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Abstract: In this study, a demanded power point tracking (DPPT) control algorithm was designed
for the application of multiple-input multiple-output (MIMO) modern control algorithms. The
proposed DPPT control algorithm has been newly implemented as a multiple reference trajectory
method for applying an MIMO control algorithm without mode switches. Dynamic simulations
and wind tunnel experiments were performed using a scaled wind turbine to validate the proposed
control algorithm. The wind speeds were 4.6 and 7.3 m/s, the average wind speeds corresponding
to region 2 and region 3, respectively, with a turbulence intensity of 10%. Both sets of results
demonstrated satisfactory performance for tracking the power commands transmitted from the wind
farm controller. Furthermore, the proposed control algorithm was compared and validated with a
DPPT control algorithm proposed in previous studies, and its improved control performance and
validity were confirmed.

Keywords: multiple-input multiple-output (MIMO); active power control (APC); demanded power
point tracking (DPPT) control; linear quadratic regulator (LQR); wind tunnel testing

1. Introduction

Wind turbine control systems are implemented to allow the wind turbines to operate
automatically while responding appropriately to changes in wind speed and direction.
In a region with wind speeds lower than the rated wind speed, the generator torque is
controlled to ensure that the wind turbine tracks the maximum power points while the
blade pitch angle is maintained at the fine pitch angle. In a region with a speed higher than
the rated wind speed, the blade pitch angle is controlled to maintain the rated generator
speed of the wind turbine, and at the same time, the generator torque is fixed at the rated
value or slightly adjusted to maintain the rated power [1].

This basic power control of wind turbines can be achieved by either single-input
single-output (SISO) or multiple-input multiple-output (MIMO) control, based on the way
they deal with inputs and outputs. The PI or PID control, which has been utilized in
various fields as a classical SISO control, has been conventionally implemented to control
wind turbines. This method consists of two SISO loops, each capable of controlling the
blade pitch angle and the generator torque, to generate power with different strategies for
different wind speed regions [1]. SISO control algorithms for wind turbines were further
developed to provide new strategies for improving power performance and reducing
mechanical load.

Drivetrain dampers are used to reduce the fatigue load of the low-speed shaft caused
by the vibrations of the drivetrain torsional mode [2]. This damper increases the damping
ratio of the drive train by calculating the torque command for the generator speed signal
through the band pass filter. Tower dampers are known to reduce the vibrations of tower
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fore-aft mode in the rated power region [3]. This damper consists of a proportional control
loop of the pitch angle relative to the nacelle acceleration signal with the phase compensator
to secure phase margins. The tower vibration could also be reduced by torque commands
through resonance avoidance strategies [4]. Peak shaving using additional pitch angles
for situations where rotor speed is rapidly increasing can avoid frequent shutdowns of
wind turbines due to gusts [5]. The feed-forward pitch control method using a wind-speed
estimator alleviates power fluctuations in the rated power region [6]. Using artificial neural
networks and genetic algorithms helped to address the power tracking problem in the SISO
control loop for unpredictable wind uncertainty, improving its performance [7]. These
algorithms are implemented as a feed-forward loop so that the maximum power can be
tracked in the conventional PI control loop.

However, because this SISO control is based on a single input, all the effects caused by
various wind turbine states cannot be considered simultaneously for control. This is an
avoidable constraint on the improvement of the controller performance. Therefore, MIMO
control, which can simultaneously take into account various states of wind turbines, was
investigated as an alternative allowing for better performance.

By designing an LQR controller using multiple state feedback control methods, sim-
ulations demonstrated a reduction in power variation of up to 46% and a 20% reduction
in tower load compared to the conventional PI control algorithm [8]. Studies were also
conducted on LQG algorithms with noise-considered state estimators using Kalman filters,
and simulations have shown up to a 24% reduction in power variation and a 66% blade
load reduction compared to the conventional PI control algorithms [9]. The MPC method
showed a torsional load reduction performance of up to 52% for low-speed shafts through
hardware in the loop system when compared to the conventional PI control algorithms [10].
The control technique for considering the nonlinearity of wind turbines was also studied by
applying fuzzy inference techniques to the optimal control algorithms. Up to a 39% power
variation reduction and a 13% tower vibration reduction were confirmed through wind
tunnel experiments using an LQR control algorithm based on fuzzy logic (LQRF) [11]. Dur-
ing dynamic simulation, the H∞ control showed a tower and blade fatigue load reduction
of up to 8% and 26%, respectively, compared to the conventional PI control algorithms [12].

