obtained using the
place method mentioned earlier. One gain realizing this postulate has the form:

K =
[
2.197 0.183 0.518 0.106

]
(24)

To keep the realism in the controller, we introduced saturation, making the control
limited as |u| < 5. It is important to notice that this is not a globally stabilizing controller.
That is why large transitional errors can move it outside of the basin of attraction and cause
system instability. Moreover, it should be noted that, in general, for nonlinear systems,
there is no separation property. Therefore, the globally stable observer and globally stable
controller might not result in a globally stable system. That is why we compared our
observers both inside and outside of the control loop.

To test the observers, we used this controller in two ways. First, we close a feedback
loop with the system state and introduced the observer just as a state estimator. Such a
structure is presented in Figure 4a,c.

The second structure that we wanted to use was the implementation of the observer
in the control loop. In this case, we used the position (linear of the ball and angular of the
beam) with the velocity estimates taken from the observer. Such structures are presented
in Figure 4b,d.



Energies 2021, 14, 5850 9 of 15

(a)

Controller System

Linear
observer

x

u

y

−
ŷ

x̂

(b)

Controller System

Linear
observer

y

u

y

−
ŷ

x̂

(c)

Controller System

Nonlinear
observer

x

u

y

−
ŷ

x̂

(d)

Controller System

Nonlinear
observer

y

u

y

−
ŷ

x̂

Figure 4. The presentation of the control structures used in the testing of the observers (linear and nonlinear), considered in two
scenarios. The first one is to use the observer independently of the system ((a) and (c), respectively). In such cases, the system is
controlled by a state feedback, from the actual system state, and the observer estimates the missing state variables. The second test
is based on the observer operating as a part of the control system ((b) and (d), respectively). In such a case, the state feedback is
constructed with the system outputs, and the missing state variables are taken from the observer. Note: The white circle denotes the
simple summation element; the black circle, however, can be considered an equivalent to the Simulink™mux block, i.e., joining two
signals into a vector of signals fed into the system.

4. Simulation Experiments

All simulations were realized in MATLAB® and reconfirmed with Python. The Python
code is available in the provided repository. To solve the differential equations, we used
the Dormand–Prince 5(4) Runge–Kutta method, which is a fifth-order method with a
fourth-order error estimator. The method uses local extrapolation and provides a dense
output. We now discuss the results for the linear and nonlinear observers.

Remark 3. Because of the relative fragility of the linear-based closed-loop (which we do not discuss
here in detail), we chose the initial conditions to be consistent with the output measurements at the
initial state. Otherwise, the system had a tendency to destabilize.

4.1. Linear Observer Results

First, we discuss the behavior of the linear observer outside of the control loop (the
structure in Figure 4a). As can be seen in Figures 5 and 6, even the closeness of the initial
conditions did not prevent transitional errors. What can be consistently observed among all
cases is that the estimation of the linear velocity x2 was simple for both of the observers, and
the transitional errors were small. For the estimation of the angular velocity x4, the linear
observer needed more time, approximately 1 s. As the time constants of the linearized
system error were all less than 0.05 s, this cannot be considered a satisfactory behavior.

The introduction of the linear observer into the control loop (the structure in Figure 4b)
behaved as expected and reduced the control quality. The estimation of the linear velocity
was still effective (Figure 7), but as we can see, the system stabilized after 5 s, twice as long
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as previously. In the case of the angular velocity (Figure 8), we can see that the estimation
error, while having relatively moderate transitional errors, converged to zero after more
than 3 s. This is the mentioned fragility, as increasing the initial estimation error (different
initial condition) caused the system to completely destabilize.

0 1 2 3 4 5
Time (s)

-0.257

0

0.447
x 2

,x
2 (

m
/s

)

Linear velocity - x2

Estimated
linear velocity - x2

Figure 5. The linear observeroutside of the control loop has no problem estimating the linear velocity
x2, and its estimate x̂2 follows it without a large transitional error.

0 1 2 3 4 5
Time (s)

-1.141

-0.739

0

0.982

1.293

x 4
,x

4 (
ra

d/
s)

Angular velocity - x4

Estimated
angular velocity - x4

Figure 6. Even outside of the control loop, the linear observer has difficulties estimating the angular
velocity x4, and its estimate x̂4, even starting with the same initial conditions, has large transitional
errors that take about 1 s to vanish. As the time constants of the linearized system error are all less
than 0.05 s, it cannot be considered a satisfactory behavior.

0 1 2 3 4 5
Time (s)

-0.619

0

0.813

x 2
,x

2 (
m

/s
)

Linear velocity - x2

Estimated
linear velocity - x2

Figure 7. Even as a part of the control loop, the linear observer estimates the linear velocity x2 very
well. However, the system takes much longer to stabilize compared to the controller using full
state information.
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0 1 2 3 4 5
Time (s)

-1.470
-1.285

0

1.056
1.236

x 4
,x

4 (
ra

d/
s)

Angular velocity - x4

Estimated
angular velocity - x4

Figure 8. The linear observer in a closed-loop has many problems estimating the angular velocity x4.
The estimated x̂4 converges to the true value only after 3 s. Transitional errors do not greatly exceed
20%, but overshoots happen in both directions.