Unlike the wind turbine control algorithms, which are used to improve the load and
the power of individual wind turbines, control algorithms to increase the total power
production of wind farms, and have recently become a topic of interest [13–15]. In this case,
the upstream wind turbines must be controlled such that they do not to track their own
maximum power point, but instead track the power demand from a wind farm controller,
which is slightly lower than the maximum power point [14]. This results in a slight decrease
in the power output of the upstream wind turbines, but an increase in the power output of
the downstream wind turbines. As the result, an increase in the total power of the wind
farm is achieved. This approach is known as active induction control [15].

For active induction control to be implemented in a real wind farm, the individual
wind turbine controller must be modified appropriately regardless of the control types
being employed (i.e., SISO or MIMO controllers). The wind turbine controller needs to
operate using its original power control when there is no power demand from a wind farm
controller, but must track the power demand whenever it occurs. This is known as active
power control (APC) or demanded power point tracking (DPPT) control.

Jeong et al. proposed several APC methods [16]. Through simulations and field
tests with a 550 kW wind turbine, a method to obtain rotor speed set-points according to
demanded power points was proposed, using the generator torque and blade pitch angle
together. A study by Kim et al. used a mode switch to turn on the demanded power point
tracking control according to power commands from a wind farm controller [17]. The
proposed algorithm was validated by using a wind tunnel experiment and a field test with
a 100 kW wind turbine [18]. Bottasso et al. considered partialization using a strategy to
maintain a constant tip speed ratio (TSR) [19]. The proposed control algorithm was verified
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on a motor-generator set simulator, but no experimental verification was performed using
wind turbines.

The DPPT algorithms previously proposed in the literature showed promising power
tracking capabilities. However, all of them were applicable to the classical SISO control
algorithms (PI or PID) of a wind turbine, but cannot be implemented for MIMO control
algorithms. Furthermore, although the superior control performance of modern MIMO
control algorithms has been demonstrated, no DPPT controls, which can be implemented
for MIMO control, were found in the existing literature.

Therefore, the purpose of this study is to design a demanded power point tracking
(DPPT) control algorithm for application to an MIMO-type modern control algorithm
(LQRF) and to verify its tracking performance through wind tunnel experiments. The
proposed DPPT control algorithm for application to an MIMO controller cannot be designed
solely using the rotor speed feedback method applied to conventional PI control algorithms.
Thus, a suitable DPPT control method was applied to modern control algorithms based on
an MIMO that used a multiple reference trajectory method.

The originality and contribution of this study can be summarized as follows:
The proposed DPPT control algorithm was designed to be applied to a variety of

MIMO modern control algorithms, instead of to traditional PI control methods. Previous
studies have shown that despite the satisfactory performance of the MIMO-type modern
control algorithms, they have not yet been used for studies on the design and validation of
DPPT controllers for wind farm control. Therefore, strategies for applying conventional
DPPT control techniques to modern MIMO control algorithms that have completely dif-
ferent structures from classical PI control are analyzed herein. The DPPT controller was
designed using multiple reference trajectory techniques without mode switches in order to
suit MIMO-type modern control algorithms, and was experimentally validated through
simulations and wind tunnel experiments. To ensure the validity and suitability of the
proposed control algorithm, the proposed DPPT control algorithm was compared with the
DPPT control algorithm developed in previous studies, and their control performance was
analyzed through simulations. The results of this study are expected to serve as a reference
study which will enable wind farm controllers to control individual wind turbines by using
MIMO-type modern control algorithms.

This paper consists of six sections. Section 2 describes the target wind turbine used
for verifying the controller. Section 3 provides a description of the control strategy and
the controller design. Section 4 describes the simulations and wind tunnel experiments
performed to validate the proposed control algorithm. The control response to tracking
the demanded power from the wind farm controller is confirmed by the time-series data.
Section 5 compares the control performance with other DPPT control algorithms through
a dynamic simulation to enhance the validity of the proposed control algorithm. Lastly,
Section 6 describes the conclusions of this study.

2. Target Wind Turbine

The target wind turbine selected for the simulation and the wind tunnel experiments
for validating the proposed control algorithm was a scaled wind turbine with variable-
speed variable-pitch (VSVP) and a horizontal axis. The scaled wind turbine was originally
designed and developed by researchers at the University of Technology in Munich [20], and
was modified to use three-dimensional (3D) printed blades and the new control algorithms,
in order to allow for the experimental validation of this study [21].

The rated electrical power of the target wind turbine was 46 W, with a rotor diameter
of 1.1 m and a hub height of 0.9 m. Since the TSR in the operation region of the target wind
turbine was designed to be approximately 7–8, the operating characteristics were similar to
those of an actual medium or large wind turbine. Therefore, the target wind turbine was
suitable for use as a wind turbine model for the experimental validation of the proposed
control algorithm [22]. The other specifications of the target wind turbine are presented in
Table 1. Figure 1 shows an image of the target wind turbine.
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Table 1. Specifications of target wind turbine.

Specifications Units Values

Rotor diameter m 1.1
Hub height m 0.9
Gear ratio - 14
Fine pitch angle deg 0.5
Rated rotor torque Nm 0.517
Rated electrical power W 46
Rated rotor speed rpm 850
Cut-in, rated, cut-out wind speed m/s 3, 6, 13
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Figure 1. Image of scaled wind turbine.

3. Controller Design

The performance analysis of the target wind turbine should be performed first in
order to design the controller. Once aerodynamic performance, power performance, and
the dynamic characteristics of the target wind turbine are identified, the LQRF and DPPT
control strategies can be established based on this information. The LQRF controller is the
MIMO controller created by using the wind speed estimator, LQR controllers, and the fuzzy
model. The weights and gains of the LQRF controller are tuned through simulations and
wind tunnel experiments. The proposed DPPT controller is designed by establishing the
trajectory planning of the primary states based on a power derating strategy. The trajectory
planning is constructed through iterating steady-state simulations. The MIMO-type DPPT
controller, which is completed by combining the two algorithms, completed the final design
through the re-tuning process and validated its validity through the resulting analysis.

Flowchart of design and validation for MIMO controller with DPPT are shown
in Figure 2.

3.1. Control Strategy

The control strategy of horizontal-axis VSVP wind turbines can be divided into three
regions according to the wind speeds [1]. Region 1 is the section below to the cut-in wind
speed and does not generate wind power. Region 2 is the range from the cut-in wind speed
to the rated wind speed, wherein the blade pitch angle is maintained at a fine pitch angle,
and the generator torque is applied so that the wind turbine tracks the maximum power
points. Region 3 is the region from the rated wind speed to the cut-out wind speed, wherein
the generator torque is maintained at the rated torque level, and the blade pitch angle
is controlled to maintain the rated power. Region 2-1/2 is the transition region between
regions 2 and 3, where the two control strategies are switched. Figure 3 shows a typical
power control strategy for wind turbines.
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However, the power control strategy shown in Figure 3 only considers a single wind
turbine. In a wind farm, some wind turbines may be derated to a certain level in order
to improve the total power production or to regulate the power transmitted to the grid.
Equation (1) indicates the power that wind turbines can extract from wind [1], and shows
that the power coefficient CP, determined by the TSR λ and blade pitch angle β, must be
reduced to reduce the power.

P =
1
2

ρπR2v3CP(λ, β) (1)

The strategy for reducing the power coefficient in order to derate the power is shown
in Figure 4. The pitch angle is divided into 2.5◦ intervals from −2.0◦ to 15.5◦, indicating
the power coefficient (Figure 4a) and thrust coefficient (Figure 4b) of the scaled model,
which vary depending on the TSR. As shown in Figure 4, a situation in which the power is
reduced by 60% when the wind turbine is under control at the maximum power point can
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be assumed. Although there are numerous ways to derate power points, the strategies to
change the TSR can be divided into three strategies: A, B, and C [19].
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Strategy A in Figure 4 reduces the rotor speed because it uses a large pitch angle
compared to Strategies B and C. Therefore, because the thrust generated by the rotor of
the wind turbine is low, the wake deficit effect in the wind farm is high [23]. However,
when used to reduce some power production from wind farms to regulate the power, the
minimum rotor speed required for the grid connection may not be reached owing to a
simple decrease in rotor speed. This can lead to a frequent shutdown in region 2. Strategy
B maintains a constant rotor speed. Therefore, as the sensitivity of the control loop gain to
the rotor speed does not change with wind speed, new tuning is not required. Strategy C is
a strategy that increases rotor speed and in which pitch angles are rarely used, and involves
the smallest wake deficit effect. This strategy is suitable for stall-regulated wind turbines.
However, this method of increasing the rotor speed may cause the maximum rotor speed
to exceed the limit at which it must be shut down. That is, strategies A and C, which
change the rotor speed, can cause gain-tuning problems [16–18]. In a previous study, the
sensitivity change was attributed to the recovery of, and decrease in, the rotational kinetic
energy of wind turbines [17]. However, strategy B has relatively small wake deficit effects,
with a lower pitch angle usage compared to strategy A. In Figure 4b, Strategy A reduces
the thrust coefficient by approximately 0.54 by using a pitch angle of approximately 13◦.
For strategy B, the thrust coefficient was reduced by approximately 0.47, owing to the use
of a pitch angle of approximately 7.5◦. Although the reduction in thrust coefficients is
lower in areas where the pitch angle is greater than 5◦, the thrust coefficient is still higher
in strategy B than in strategy A; thus, strategy B has a relatively smaller wake deficit effect
than strategy A. Based on the characteristics of the strategies, the DPPT control algorithm
should properly consider the control sensitivity of the target wind turbine, the rotor speed
limiting conditions, and the wake deficit effects.