4.2. Nonlinear Observer Results

We follow with the analysis of the nonlinear observer outside of the control loop (the
structure in Figure 4c). Because of the stability of the observer, we relaxed the requirements
on the initial conditions, and the observer started from 0. The nonlinear observer introduced
an effect, known as the “peaking phenomena”, where initially, the estimate had a large
transitory error, which can be seen even in the estimates of the linear velocity (Figure 9).
This transitional error however vanished after approximately 0.25 s, which was consistent
with the time constants of the linear part of the error dynamics −0.05 s. Therefore, the error
vanished after 5 time constants. A similar behavior was observed for the angular velocity
(Figure 10). In both cases, the transitional error was brief and in the opposite direction to
the growth of the state variable.

The introduction of the nonlinear observer into the control loop (the structure in
Figure 4d) gave surprising results. First of all, the state estimation of both the linear and
angular velocities (Figures 11 and 12) did not differ much from the case of the observer
working independently. Moreover, the control quality was not adversely affected by the
peaks in the estimation error. Quite the opposite, as the volatility increased at the beginning,
this helped obtain the quicker stabilization of the angular velocity.

0 1 2 3 4 5
Time (s)

-1.506

-0.257

0

0.447

x 2
,x

2 (
m

/s
)

Linear velocity - x2

Estimated
linear velocity - x2

Figure 9. The nonlinear observer outside of the control loop quickly converges to the true value of
the linear velocity x2. However, x̂2 has a large transitional error of the opposite sign to the actual
value and a large magnitude (300 % of the max attained value). The error dynamics is however
very fast.
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0 1 2 3 4 5
Time (s)

-1.129

-0.739

0

0.982
0.877

x 4
,x

4 (
ra

d/
s)

Angular velocity - x4

Estimated
angular velocity - x4

Figure 10. The nonlinear observer outside of control loop expresses a similar behavior for the angular
velocity x4 as for the linear one. x̂4 converges quickly, but with a large transitional error, in this case
smaller, but still at the level of 100% in the opposite direction.

0 1 2 3 4 5
Time (s)

-1.499

-0.195
0

0.651

x 2
,x

2 (
m

/s
)

Linear velocity - x2

Estimated
linear velocity - x2

Figure 11. The nonlinear observer in the control loop estimates the linear velocity x2 as well as it
does independently. x̂2 has a minimally larger transitional error, which vanishes in a similar amount
of time.
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Figure 12. The nonlinear observer in the closed-loop for the angular velocity x4 behaves even
better than it does individually (at least for this case). The transitional errors in x̂4 are much
smaller. Moreover, a surprising positive effect of the estimation errors occurs, as the stabilization is
minimally faster.
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5. Discussion and Conclusions

In this paper, two methods for the observer design of a highly nonlinear system with
a variable moment of inertia were presented. The modeling of this system was presented,
along with the methods for the parameter derivation. The observability of the system with
respect to the output (17) was verified, and two observers were designed. The first one
was the classical linear full-rank observer for the linearized system. The second one was a
new idea for a semiglobally stable observer, which in some aspects was similar to the one
presented in [51]. For such an observer, the outline of stability proof was presented, based
on the circle criterion. The effectiveness of both observers was illustrated with simulations.

The proposed observer structure addressed an interesting problem. When designing
state observers for linear systems, the error dynamics is also linear, which simplifies the
analysis. In nonlinear systems, this is not so easy. The optimal situation is the so-called
output injection, where using the output measurements in the observer instead of the
respective state estimates, we can cancel out the nonlinear terms in the error equation.
Those systems are, however, rare, and the transformation to them is highly nontrivial.
If the nonlinearities are bounded (for example, by the Lipschitz constant), then a Lya-
punov function for the error equation can be designed and appropriate bounds used.
High-gain observers mix this approach with the transformation in a way analogous to
linearizing the feedback. They however have a tendency toward even larger transitory
peaks. Sliding-mode observers require the careful design of the sliding surface, which
for a four-dimensional system, can be troublesome. That is why the proposed approach
stands out. We performed partial output injection and treated the remaining part as a Lurie
system that could be handled by a circle criterion to ensure the semiglobal stability. This
approach is attractive, but highly unique. However, as was presented, this works both
outside and inside the control loop.

The limitations of this approach come from the specificity, as only some systems have
this property. Moreover, issues can arise similar to the case of the output injection observers,
when the identification is bad and the canceling is only partial.

Further work will include testing this observer with some global control and compar-
isons with different types of observers.
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51. Arcak, M.; Kokotović, P. Nonlinear observers: A circle criterion design and robustness analysis. Automatica 2001, 37, 1923–1930.

[CrossRef]

http://dx.doi.org/10.1177/01423312211025953
http://dx.doi.org/10.1063/5.0020184
http://www.ncbi.nlm.nih.gov/pubmed/33754748
http://dx.doi.org/10.1109/CDC.2003.1272998
http://dx.doi.org/10.21307/ijssis-2017-468
https://www.mathworks.com/products/control.html
https://python-control.readthedocs.io/en/0.9.0/
http://dx.doi.org/10.1080/0020718508961188
http://dx.doi.org/10.1016/S0005-1098(01)00160-1

	Introduction
	Ball-on-Beam Variable Moment of Inertia System
	Determination of the Physical Model
	Model Parameters

	Methods
	Linear Observer Design
	Nonlinear Observer Design
	Considered Control System

	Simulation Experiments
	Linear Observer Results
	Nonlinear Observer Results

	Discussion and Conclusions
	References