Since the MIMO control algorithm has many control gains and weights to control
the states of a wind turbine, the control algorithm proposed in this study was designed
based on strategy B, which maintains the same rotor speed to enhance the stability of the
control system.

3.2. DPPT Control

In the MIMO control algorithm, each state tracks the reference trajectory. Reference
trajectories generally use steady-state analysis results, but the reference trajectories of rotor
speed, blade pitch angle, and generator torque have been modified for DPPT control, since
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they are the main variables determining the power. The modified reference trajectories are
presented in Table 2.

Table 2. Reference trajectory planning for DPPT control.

Classification
Trajectory Planning for Reference

Ωref (v) βref (v) Tref (v)

Region 2 λ
R v [β f ine such that: CPmax(λ, β)] + δβ(p, v) p· 1

2 ρπR3v2·CPmax(λ,β)
λ

Region 3 Ωrated [β such that: 1
2 ρπR2v3CP(λ, β) = Prated] + δβ(p, v) p· Prated

Ωrated

According to the power control strategies in Figure 3, the reference trajectory for DPPT
can be determined by dividing it into regions 2 and 3 based on the rated wind speed. The
DPPT B strategy was adopted, as shown in Figure 4, so that the reference trajectory of
the rotor speed is the same as the non-partialized steady-state analysis result. In region 2,
the rotor speed increases proportionally to the wind speed. In region 3, the rotor speed is
maintained at the rated rotor speed. The reference trajectory of the torque is determined
by multiplying the steady-state analysis result by the partialization factor, p. In region 2,
the torque is controlled in order to track the maximum power point. In region 3, the rated
power is maintained by dividing it by the rated rotor speed. The determined trajectory is
partialized by the partialization factor. The reference trajectory of the pitch is determined
by adding the delta pitch angle, determined by the partialization factor p, and wind speed
to the steady-state analysis results. In region 2, the pitch angle is maintained at a fine pitch
angle in order to track the maximum power point. In region 3, the pitch angle is controlled
in order to maintain the rated power. The determined trajectory is partialized by the delta
pitch angle.

Figure 5 shows the delta pitch angle function in a three-dimensional (3D) form. Delta
pitch angles are nonlinear functions determined by inputting wind speeds and the par-
tialization factor, and then calculated by offline simulations. Figure 6 shows the reference
trajectory from Table 2 according to the partialization factor, along with the steady-state
results that are not partialized. The partialization was divided into five categories—20%,
40%, 60%, 80%, and 100%—and then interpolated to each reference trajectory based on the
plan in Table 2.
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3.3. LQRF Control Algorithm with DPPT Control

In this study, the LQRF control algorithm was applied as a target MIMO-type modern
control algorithm. The LQRF control algorithm is a nonlinear modern control technique that
combines the LQR optimal control technique with the fuzzy inference technique [11]. The
LQR control algorithm calculates the optimal control inputs by solving a linear quadratic
function for multiple states.

The state vector and input vector are described by Equation (2). The state vector was
applied with a tower fore-aft displacement and velocity, rotor speed, pitch angle, pitch rate,
torque, and integral action for the rotor speed. The input vector was applied with the pitch
angle and torque commands.

x = [d f a
.

d f aΩrβCPC
.

βCPCTg
∫

Ωrdt]T

u = [βCMDTg CMD]
T (2)

Equation (3) is a linear quadratic function for calculating the optimal gain, and the
calculation was performed using MATLAB (R2019b, The MathWorks, Inc., Natick, MA,
USA) program to solve the algebraic Riccati equation (ARE). The Q and R matrices are
weight matrices for the states and inputs, respectively.

J =
∫ (

xT(t)Qix(t) + uT(t)Riu(t)
)

dt (3)

When the LQR controller is designed as multiple subsystems, the nonlinearity charac-
teristics can be considered through fuzzy interpolation. The control commands calculated
through fuzzy interpolation can be represented as:

u(t) =
N
∑

i=1

µi(z(t))
∑ µi(z(t))

(
ui + KLQ i(xi(t))

)
0 ≤ µ(z(t)) < 1; i = 1 . . . N

(4)

where µ is the membership function, z is the system decision variable, i is the number of
subsystems, and KLQ is the optimal gain obtained by solving the linear quadratic (LQ)
problem. The content of the fuzzy logic used in this study is more completely described
in Ref. [11].

The proposed overall control algorithm is illustrated in Figure 6. Figure 7a shows
a block diagram for the conventional LQRF control algorithm, whereas Figure 7b shows
the LQRF control algorithm with the DPPT control algorithm. The control algorithm
shown in Figure 7b is represented by KNUm in this study. The reference trajectory in
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Figure 6 was applied to the controller in the form of a look-up table using the power
command transmitted from the wind farm control algorithm and the estimated wind
speed information. The set points at each state were calculated in real time using these
look-up tables.
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3.4. Wind Speed Estimator with DPPT Control

The wind speed estimator used in this study estimates the aerodynamic torque and
wind speed structurally, through formulas with information input in real time for the
torque, rotor speed, and pitch angle [6]. Therefore, it is necessary to examine whether the
wind speed estimator can operate normally in unusual situations caused by different set
points using the DPPT control algorithm.

The aerodynamic torque generated by wind on a wind turbine can be obtained from
the governing equation of the drive-train motion model:

Ta =
(

Jr + N2 Jg

)dΩr

dt
+ NTg + Tloss (5)

where Jr is the rotor moment of inertia, Jg is the generator moment of inertia, N is the
gear ratio, and Tloss is the loss in torque. The wind speed can be estimated using the
estimated aerodynamic torque and the torque coefficient obtained in advance through an
aerodynamic analysis. Equation (6) indicates the estimated wind speed:

T̂a =
1
2

ρπR3CQ(λ̂, β)v̂2 (6)

The estimated wind speed was calculated in the form of a 3D look-up table obtained
by reducing the error in the estimation of the aerodynamic torque through the optimization
function in MATLAB. During the calculation of Equation (5), a lower aerodynamic torque
is estimated than when DPPT control does not occur, since the rotor speed is the same
but a lower torque is applied because of the DPPT control action. However, during the
calculation of Equation (6), the torque coefficient decreases because the pitch angle changes
owing to the DPPT control action. Consequently, the final wind speed estimate is expected
to be the same regardless of the DPPT control. Figure 8 shows the results of the simulation
of the aerodynamic torque and the wind speed estimated by the wind speed estimator
depending on DPPT control.
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Figure 8. Simulation results of aerodynamic torque and wind speed estimated by wind
speed estimator.

The estimated wind speed was compared to the rotor-averaged wind speed extracted
from the commercial analysis program DNVGL-Bladed (4.6, DNV-GL, Norway, Oslo) to
verify the estimation performance. Figure 8 shows that when performing DPPT control,
the aerodynamic torque was estimated to be low according to the level of partialization,
but the wind speed was estimated to be normal owing to the lowered torque coefficient
due to the pitch angle used.

4. Controller Validation

The performance and applicability of the proposed DPPT control algorithm for the
MIMO controller (KNUm) were validated by conducting a wind tunnel experiment at a
large wind tunnel test center (Jeolla-do, Korea). The wind tunnel is an internal circulation
structure wherein the first and second floors are circulated. The experiment was conducted
in the wind tunnel on the first floor, a low wind speed test floor. The dimensions of the wind
tunnel were 40 × 12 × 2.5 m. The wind tunnel was observed from the control room. The
personal computer (PC) in the control room and programmable logic controller (PLC) in the
wind tunnel were connected in order to monitor and operate the scaled wind turbine. The
C++ code-based controllers were uploaded to the PLC to control the actuators of the scaled
wind turbine in real time (250 Hz sampling). The wind conditions were implemented using
large blowers and hot-wire anemometers, and a 10% turbulence intensity was implemented
using spire structures to perform more realistic wind tunnel experiments. The experiments
were conducted by implementing wind conditions in region 2 (4.6 m/s) and region 3
(7.3 m/s) to confirm that the proposed control algorithm tracked the reference trajectory
shown in Table 2. Figure 9 shows the control experiments performed using a scaled wind
turbine inside a wind tunnel.
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Furthermore, to validate the proposed control algorithm, the wind tunnel experiments’
results were comparatively analyzed using dynamic simulation results. The dynamic
simulations were performed using the DNVGL-bladed commercial program. The C++
code-based controller was extracted into a dynamic link library (DLL) file using Visual
Studio. The extracted controller was mounted on a scaled wind turbine numerically
modeled using the DNVGL-Bladed program. Average wind speeds of approximately 4.6
and 7.3 m/s, with a turbulence intensity of 10%, were applied to create wind conditions
similar to those in the wind tunnel experiments. Since the control systems covered in this
study were mechanical controls using pitch and torque actuators, the reactive power was
not considered. Therefore, the electrical power from the simulation was assumed to be the
active power.

Figure 10 shows the results and of the simulation and the wind tunnel experiment for
the proposed DPPT control algorithm for an MIMO controller at an average wind speed of
4.6 m/s. Both the simulation and wind tunnel experiment were implemented in situations
wherein 60%-80%-20%-40%-100%-20%-80%-60% power commands were transmitted from
the wind farm controller at intervals of 25 s, for a total operation time of 200 s. The sequence
of power commands was arbitrarily selected in order to verify the tracking performance
of the proposed control algorithm. The windows of the simulation results in Figure 10
represent wind speed, rotor speed, blade pitch angle, generator torque, and electrical power,
respectively. Figure 10a shows the dynamic simulation results of the proposed control
algorithm for an average wind speed of 4.6 m/s. It was confirmed that DPPT control
occurred while maintaining the rotor speed according to the DPPT B strategy, as shown in
Figure 4. Additionally, it was confirmed that, as the demanded power decreased, the pitch
angle used increased to a value as high as the delta pitch angle in Figure 5, and the torque
became as low as the partialization factor. Figure 10b shows the results of the wind tunnel
experiment with the proposed control algorithm for an average wind speed of 4.6 m/s. In
the wind tunnel experiments, the same winds were not re-implemented in the time series,
so the experiment was performed twice with the same average wind speed (4.6 m/s) at the
same turbulence intensity (10%). However, as in the simulation results, it was confirmed
that the same rotor speed level was maintained in accordance with the DPPT B strategy,
and the pitch angle and torque control were performed to track the power command.
Additionally, high-frequency components were observed for most signals owing to the
influence of measurement noise, which was absent in the simulation results.

The power commands and controlled power results are shown in Figure 11 can be
used to closely check the tracking performance of the proposed DPPT control algorithm.
The controlled results indicate that the percentage of the power divided by the available
power is comparable to the power commands. The simulation and wind tunnel test
results indicate that the power commands were well tracked, but the wind tunnel test
results showed increased tracking deviation. These differences appear to stem from the
measurement noise generated from experiments and the uncertainty in numerical modeling.
Additionally, in some cases where the power command is delivered in Figure 10, the rotor
speed decreases slightly. As a result, the power in Figure 11 also decreases slightly. Since
simulations always feature more ideal conditions than those found in experiments, the
operating conditions of the wind turbine may differ slightly between the simulations
and wind tunnel experiments. However, these differences did not significantly affect the
performance of wind turbines, and the overall result is that the power commands from the
controller were properly tracked.
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Figure 11. Simulation and wind tunnel experiment results for power command tracking performance
at a wind speed of 4.6 m/s.

Figure 12 shows the results of the simulation and wind tunnel experiment for the
proposed DPPT control algorithm for the MIMO controller at an average wind speed of
7.3 m/s. The same power commands were sent as in the simulation shown in Figure 10,
for a total duration of 200 s. Figure 12a shows the results of the dynamic simulation
of the proposed control algorithm at an average wind speed of 7.3 m/s. The strategic
characteristics of the DPPT B strategy shown in Figure 10a are the same as those shown
in Figure 12a. While maintaining the rotor speed in order to track the demanded power
point, it was confirmed that the pitch angle was as high as the delta pitch angle and the
torque was as low as the partialization factor. Figure 12b shows the results of the wind
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tunnel experiment for the proposed control algorithm at an average wind speed of 7.3 m/s.
Similar measurement noise was observed as in Figure 10b.
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Figure 13 is presented to closely check the tracking performance of the proposed con-
trol algorithm, which is shown in Figure 12. Overall, the results in Figures 12 and 13 were
found to track the power commands more clearly than the results in Figures 10 and 11. This
difference is due to the strategy of tracking the maximum power point, which minimizes
the pitch control in Figure 10 (region 2). As a result, the overall control performance of the
proposed DPPT control algorithm was found to be suitable for all regions.
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5. Discussion

In this study, the proposed control algorithm (KNUm) was compared with the pre-
viously studied DPPT algorithm (KNU2) for the classical control algorithm, in order to
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further analyze the improved performance and validity of the proposed control algorithm
through a dynamic simulation [17,18]. The KNU2 control algorithm was previously vali-
dated through wind tunnel experiments using a scaled wind turbine. The KNU2 control
algorithm is a DPPT control algorithm based on the DPPT strategy for use as a conventional
PI control algorithm, and its validity was authenticated by conducting field tests using
a medium wind turbine. Additionally, owing to its ease of accessibility, it can be easily
implemented as a valid control algorithm. Therefore, the KNU2 control algorithm was
adopted as a target for a comparative validation of the validity and improved control
performance of the proposed control algorithm in this study.

Figure 14 shows the block diagram of the classical control algorithm and the classical
control-type DPPT control algorithm, which was studied previously. Figure 14a represents
a classic PI control algorithm. Based on the power control strategy shown in Figure 3,
pitch PI control and scheduled torque control are performed by a mode switch action.
Figure 14b shows the addition of the DPPT control algorithm to Figure 14a. A look-up
table was applied in order to output the reference rotor speed as the input of the power
command from the wind farm controller. The mode switch and torque control conditions
were modified for DPPT control [17].
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DPPT control.

Figure 15 shows the comparative results of the dynamic simulation using the DPPT
controller with the classical control algorithm (KNU2) and the modern control algorithms
(KNUm) at mean wind speeds of 4.6 and 7.3 m/s. The simulation was implemented by
transmitting 80%-20%-100%-40%-100%-60%-20%-80% power commands from the wind
farm controller at intervals of 25 s. The sequence of power commands was arbitrarily re-
selected to verify the tracking performance of the designed control algorithms. Figure 15a
shows the simulation results obtained under a turbulence intensity of 10% and an average
wind speed of 4.6 m/s. The DPPT control algorithms of the PI and LQRF controllers were
compared using the simulation results, depending on the transmission of power commands
from the wind farm controller. It was confirmed that the pitch angles were used more
when using the KNU2 controller with the DPPT A strategy than when using the KNUm
controller with the DPPT B strategy, as shown in Figure 4. As a result, at approximately 50,
100, and 175 s, the time required to track the required power command slowed down each
time the power command changed, due to the rotor speed slowing down or increasing
rapidly. Furthermore, because the rotor speed was reduced by the use of several pitch
angles when using the KNU2 controller, it was confirmed that a lower torque was required
in order to track the power commands. Figure 15b shows the simulation results under
a wind turbulence intensity of 10% and an average wind speed of 7.3 m/s. Overall, the
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characteristics according to the DPPT strategy were similar to those shown in Figure 15a,
but were found to be more pronounced. As illustrated in Figure 12, this occurs because the
available power in region 3 becomes constant at the rated power, resulting in pitch control
to control it.
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Figure 15. Dynamic simulation results for the comparison of KNU2 and KNUm control algorithms. (a) Average wind speed
of 4.6 m/s; (b) average wind speed of 7.3 m/s.

The numerical comparison results of the simulation are given in Table 3. To understand
the structural stability of wind turbines and the state of stable power production, the
mean and standard deviation for the rotor speed and power, and tower fore-aft vibration,
were selected as the indicators for evaluating the performance of the proposed controller.
Compared to the PI control in the situation where the DPPT was off, torque and pitch
control were performed by the LQRF algorithm whenever the deviation was likely to be
severe, considering the rotor speed and tower vibration deviation. As a result, the rotor
speed deviation was reduced by 23.44%, the power deviation by 41.83%, and the tower
vibration by 17.24% at an average wind speed of 7.3 m/s. At an average wind speed of
4.6 m/s, not only is it important to reduce the standard deviation, but also to track the
maximum power point by the power strategy, so the effect of reducing the deviation was
less than at an average wind speed of 7.3 m/s. In the situation where the DPPT was on,
the mean rotor speed and tower vibration increased owing to the use of a smaller pitch
angle by the KNUm strategy compared to the KNU2 strategy. On the other hand, the
standard deviation of the rotor speed and the tower vibration was reduced due to the
control performance of the LQRF control and the KNUm strategy of maintaining the same
rotor speed level according to the demanded power command.
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Table 3. Performance data for the comparison of KNU2 and KNUm control algorithms.

Performance Data
Mean Std. Dev.

Ωr (rpm) P (W) d (mm) Ωr (rpm) P (W) d (mm)

Region 2
(4.6 m/s)

KNU2 off (A) 593.159 22.748 0.121 31.827 3.656 0.018
KNU2 on (B) 479.004 13.462 0.048 104.007 7.378 0.048

KNUm off (C) 601.492 22.685 0.122 29.112 3.873 0.016
KNUm on (D) 601.820 14.384 0.062 29.678 7.403 0.044

DPPT
off (C−A)/A (%) 1.405 −0.277 0.826 −8.530 −5.603 −11.111
on (D−B)/B (%) 25.640 6.849 29.167 −71.465 0.339 −8.333

Region 3
(7.3 m/s)

KNU2 off (E) 849.499 45.993 0.147 12.183 0.600 0.029
KNU2 on (F) 639.482 28.121 0.082 149.984 14.027 0.056

KNUm off (G) 848.962 46.013 0.147 9.327 0.349 0.024
KNUm on (H) 849.857 28.790 0.099 9.119 14.134 0.041

DPPT
off (G−E)/E (%) −0.063 0.045 0.000 −23.443 −41.833 −17.241
on (H−F)/F (%) 32.898 2.379 20.732 −93.920 0.763 −26.786

The power commands and controlled power results in Figure 15 are shown in Figure 16
to compare the tracking performance of the two DPPT control algorithms. The tracking
performance of the two control algorithms was found to be better in region 3 (7.3 m/s)
than in region 2 (4.6 m/s), similar to the result in Figure 13. Although the KNUm control
algorithm used a lower pitch angle than KNU2, it maintained a constant rotor speed, in-
creasing the stability of the control system relative to the rotor speed. As a result, the control
performance and suitability of the proposed DPPT control algorithm were acceptable.
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Figure 16. Simulation results for power command tracking performance at wind speeds of 4.6
and 7.3 m/s.

Table 4 shows a quantitative comparison of the tracking performance of the two DPPT
control algorithms for the demanded power in Figure 16. The tracking performance was
evaluated using the mean absolute error (MAE) and the mean square error (MSE) for the
demanded power command. Overall, the KNUm controller had a lower error than the
KNU2 controller. In region 2, the difference was up to approximately 4.3% for the MAE and
up to approximately 10.4% for the MSE. In region 3, the difference was up to approximately
1.8% for the MAE and up to approximately 8.8% for the MSE.
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Table 4. Quantitative comparison of tracking performance.

Comparison Region 2 (4.6 m/s) Region 3 (7.3 m/s)

MAE (%) MSE (%) MAE (%) MSE (%)

KNU2 5.025 11.830 2.090 9.851
KNUm 0.719 1.456 0.255 1.103

6. Conclusions

In this study, a DPPT controller was designed for use with a MIMO-type modern
control algorithm. The proposed DPPT control algorithm was implemented without mode
switches by using multiple reference trajectory. The LQRF control algorithm using wind
speed estimators was selected as the target MIMO-type modern control algorithm. The
validity of the use of wind-speed estimators for the DPPT algorithms was examined.
Although low aerodynamic torque occurred due to DPPT control action, the normal wind
speed was maintained because of the reduced torque coefficient stemming from the pitch
angle use.

Dynamic simulations and wind tunnel experiments were performed using a scaled
wind turbine to validate the proposed control algorithm. Average wind speeds of 4.6 m/s
and 7.3 m/s, corresponding to region 2 and region 3, were applied with a turbulence
intensity of 10%. Overall, the tracking performance in region 3 was superior to that in
region 2, which was attributed to differences in pitch control between the regions based on
different power control strategies. In the wind tunnel experiments, variations tended to
increase more than in the simulations because of measurement noise and uncertainty prob-
lems in numerical modeling. However, both sets of results showed satisfactory tracking
performance for demand power commands from the wind farm controllers.

The control performance of the proposed DPPT control algorithm (KNUm) for the
MIMO controller was compared with the performance of a previously studied classical
control-type DPPT control algorithm (KNU2) through dynamic simulations. KNU2 control
algorithms used strategies that produced significant wake deficit effects, although they
tended to increase their tracking response time due to the rapid change in rotor speed
caused by the use of large pitch angles. The KNUm control algorithm used relatively small
pitch angles, but the rotational speed level was preserved. That is, by ensuring the stability
of the LQRF control algorithm, rapid tracking response times were achieved and the
transient response of the pitch angle was reduced. Specifically, the proposed DPPT control
algorithm was confirmed to be suitable for operating the MIMO-type control algorithm.

Overall, this study conducted dynamic simulations and wind tunnel experiments to
authenticate the validity, applicability, and tracking performance of the proposed KNUm
control algorithm. However, a compromise or optimization problem remains when trying
to simultaneously optimize the wake reduction performance and the stability of the control
system. Therefore, further studies should be conducted on how to optimize the reference
trajectory for power commands. Optimization problems may be studied in conjunction
with wind farm control algorithms using machine learning techniques and aerodynamic
data from the target wind turbines. Additionally, a study on the control of wind farms
using various MIMO-type modern control algorithms could be conducted based on the
work presented in this study.
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